饮料罐装生产流水线PLC控制设计
基于PLC的饮料灌装生产线的控制系统设计

基于PLC的饮料灌装生产线的控制系统设计基于PLC的饮料灌装生产线的控制系统设计随着现代化工业大生产的不断发展,各种生产线和设备的控制系统也在不断升级和改进。
饮料灌装生产线作为其中的一种重要生产线和设备,其控制系统的设计方案也日益成熟。
在这些设计方案中,基于PLC的饮料灌装生产线控制系统成为了越来越多生产厂家的选择。
本文将从PLC技术的具体应用入手,介绍基于PLC的饮料灌装生产线控制系统的设计及其优点。
1、PLC技术的具体应用PLC,即可编程逻辑控制器,是一种用于控制工业制程、自动化和机器人化的计算机。
PLC通过输入采集器(传感器)来获取信号,经过程序进行处理,再通过输出信号与电动机、传动机、阀门和气动装置等一系列工业控制设备完成工业生产流程的整个控制过程。
PLC以其强大的计算能力,高效的运行速度,极高的可靠性,现代化的控制方式以及精度高,稳定性好等优点吸引了越来越多的生产厂商的选择。
在饮料灌装生产线的控制系统中,PLC装置被广泛运用。
PLC技术的应用,为饮料灌装生产线的智能化、高效化助力。
2、基于PLC的饮料灌装生产线控制系统设计方案在基于PLC的饮料灌装生产线控制系统的设计方案中,常见的系统组成部分包括:1)机械手系统2)输送系统3)灌装系统4)清洗系统5)控制系统其中,机械手系统和输送系统主要负责完成不同型号的瓶子进入生产线并对其进行归类,同时有利于后续工作的顺畅进行。
在灌装系统中,PLC装置通过收集数据,根据不同瓶子型号和要求来进行调整,实现不同饮料的灌装。
清洗系统负责对各种瓶子进行清洗,并保证其卫生,防止瓶中残留物的污染。
最后,控制系统与传感器,电机,气动装置相结合,对饮料灌装生产流程进行最终控制。
基于PLC的饮料灌装生产线的控制系统是一个复杂的系统,涉及到数控系统,并需要精准地对工厂内的各种设备进行控制。
因此在设计方案中常见的方案结构为模块化控制,即将整个控制系统分为多个模块,通过各个模块之间的通讯,最终控制饮料灌装生产线的生产流程。
饮料灌装生产流水线plc控制

饮料灌装生产流水线plc控制饮料灌装生产流水线PLC控制是现代工业生产中非常重要的一项技术,其应用广泛,涉及到许多行业。
在饮料生产过程中,流水线PLC控制技术是不可或缺的,它可以帮助饮料工厂实现生产自动化、提高生产效率和品质,为市场提供高质量的饮料产品。
PLC是Programmable Logic Controller的缩写,中文翻译为“可编程逻辑控制器”,它是一种用于机电一体化自动化过程控制和管理的专用数字计算机。
PLC控制器集计算机、输入输出接口、控制程序等多种功能于一身,可以完成自动化控制系统的输入、处理、输出等功能。
在饮料灌装生产流水线上,PLC 控制器可以控制饮料生产的每一个环节,实现生产自动化、精确度和一致性,提高了生产效率和品质。
饮料生产的流水线主要分为四个环节:瓶子清洗、灌装、封口和标签贴附。
在PLC控制下,这四个环节被分为不同的站点,每个站点都有一个PLC控制器掌控,分别进行不同的自动化控制和监测。
下面,我将详细介绍饮料生产流水线PLC控制的每个阶段。
一、瓶子清洗在饮料生产的初始阶段,瓶子需要经过清洗和灭菌处理,以确保产出的饮品符合卫生标准和质量要求。
瓶子清洗环节需要PLC控制器进行以下动作:1. 瓶子入口传感器检测瓶子进入清洗区域,并向PLC发送信号。
2. 清洗水喷嘴根据PLC指令自动喷出清洗液,控制清洗周期和数量。
3. 清洗水回收系统根据PLC指令自动控制清洗水的回收和过滤,以保持清洁度并节约用水。
4. 清洗后的瓶子通过传送带进入灌装站点。
二、灌装在灌装阶段,饮料被灌入瓶子中。
PLC控制器主要负责以下动作:1. 饮料进料管道传感器检测饮料进入灌装区域并向PLC发送信号。
2. 灌装喷嘴根据PLC指令自动灌装指定的数量的饮料,并对流量、速度、压力等参数进行自动化控制。
3. 灌装完毕后,灌装喷嘴根据PLC指令自动关闭并等待下一轮灌装。
4. 灌装过程中,PLC控制器实时监测饮料的温度、压力、灌装量等参数,以保证灌装的一致性和质量。
饮料灌装生产流水线plc控制

饮料灌装生产流水线plc控制编写可编程控制器顺序完成对饮料罐的自动罐装流程。
