同步时序电路分析

合集下载

同步和异步时序电路的优缺点

同步和异步时序电路的优缺点

同步和异步时序电路的优缺点同步和异步时序电路是数字电路中常见的两种时序电路设计方式。

它们各自有着优点和缺点,下面将对它们进行详细分析。

同步时序电路是指所有触发器的时钟信号均来自于一个公共的时钟源。

它的优点主要体现在以下几个方面:1. 同步时序电路具有较高的可靠性。

由于所有触发器的时钟信号都是同一个源,因此它们的状态变化是同步的,能够保证各个部分之间的数据传输是有序的,减少了数据的丢失和错误。

2. 同步时序电路具有较低的功耗。

由于所有触发器的时钟信号是同步的,它们的工作时间是重叠的,可以减少部分触发器的工作时间,从而降低功耗。

3. 同步时序电路具有较好的抗干扰能力。

由于时钟信号是统一的,它们在传输过程中对噪声和干扰的容忍度较高,能够有效地抵抗外界干扰。

然而,同步时序电路也存在一些缺点:1. 同步时序电路的设计复杂度较高。

由于所有触发器都需要受到时钟信号的控制,需要进行精确的时序设计和时钟分配,增加了设计的难度和复杂度。

2. 同步时序电路的时钟频率有限。

由于时钟信号需要在整个电路中传输,当电路规模较大时,时钟信号的传输延迟会增加,从而限制了时钟频率的提高。

异步时序电路是指触发器的时钟信号不是来自公共的时钟源,而是根据输入信号的变化进行触发。

它的优点主要体现在以下几个方面:1. 异步时序电路具有较高的灵活性。

由于不受统一的时钟信号控制,可以根据输入信号的变化进行触发,灵活性更强,适用于复杂的数据交互和处理。

2. 异步时序电路的时钟频率不受限制。

由于时钟信号的触发是根据输入信号的变化进行的,不受统一时钟信号的传输延迟影响,因此可以实现较高的时钟频率。

3. 异步时序电路具有较低的延迟。

由于触发信号的传输不需要等待统一的时钟源,因此可以减少延迟,提高电路的响应速度。

然而,异步时序电路也存在一些缺点:1. 异步时序电路的设计复杂度较高。

由于触发信号的变化需要根据输入信号的变化进行触发,需要进行复杂的时序设计和状态分析,增加了设计的难度和复杂度。

同步和异步时序电路的优缺点

同步和异步时序电路的优缺点

同步和异步时序电路的优缺点引言时序电路是数字电路中的一种重要电路,用于控制电路的时序和数据流动。

同步和异步是时序电路的两种基本设计方式。

本文将从优缺点的角度来探讨同步和异步时序电路的特点。

同步时序电路同步时序电路是指时钟信号作为电路中各个部分的统一节拍,控制电路的运行和数据的传输。

同步时序电路的优缺点如下:优点1.稳定性高:同步时序电路使用统一的时钟信号来同步各个部分的操作,因此能够保证电路的稳定性和可靠性。

2.设计简单:同步时序电路的设计相对简单,因为各个部分的操作都是基于统一的时钟信号进行的,不需要考虑时序和数据的同步问题。

3.时序控制灵活:同步时序电路的时序控制非常灵活,可以根据需求来调整时钟信号的频率和相位,以满足不同的应用需求。

缺点1.延迟高:同步时序电路的运行速度受到时钟信号的限制,因此可能存在较高的延迟。

特别是在时钟频率较高的情况下,延迟问题会更加明显。

2.功耗较高:同步时序电路在每个时钟周期都会进行操作,即使没有数据需要处理,也会消耗一定的功耗。

3.容错性差:同步时序电路对于输入数据的稳定性要求较高,一旦输入数据有误,可能会导致电路的功能失效。

异步时序电路异步时序电路是指各个部分的操作不依赖于统一的时钟信号,而是通过控制信号来实现时序和数据的同步。

异步时序电路的优缺点如下:优点1.速度快:异步时序电路的速度受到电路中最慢的部分的限制,可以根据具体情况来调整各个部分的运行速度,从而实现更高的工作频率。