完成对传送带的运转以及罐装设备的控制,并完成计数1〕系统经过开关设定为自动操作形式,一旦启动,那么传送带的驱动电机启动并不时坚持到中止开关举措或罐装设备下的传感器检测到一个瓶子时中止;瓶子装满饮料后,传送带驱动电机必需自动启动,并坚持到又检测到一个瓶子或中止开关举措〔2〕当瓶子定位在罐装设备下时,停顿1秒,罐装设备末尾任务,罐装进程为5秒钟,罐装进程应有报警显示,5秒后中止并不再显示报警〔3〕用两个传感器和假定干个加法器检测并记载空瓶数和满瓶数,一旦系统启动,必需记载空瓶数和满瓶数,设最多不超越99999999瓶〔4〕可以手动对计数值清零〔复位〕关键词:三菱FX2NPL MC,MCR主控指令饮料灌装饮料灌装消费流水线目录1 PLC编程简介1.1PLC的基本概念 (3)1.2 PLC的基本结构 (3)1.3 PLC的任务原理 (4)2设计进程2.1设计方案 (5)2.2设计原理 (5)2.3创新点与术说明 (5)3 硬件系统框图与说明 (6)3.1罐装控制流程图 (6)3.2I/O接线图 (7)3.3系统外部接线图 (8)4梯形图与说明 (9)5课程设计总结 (10)6参考文献 (11)7 谢辞 (12)饮料灌装消费流水线PLC梯形图控制顺序设计与调试一、PLC编程简介1、PLC的基本概念可编程控制器(Programmable Controller)是计算机家族中的一员,是为工业控制运用而设计制造的。
早期的可编程控制器称作可编程逻辑控制器(Programmable Logic Controller),简称PLC,它主要用来替代继电器完成逻辑控制。
随着技术的开展,这种装置的功用曾经大大超越了逻辑控制的范围,因此,明天这种装置称作可编程控制器,简称PC。
但是为了防止与团体计算机(Personal Computer)的简称混杂,所以将可编程控制器简称PLC2、PLC的基本结构PLC实质是一种公用于工业控制的计算机,其硬件结构基本上与微型计算机相反,如下图:a. 中央处置单元(CPU)中央处置单元(CPU)是PLC的控制中枢。
饮料灌装生产流水线PLC 梯形图控制程序设计与调试

④S23:5s 延时后,传送带驱动电机继续转动。 其他要求则通过梯形图编程实现。
1.3 方案二:梯形图单独编程
梯形图是考虑到大多数电气技术人员熟悉电气控制线路的特点而采用的,因 而其形象直观,易学易懂[1]。在本次设计中,采用梯形图编程也可以很简单,容 易看懂。
3.1 GX Developer 简介
GX Developer 是三菱 PLC 的编程软件。适用于 Q、QnU、QS、QnA、AnS、 AnA、FX 等全系列可编程控制器。支持梯形图、指令表、SFC、 ST 及 FB、Label 语言程序设计,网络参数设定,可进行程序的线上更改、监控及调试,具有异地 读写 PLC 程序功能。
《PLC 原理与应用》课 程 设 计
饮料灌装生产流水线 PLC 梯形图控制程序设计与调试
黄杰 莫仲文
201231200608 201231000824
指导教师
学 院 名 称 工程学院 设计提交日期 2015 年 6 月
专 业 班 级 12 自动化 1 班 设计答辩日期 2015 年 6 月
目录
1 系统设计方案.......................................................................................................................... 1 1.1 系统设计要求....................................................................................................................... 1 1.2 方案一:步进功能图与梯形图共同编程........................................................................... 1 1.3 方案二:梯形图单独编程……........................................................................................... 2 1.4 方案确定............................................................................................................................... 2 2 硬件接线图.............................................................................................................................. 2 2.1 总 PLC 各输入/输出端口的硬件接线图............................................................................. 3 2.2 控制系统总流程图............................................................................................................... 3 3 软件编写及仿真...................................................................................................................... 5 3.1 GX Developer 简介................................................................................................................ 5 3.2 程序图…............................................................................................................................... 5 3.3 系统模拟运行仿真调试及结果........................................................................................... 5 4 收获与总结.............................................................................................................................. 9 5 小组分工.................................................................................................................................. 9 参 考 文 献.............................................................................................................................. 10 附 录.....................................................................................................................................11 附录 A .....................................................................................................................................11
饮料灌装生产流水线plc控制

饮料灌装生产流水线plc控制饮料灌装生产流水线是工业生产中常见的一种生产模式,通过机械化的流水生产线,将原材料进行加工和混合,最终制造成成品饮料,再进行灌装和包装,以达到高效、稳定的生产目的。
在生产过程中,PLC控制技术的应用,可以提高生产效率,确保产品质量,降低生产成本。
PLC控制技术是一种基于计算机控制的自动化控制技术,它具有可编程、高可靠性、智能化等特点,从而可以精确地控制生产过程,并且可以改变程序达到不同的生产要求。
在饮料灌装生产流水线上,PLC控制技术可以实现以下功能:1. 自动控制生产过程PLC控制器可以实现对灌装生产流水线的各个节点进行有效控制。