2.功耗低:异步时序电路仅在需要处理数据时才进行操作,因此在没有数据需要处理时,可以降低功耗,提高电路的能效。

3.容错性好:异步时序电路对于输入数据的稳定性要求较低,能够容忍一定的输入数据误差,提高了电路的容错性。

缺点1.设计复杂:异步时序电路的设计相对复杂,因为需要考虑各个部分的时序和数据的同步问题,可能需要引入额外的控制电路和状态机来实现。

2.稳定性差:由于异步时序电路的各个部分操作相对独立,可能存在时序和数据的不一致问题,导致电路的稳定性较差。

同步时序逻辑电路分析

同步时序逻辑电路分析

.同步时序逻辑电路的解析一.解析的目的:得出时序电路的逻辑功能。

二.解析的方法 (步骤 ):1、写方程式(1)时钟方程: CP 的逻辑式(2)输出方程:时序电路输出逻辑表达式,它平时为现态的函数。

(3)驱动方程:各触发器输入端的逻辑表达式。

(4)状态方程:把驱动方程代入相应的触发器的特点方程,即可求出各个触发器次态输出的逻辑表达式。

2、列真值表;3、画状态变换图;4、画时序图;5、逻辑功能说明:由状态表归纳说明给定的时序电路的逻辑功能;6、检查电路能否自启动。

注意:常有时序电路:1)计数器:同(异)步N 进制加(减)法计数器。

2)寄存器三.时序逻辑电路中的几个看法说明1.有效状态与有效循环有效状态:在时序电路中,凡是被利用了的状态,都称为有效状态。

有效循环:在时序电路中,凡是有效状态形成的循环,都称为有效循环。

2.无效状态与无效循环无效状态:在时序电路中,凡是没有被利用的状态,都叫无效状态。

无效循环:在时序电路中,若是无效状态形成了循环,那么这种循环就称为无效循环。

3.电路能自启动与不能够自启动能自启动:在时序电路中,诚然存在无效状态,但是它们没有形成循环,这样的时序电路叫能够自启动的时序电路。

不能够自启动:在时序电路中,既有无效状态存在,且它们之间又形成了循环,这样的时序电路被称之为不能够自启动的时序电路。

在这种电路中,一旦因某种原因使循环进入无效循环,就再也回不到有效状态了,所以,再要正常工作也就不能能了。

四.同步时序电路的解析举例例 1 试解析以下列图的时序电路的逻辑功能&Y FF0FF 1FF2Q0Q11J Q21J1JC1C1C11k1k1kQ0Q1Q2 CP解:(1)写方程式时钟方程:CP0 CP1CP2CP输出方程:Y Q2n Q1n Q0n驱动方程:J 0Q2n K 0Q2nJ1Q0n K 1Q0nJ 2Q n K2Q n 11状态方程:把驱动方程分别代入特点方程JK 触发器的特点方程:Q n 1JQ n KQ n(6-2-4 ),得状态方程:Q0n 1J 0 Q0n K 0 Q0n Q2n Q0n Q2n Q0n Q2n()Q n 1J Q n K Q n Q n Q n Q n Q n Q n1111101010Q2n 1J 2Q2n K 2Q2n Q1n Q2n Q1n Q2n Q1n(2)列状态表依次假设电路得现态Q2n Q1n Q0n,代入状态方程式和输出方程式,进行计算,求出相应得次态和输出,结果见状态表现态次态输出Qn Q n nQn 1 Q n 1n 1Y2Q 02Q 01111111 111111 1111110 11110 110 0111 11111(3)画出状态图/1/1/1/1/10 0 00 0 10 1 11 1 11 1 01 0 0/0(a )有效循环/1010101/1(b )无效循环(4)画时序图.CP1110000 Q01110000 Q11110000 Q2111111Y0(5)电路功能说明由状态图和时序图可知,该电路是一个 6 次 CP 脉冲一循环的序次发生器,又称为节拍发生器。