比如说对液体注入过程进行温度、重量、时间的监测,可以保证灌装量的精确度;对包装机进行卷帘门、标签和瓶身的监控等,可以使生产流程的操作跟随程序的指令自动完成,减少了人力操作的误差和工作流程的误差。
2. 数据采集和监控通过PLC控制器连接传感器和设备,可以采集实时数据,包括温度、压力、流量等指标信息。
每一台机器和设备都安装有传感器,传感器将实时数据发送到PLC控制器,控制器根据设定的参数进行数据分析和处理,并将结果反馈给操作者。
操作者可以根据数据监测到问题,并及时处理,从而减少了故障的发生和设备的损坏。
3. 自动化抗干扰及防止卡顿在生产过程中,很容易出现一些干扰,比如在灌装时中间出现瓶颈,或者是瓶子出现卡顿等情况。
此时,PLC控制器便很有用,可以快速地检测到问题,并执行自动化处理,及时解决问题。
如果发现卡顿,则可以发出提示音进行报警,避免设备受到伤害或者是影响生产效率。
相比于人工操作,PLC控制技术具有更高的生产效率和稳定性,最大限度的发挥了生产流水线的生产力。
同时,其智能化和可编程的特点,可以使灌装生产流程变得更加灵活,具有更高的适应性,可以根据生产需求进行快速调整。
总的来说,饮料灌装生产流水线PLC控制技术虽然需要在操作上进行一定的理解和学习,但其优点是显而易见的,它为行业提高了生产效率,降低了生产成本,更保障了产品质量。
饮料灌装生产流水线的PLC控制 毕业设计

摘要通过编写可编程控制器程序实现对饮料罐的自动灌装和手动灌装流程。
随时通过检测信号的导入控制传送带的运行(其中包括主传送带电机和次品传送带的运行),同时实现对灌瓶的计数,并区分出合格产品的数量。
其中在灌装过程中要准确的对空的饮料罐进行定位,灌装结束后,系统设备液位检测仪器对液位进行检测,生成的检测信号输入PLC,进行运行分析。
瓶子停顿时间为1秒,灌装时间为5秒,同时随时能手动对计数器进行复位操作,随时控制灌装流水线的运行。
并在此基础上,灌装结束后给饮料瓶贴上标签。
PLC选用日本三菱公司的FX2N系列。
关键词:三菱FX2NPL;MC,MCR主控指令;饮料灌装;液位检测AbstractProgrammable controller by writing programs to achieve the automatic filling of beverage cans and manual filling process. At any time by detecting the signal into control of the operation of conveyor belt (including the main conveyor belt motor and defective operation), while achieving a count of filling bottles, and to distinguish the number of qualified products.In the filling process in which the right to accurately locate the empty beverage cans, filling the end, the system equipment, liquid level instrumentation for liquid level detection, the generated test signal input PLC, to run the analysis.Pause time is 1 second bottle, filling time of 5 seconds, while the counter at any time can be reset manually at any time control the filling line operation.PLC selected Japan's Mitsubishi Corp. FX2N series.Key words: Mitsubishi FX2NPL; MC, MCR master directives; beverage filling; level detection.目录前言 (1)一、设计任务 (3)1、课题内容 (3)2、控制要求 (3)3、课题要求 (3)二、总体设计方案 (3)1、饮料灌装流水线的基本结构 (3)2、选择电器元件 (5)3、流水线灌装的工作原理 (7)4、系统流程图 (8)三、电气控制电路设计 (9)1.自动操作模式 (9)2.手动操作模式 (9)3.报警 (10)4.计数过程 (10)四、PLC设计 (10)1、选择PLC (10)2、I/O点的编号分配和PLC外部接线图 (11)3、控制面板图 (12)4、梯形图 (13)5、指令表 (15)五、调试过程及结果 (18)六、总结 (19)参考文献 (20)谢辞 (21)前言目前,饮料厂的自动化灌装生产线中已经有越来越多的机器在使用先进的灌装技术来提高机器的自动化控制水平和生产效率,而应用PLC完成电气部分的控制是工业自动化电气控制的主要发展方向。
][1]饮料罐装生产流水线PLC控制设计_[文档在线提供
![][1]饮料罐装生产流水线PLC控制设计_[文档在线提供](https://img.taocdn.com/s3/m/3459589479563c1ec4da7184.png)
表 1电器元件明细表
符 号
名称
型 号
数 量
M1
主传送带电动机
Y132M—4
1
M2
灌装装置电动机
Y90S—4
1
M3
次品传送带电动机
Y90S—4
1
QF1
断路器
NS100N
1
QF2
断路器
NS80N
1
QF3
断路器
NS80N
1
QF4
断路器
NS20N1QF5断路器NS10N
1
FR1
热继电器
(2) 当瓶子定位在罐装设备下时,停顿1.1秒,罐装设备开始工作,罐装过程为5秒钟,罐装过程应有报警显示,5.1秒后停止并不再显示报警。
(3) 用两个传感器和若干个加法器检测并记录空瓶数和满瓶数,一旦系统启动,必须记录空瓶数和满瓶数,设最多不超过99999999瓶。
(4) 可以手动对计数值清零(复位)。
一、设计任务··········································2
1、课题内容···········································2
2、控制要求···········································2
3、课题要求···········································2
参考书目··············································20
一、设计任务
1、课题内容
饮料罐装生产流水线梯形图控制程序设计并画出电气接线图。
2、控制要求
饮料灌装生产流水线的PLC控制

饮料灌装生产流水线的PLC控制一、前言随着现代化生产技术的不断发展,高效率、高品质、低成本、低浪费的生产模式相继应运而生,其中,自动化生产成为了工业生产的一种重要的模式。
自动化生产是指通过计算机技术、电子技术、机械技术、控制技术等综合应用于制造工艺,使制造过程自动进行的一种生产方式。
在这种方式的生产过程中,PLC控制是一个非常重要的环节。
本文主要围绕着饮料灌装生产流水线的PLC控制,对其进行探讨和分析,并从硬件设计、软件编程等方面进行具体实现。
二、饮料灌装生产流水线的PLC控制饮料灌装生产流水线是食品饮料企业中非常重要的一环,其生产流程主要包括:瓶子送入、清洗、灌装、加盖、封口、贴标、包装、码垛、输送等多个环节。
针对上述流程的实际生产情况,PLC控制方案应具备如下特点:1、功能稳定:PLC控制的饮料灌装生产流水线要能够长期稳定地运行,保证生产效率的稳定。
2、生产线互锁:PLC控制需要对生产流线上的各个环节进行相应的互锁保护,以避免在生产过程中的物料混淆等错误操作。
3、检测监控:利用PLC对生产流线上进行各种检测监控,如瓶子数量、灌装数量、包装数量等,以避免瓶子丢失或灌装不足等情况。
4、数据采集:PLC控制需采集实时数据,进行分析、统计,以便实现对整个生产流程的优化和改进,提高生产效率。
5、报警功能:饮料生产过程中会遇到多种故障问题,利用PLC控制监测,如果出现故障,可以及时报警,实现迅速维修,避免产量下降。
三、硬件设计针对饮料灌装生产流水线的PLC控制硬件设计主要包括PLC、触摸屏、控制面板、传感器等几个方面。
1、PLC选型PLC的选型直接关系到饮品灌装生产流水线的运作质量,因此在进行选型时,应充分考虑生产线的规模、生产速度、成本等因素。
通常建议使用高品质可靠性的PLC,如三菱、欧姆龙等品牌。