时序逻辑电路例题分析

时序逻辑电路例题分析

Q0 Q1 Q2 Q3
Q4 Q5 Q6 Q37
CP1
CP CP0
74LS90(个位 ) S9A S9B R0A R0B
CP1 74LS90(十位 ) CP0 S9AS9B R0AR0B
5-1 第五章 时序逻辑电路设计例题
(1) 根据任务要求,确定状态图
001
011
010
QA、QB、QC分别表示三个绕组A、
/0
/0
(a) 有效循环
/0 010 101
/1
(b) 无效循环
6.时序图
CP
Q 0
Q1 Q2
Y
7.电路功能
有效循环的6个状态,称为六进制同步计数器。当对第6个脉
冲计数时,计数器又重新从000开始计数,并产生输出Y=1。
8.自启动问题
如果无效状态构成循环,则一旦受到干扰,使得电路进入无效 状态,则电路就没有可能再回到有效状态,即不能在正常工作, 必须重起系统才能正常工作,此类电路不能自启动。
4.画出逻辑图:
J0 = Q1n K0 = 1
J1 = Q0n K1 = 1
Z = Q1nQ0n
FF0
1J
Q
FF1
1J
Q& Z
C1
C1
1 1K
1 1K
Q
Q
CP
5.检测自启动: 11 00
此电路能够自启动
例3 设计一个串行数据检测电路,当连续输入3个或3个以上1时, 电路的输出为1,其它情况下输出为0。例如: 输入X 101100111011110 输出Y 000000001000110
QA JA QAKA
计数脉冲CP
(7) 检验该计数电路能否自动启动。

同步和异步时序电路的优缺点

同步和异步时序电路的优缺点

同步和异步时序电路的优缺点同步和异步时序电路是数字电路中常用的两种时序控制方式。

它们在实际应用中各有优缺点,下面将分别进行介绍。

同步时序电路是指所有时序元件使用的是同一个时钟信号,各个元件在时钟的上升沿或下降沿进行状态转换。

同步时序电路具有以下优点:1. 稳定性好:同步时序电路中所有元件都受到同一个时钟信号的控制,因此元件之间的状态转换是有规律可循的。

这样可以避免由于信号传输延迟等原因引起的不稳定性问题。

2. 可靠性高:同步时序电路中的状态转换是在时钟信号的控制下进行的,所有元件在同一个时刻进行状态转换,因此不会出现因为某个元件状态转换出错而导致整个系统功能失效的情况。

3. 设计灵活性强:同步时序电路中的各个元件之间是通过时钟信号进行同步的,因此可以方便地对系统进行扩展和修改,只需要调整时钟信号的频率或者引入新的时钟信号即可。

然而,同步时序电路也存在一些缺点:1. 时钟频率限制:同步时序电路中所有元件都受到同一个时钟信号的控制,因此时钟频率的选择对整个系统的性能有很大影响。

如果时钟频率过高,会增加系统的功耗和成本;如果时钟频率过低,会降低系统的运行速度。

2. 时钟分配问题:当系统中的元件数量较多时,会出现时钟信号的分配问题。

由于时钟信号需要同时传输到各个元件,因此会增加布线的复杂度和功耗。

异步时序电路是指各个时序元件的状态转换不依赖于统一的时钟信号,而是根据元件自身的输入信号进行控制。

异步时序电路具有以下优点:1. 灵活性强:由于异步时序电路不依赖于统一的时钟信号,因此每个元件的状态转换可以根据需要进行调整,提供了更大的设计灵活性。

2. 节约功耗:异步时序电路只有在需要进行状态转换时才会进行,而不是像同步时序电路那样在每一个时钟周期都进行状态转换。

这样可以节约功耗,提高系统的能效。

3. 抗干扰能力强:由于异步时序电路中各个元件的状态转换不依赖于统一的时钟信号,因此可以减少由于干扰信号对时钟信号的影响,提高系统的抗干扰能力。

同步时序逻辑电路的分析方法

同步时序逻辑电路的分析方法

时序逻辑电路的分析方法时序逻辑电路的分析:根据给定的电路,写出它的方程、列出状态转换真值表、画出状态转换图和时序图,而后得出它的功能。

同步时序逻辑电路的分析方法同步时序逻辑电路的主要特点:在同步时序逻辑电路中,山于所有触发器都山同一个时钟脉冲信号CP来触发,它只控制触发器的翻转时刻,而对触发器翻转到何种状态并无影响,所以,在分析同步时序逻辑电路时,可以不考虑时钟条件。