2、触摸屏设计PLC控制器与触摸屏之间可以通过简单的串口通信进行数据传输,触摸屏主要负责人机交互界面的设计,包括启动、停止、状态监测、故障信息显示等功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012 ~ 2013 学年第一学期《电气控制及PLC 》课程设计报告题目:饮料罐装生产流水线的PLC控制专业:电气工程及其自动化班级:09电气工程及其自动化姓名:魏金雨、邬鹏、吴东升、吴庆利指导教师:江春红李铁玲电气工程系2012年11月2日摘要饮料罐装生产流水线的PLC控制:文章探讨了如何利用日本三菱PLC 进行饮料灌装生产流水线的控制,重点分析了系统软硬件设计部分,并给出了系统硬件接线图、PLC 控制I/O 端口分配表以及整体程序流程图等,实现了饮料灌装的自动化,提高了生产效率,降低了劳动强度。
传统的饮料罐装生产线的电气设备控制系统是传统的继电器——接触器控制方式,在使用的过程中,生产工效低,人机对话靠指示灯+按钮+讯响器的工作方式,响应慢,故障率高,可靠性差,系统的工作状态、故障处理、设备监控与维护只能凭经验被动的去查找故障点。
且在生产过程中容易产生二次污染,造成合格率低,生产成本增加。
而自动化生产线在众多领域应用得非常广泛,其控制部分常常采用PLC 控制,它使自动化生产线运行更加平稳,定位更加准确,功能更加完善,操作更加方便。
关键词:PLC;自动化饮料灌装生产线;系统硬件接线图;I/O 端;分配表目录一、系统概况 (5)1、生产工艺及流程 (5)二、设计任务 (5)1、课题内容 (5)2、控制要求 (5)3、课题要求 (5)三、总体设计方案 (6)1、饮料灌装流水线的基本结构 (6)2、选择电器元件 (7)3、流水线灌装的工作原理 (8)4、系统流程图 (9)四、电气控制电路设计 (10)1、电控系统与原理图设计 (10)五、PLC设计 (11)1、选择PLC (11)2、I/O点的编号分配和PLC外部接线图 (12)3、控制面板图 (12)4、梯形图 (13)5、指令表 (16)六、结论 (19)参考书目 (19)正文一、系统概况饮料灌装生产流水线是指按一定控制要求将有关驱动电机、电气控制装置、检测装置等组合为一体的多功能自动控制装置。
本系统电镀生产线采用了传送带,传送带用一台电动机控制,同时用变频器对电机平滑调速。
1、生产工艺及流程该罐装生产线为人工/自动操作的工作程序,由2只电磁阀控制托瓶架的升降,2只电磁阀控制压盖的行程。
驱动部分有:清水泵、无菌泵、清洗输送、灌装输送、灌装泵。
1.1、手动控制工作状态将操作台上旋钮置手动,各工位工作状态如下:(1)按启动按钮,传送带把洗过的空瓶送到托瓶架上;托瓶架启动,把洗过的空瓶送到罐装机的罐装口;罐装泵启动,罐满后自动停止;(2)按停止按钮,传送带停止。
1.2、自动控制工作状态(1)启动:按下自动按钮后,生产线进入自动工作状态,具备工作条件后,瓶子随着传送带进入工序。
(2)罐装:当瓶子随着输送带平稳的进入托瓶架时,托瓶架的限位开关信号送给PLC,翻瓶架的一组气动电磁阀打开,汽缸开始工作,将瓶子送到罐装口的下部,这时汽缸上限信号送入PLC,罐装泵开始启动,在罐装的过程中翻瓶架自动落下,罐装到一定的时间(及罐满)后自动停止(罐装时间3/5加仑的设定时间不同),罐装结束后,经过一定的延时时间,罐装输送带开始启动。
二、设计任务1、课题内容饮料罐装生产流水线梯形图控制程序设计并画出电气接线图。
2、控制要求(1)系统通过开关设定为自动操作模式、手动操作模式,一旦启动,则传送带的驱动电机启动并一直保持到停止开关动作或罐装设备下的传感器检测到一个瓶子时停止;瓶子装满饮料后,传送带驱动电机必须自动启动,并保持到又检测到一个瓶子或停止开关动作。
(2)当瓶子定位在罐装设备下时,停顿1.1秒,罐装设备开始工作,罐装过程为5秒钟,罐装过程应有报警显示,5.1秒后停止并不再显示报警。
(3)用两个传感器和若干个加法器检测并记录空瓶数和满瓶数,一旦系统启动,必须记录空瓶数和满瓶数,设最多不超过99999999瓶。
(4)可以手动对计数值清零(复位)。
3、课题要求(1)根据课题的控制要求完成设计(2)对电机、传感器、到位开关选型并列出选型依据(3)画出电气连线图,写出程序流程图及代码(4)完成课程设计说明书三、总体设计方案1、饮料灌装流水线的基本结构整个灌装流水线的基本结构如图1、图2、图3所示。
整个流水线由主传送带、次品传送带、灌装装置、次品推动装置、定位传感器、次品检测传感器等组成。