1、基本分析步骤1)写方程式:输出方程:时序逻辑电路的输出逻辑表达式,它通常为现态和输入信号的函数。

驱动方程:各触发器输入端的逻辑表达式。

状态方程:将驱动方程代入相应触发器的特性方程中,便得到该触发器的状态方程。

2)列状态转换真值表:将电路现态的各种取值代入状态方程和输出方程中进行计算,求出相应的次态和输出,从而列出状态转换真值表。

如现态的起始值已给定时,则从给定值开始计算。

如没有给定时,则可设定一个现态起始值依次进行计算。

3)逻辑功能的说明:根据状态转换真值表来说明电路的逻辑功能。

4)画状态转换图和时序图:状态转换图:是指电路山现态转换到次态的示意图。

时序图:是在时钟脉冲CP作用下,各触发器状态变化的波形图。

5)检验电路能否自启动关于电路的自启动问题和检验方法,在下例中得到说明。

11222、 分析举例例、试分析下图所示电路的逻辑功能,并画出状态转换图和时序图。

解:山上图所示电路可看出,时钟脉冲CP 加在每个触发器的时钟脉冲输入 端上。

因此,它是一个同步时序逻辑电路,时钟方程可以不写。

①写方程式:输出方程:Y = Qo 31驱动方程:业=Q^Qa"' %= Qo"芒态方豎 _ ,Q 严1= %囲+%& =1Q?+1Q O -=Q^01小詁0? + %酉=Q 7Q 0-㊉Q「Q^i 二爲 Q?+兀 Q? = Qi'Qo'Q?^ 而 Qf②列状态转换真值表:状态转换真值表的作法是:从第一个现态“000”开始,代入状态方程,得次态为“001”,代入输出方程,得输出为"0” O把得出的次态"001"作为下一轮计算的“现态”,继续计算下一轮的次态值和输出值。

第四章同步时序逻辑电路逻辑电路可分为组合逻辑电路和时

第四章同步时序逻辑电路逻辑电路可分为组合逻辑电路和时

组合逻辑电路的模型:
x1
输入
xn
组合 逻辑 电路
F1
输出
Fm
Fi fi (x1,, xn ) i 1,, m
2 触发器
触发器是一种具有两个稳定状态、并且能可靠地设置其状 态的电路单元。触发器通常由逻辑门构成。
同步时序逻辑电路中常常用触发器作为存储元件。
4.2.1 RS触发器
1. 基本RS触发器
4.2.2 D触发器
D触发器除时钟信号输入端外有一个输入端D,具有置0、 置1的功能。D触发器受时钟信号控制,只有当时钟信号 有效时,才能通过输入端D设置其状态;若时钟信号无效, 无论输入端D是什么信号,D触发器保持先前的状态不变。
D触发器的状态方程为:
Q(n1) D
为避免“空翻”现象,实际使用的D触发器采用了维持阻 塞结构,称为维持阻塞D触发器。维持阻塞D触发器在时 钟信号的上升沿采样输入端D并设置状态,具有较高的稳 定性和可靠性。
而存储元件的输出y1, …, yr也作为组合逻辑部分的内部输入, y1, …, yr称为同步时序逻辑电路的状态。当新的时钟信号没 有到来的时候,同步时序逻辑电路的状态y1, …, yr不会发生 改变,即使输入x1 , …, xn有变化状态y1, …, yr也不会改变; 对于新的时钟信号到来之前的状态y1, …, yr称为现态,记作 记作y (n)或y;当新的时钟信号到达后,存储电路会根据激 励信号Y1, …, Yr而改变其输出y1, …, yr ,此时的状态称为次 态,记作y (n + 1)。当时钟信号没有到达时,电路处于现态, 次态是电路未来变化的走向;当时钟信号到来后,先前的 次态成为当前的现态。
在不完全确定状态表中,判断两个状态是否相容的条件是: 在所有的输入条件下,