电动机的启动和停止,灌装装置向上、向下移动和灌装,次品的检测、推动都是由PLC控制的。
流水线由传感器实时监控,由PLC控制,控制准确,自动化程度高。
图1 灌装流水线基本结构图图2 灌装流水线基本结构图图3 灌装流水线的基本结构图2、选择电器元件(1)电动机的选择电动机M1型号为Y132M-4,额定电压为交流380V,额定电流为15A,频率为50HZ,功率为7.5KW,转速为1440r/min。
电动机M2型号为Y90S-4,额定电压为交流380V,额定电流为2.8A,频率为50HZ,功率为1.1KW,转速为1440r/min。
电动机M3选与电动机M2一样的型号即可。
(2)断路器的作用:断路器的作用是切断和接通负荷电路,以及切断故障电路,防止事故扩大,保证安全运行。
而高压断路器要开断1500V,电流为1500-2000A的电弧,这些电弧可拉长至2m仍然继续燃烧不熄灭。
故灭弧是高压断路器必须解决的问题。
吹弧熄弧的原理主要是冷却电弧减弱热游离,另一方面通过吹弧拉长电弧加强带电粒子的复合和扩散,同时把弧隙中的带电粒子吹散,迅速恢复介质的绝缘强度。
断路器选用原则;1)空开额定工作电压大于等于线路额定电压2)空开额定电流大于等于线路负载电流3)空开电磁脱扣器整定电流大于等于负载最大峰值电流(负载短路时电流值达到脱扣器整定值时,空开瞬时跳闸。
一般D型代号的空开出厂时,电磁脱扣器整定电流值为额定电流的8-12倍。
)也就是说短路跳闸而电机启动电流是可以避开的。
根据三个电动机的额定电流,选择断路器QF1、QF2、QF3的型号如表所示。
并根据PLC和变压器选择QF4和QF5的型号。
(3)热继电器FR1、FR2、FR3主电动机M1的额定电流15A,FR1可以选用JR16,热元件电流为20A,电流整定范围为14~22A工作时将额定电流调整为15A。
同理,FR2可选用JR10-10型热继电器,热元件电流为2A,电流整定范围为0.45~2A工作时将额定电压调整为1.1A。
FR3的型号和FR2相同。
电器元件及其型号如表1所示。
表 1 电器元件明细表3、流水线灌装的工作原理灌装流水线的运作是通过电磁阀和电动机来控制的。
4、系统流程图图 5 系统流程图流程图说明:系统分自动和手动两种模式,在手动模式下,由SB2按钮控制启动主传送带电动机,到达灌装位置后,松开SB2,再按下按钮SB3,灌装装置开始动作;再自动模式下按下按钮SB5启动主传送带电动机,当定位传感器检测到饮料瓶后,主传送带停止,灌装装置开始动作,定时时间到达以后,灌装装置自动停止,住传送带再次运动。
四、电气控制电路设计1、电控系统与原理图设计图6中断路器QF1、QF2、QF3、QF4、QF5将三相电源引入,同时QF1、QF2、QF3、QF4、QF5为电路提供短路保护。
电动机的过载保护分别由三个热继电器提供。
图6电气控制原理图系统通过按钮设定为自动操作模式和手动操作模式。
(1)自动操作模式一旦启动,则传送带的驱动电机启动并一直保持到停止开关动作或罐装设备下的传感器检测到一个瓶子时停止;瓶子装满饮料后,传送带驱动电机自动启动,并保持到又检测到一个瓶子或停止开关动作。
(2)手动操作模式手动模式下,由SB2按钮控制启动主传送带电动机,到达灌装位置后,松开SB2,再按下按钮SB3,灌装装置开始动作,通过定时器控制灌装时间,灌装时间到达后,整个流水线停止,直到再次按下启动按钮,流水线才运作。
手动模式可以用于自动模式启动前的系统调整。
(3)报警当灌装装置开始灌装饮料时,报警装置得到PLC输出信号,此时,报警灯亮,开始报警,5秒钟以后,灌装结束,同时报警结束。
(4)计数过程计数过程需记录满瓶数和次品瓶数,主要是以红外发光二极管和微波液位计作为传感器,记录所有瓶数的技术原理是当红外线接收管受到红外线的照射时,其本身的电阻很小,呈低阻值,电路导通,当红外发射头与接收头中间没有物品挡住时红外接收到红外线照射,呈现低电阻,发出一个高电平信号,计数装置计一次数。
当有物体经过红外发射与接收的中间时,由于红外线被挡住,红外接收管呈现大的阻值,电路断开,这时红外接收管发出一个低电平信号。
当物体过完之后又回到原来的状态。
计数装置由8个十进制计数器组成,当计数到99999999时,再计数一次,计数器溢出。
计数最多不超过99999999。
记录次品瓶数的技术原理是当检测到有次品时,微波接受装置发出信号给PLC ,PLC 的寄存器值加一,同时,所有瓶数减去次品瓶数便得出了可满瓶数,把满瓶数也放入另一个寄存器中。
这就是记录满瓶数和次品瓶数的技术原理。
电路设置了手动复位按钮,计数器正常计数时是低电平,按下复位按钮后,复位端变成高电平,使计数器复位,实现手动对计数器清零。
五、PLC 设计1、选择PLC三菱公司是日本生产PLC 的主要厂家之一。
该公司的生产的N FX 2系列机型,属于高性能叠装式机型,是三菱公司上网典型产品,N FX 2系列PLC 具有数十种编程元件。
N FX 2系列PLC 编程元件的编号分为两部分:第一部分是代表功能的字母。
如输入继电器用“X ”表示、输出见电器用“Y ”表示。
第二部分为数字,数字为该类器件的序号。
根据所需的用户输入输出设备及I/O 点数,选择FX2N —16MR —001型PLC 就可以满足控制系统的要求。
图 7 PLC外部接线示意图2、I/O点的编号分配和PLC外部接线图I/O点的编号分配如表2所示。
表 2 I/O点的编号分配表输入输出定位传感器 X000手动/自动切换SB1 X001 手动传送带SB2 X002手动灌装SB3 X003次品检测传感器 X004自动启动SB5 X005 停止SB6 X006复位SB7 X007 传送带电动机KM1 Y000 灌装电动机KM2 Y001 报警灯 Y002 下降电磁阀YV1 Y003 上升电磁阀YV2 Y004 次品推动电磁阀YV3 Y005 灌装电磁阀YV4 Y006 次品传送带电动机KM3 Y0073、PLC的外部接线图如图8所示。
图8 PLC的外部接线图4、梯形图5、指令表根据梯形图所得指令表如下:0 LD M80021 OR X0072 SET M23 MOV K0 D1008 LD M29 MC N0 M212 LD X00513 OR M114 ANI X00615 ANI X00716 OUT M117 LD M118 ANI M3019 ANI M6020 OUT M1021 LD X00022 OR M3023 ANI T424 OUT M3025 OUT T0SP K1028 OUT M5029 LD T030 MPS31 ANI TI32 OUT M1133 MRDANI T135 OUT M1236 MPP37 OUT T1SP K5040 LD T141 OUT T4SP K1044 OUT M4045 MCR N047 LD M348 MC N1 M351 LD X00252 ANI M3153 ANI M6054 OUT M2055 LD X00356 OR M3157 ANI T558 OUT M3159 OUT T2SP K1062 OUT M5163 LD T264 MPS65 ANI T366 OUT M2267 MRD68 ANI T369 OUT M2170 MPP71 OUT T3SP K5074 LD T375 OUT T5SP K1078 OUT M4179 MCR N181 LD X00182 SET M383 RST M284 LD M3085 OR M3186 OUT C200 K9999999991 ADDP D101 K1 D10198 LD X00499 ADDP D100 K1106 SUBP C200 D100113 SET M60114 LD M60115 OUT T6SP K10118 LD T6119 RST M60120 LD M20121 OR M10122 OUT Y000123 LD M30124 OR M31125 OUT Y001126 LD M12127 OR M22128 OUT Y002129 LD M11130 OR M21131 OUT Y006132 LD M40133 OR M41134 OUT Y004135 LD M50136 OR M51137 OUT YOO3138 LD M60139 OUT Y005140 OUT Y007141 LD X007142 OR C200143 RST M3144 RST C200146 END结论1) 该控制系统将恒酒位控制变为恒压力控制, 从而节省了投资, 简化了控制, 装酒误差为±013 mm;2) 实现了对装酒速度任意调节和设定以及整个生产线的加ö减速和恒速控制, 灌装速度为0~ 180瓶öm in;3) 系统还具有手动ö自动转换功能, 实现了对整个生产线工艺流程的顺序控制。