同步时序逻辑电路和异步时序逻辑电路

同步时序逻辑电路和异步时序逻辑电路

同步时序逻辑电路和异步时序逻辑电路1. 引言说到电路,大家可能会觉得有点儿高深莫测,其实它们就像生活中的各种小插曲,错综复杂但又充满趣味。

今天我们来聊聊两种电路:同步时序逻辑电路和异步时序逻辑电路。

听起来很正式吧?其实就像两位老朋友,各有各的个性,给我们的生活带来不同的滋味。

2. 同步时序逻辑电路2.1 什么是同步电路先说说同步时序逻辑电路。

想象一下,大家一起跳舞,必须跟着节拍来对吧?这就是同步电路的工作原理。

它们依靠一个时钟信号来统一行动,一切都得在这个时钟的节奏下进行。

你想想,如果没有这个节拍,大家就会乱成一团,完全没法协调。

2.2 优点与缺点同步电路的优点可多了。

首先,它们容易设计,因为所有的动作都得听从同一个“老大”——时钟。

这样一来,故障也比较容易定位,就像在大合唱里找出跑调的那个人,轻而易举!但是,当然了,凡事都有两面。

它们在速度上可能会受到限制,因为要等时钟信号到位才能开始下一步,仿佛总得等着老大下命令。

3. 异步时序逻辑电路3.1 什么是异步电路接下来,我们来聊聊异步时序逻辑电路。

这家伙就有点儿“放飞自我”的意思。

想象一下,大家随意地跳舞,没有固定的节拍,各自随心所欲,热火朝天。

这种电路不需要时钟信号,各个部分可以独立工作,就像一场即兴表演,想跳就跳,想停就停。

3.2 优点与缺点异步电路的优点就是速度快,反应灵敏。

因为没有时钟的限制,它们可以在需要的时候马上响应,特别适合处理突发事件,像是过马路时的红绿灯,红灯一亮就得停下,绿灯一闪立马走。

可是,快可不代表好,有时候这就像在一场没有指挥的音乐会上,大家都想表现,结果弄得一团糟,容易出现竞争和冲突。

4. 比较与应用4.1 各自的应用领域那么,这两种电路究竟哪种更好呢?这就要看情况了。

同步电路一般用于那些需要稳定和可靠性的地方,比如计算机和大型系统。

而异步电路则适合需要快速反应的地方,比如一些高频交易系统或者一些需要低延迟的通信设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时序逻辑电路
华中科技大学秦臻
同步时序逻辑电路分析
同步时序逻辑电路的分析
时序逻辑电路分析的任务
SSIC 输入和•次态
时序电路 时钟•输出
状态表 状态图 时序图
同步时序逻辑电路分析步骤
♦列写方程
•激励方程 •状态方程 •输出方程
♦列图表
•状态表 •状态图 •时序图
♦确定功能
•描述逻辑功 能
•验证自启动
Q0+1Q0+1 /Y
A=0 0 0/ 0 01/0 10/0 11/0
A=1 01/0 10/0 11/0 00/1
(3)画状态图
QnQ0
00 01 10 11
er1er1 /Y
A=0 00/0 01/0 10/0 11/0
0 1/ 0 10/0 11/0 00/1
(3)画状态图
QnQ0
00 01 10 11
er1er1 /Y
A=0 00/0 01/0 10/0 11/0
A=1 01/0 10/0 11/0 00/1
(3)画状态图
QnQ0
00 01 10 11
er1er1 /Y
A=0 00/0 01/0 10/0 11/0
A=1 01/0 10/0 11/0 00/1
(4)画时序图
对于给定的输入波形,画出触发器及电路的
状态方程组
CP
FFi
Qn+1 = T ® Q0 = TQ + TQ
Q1+1 = ( AQ 0)由 Q1
Q 广=A①Q0 输出方程:
Y=AQ1Qo
注意:输出Y是现态的函数
(2)列状态表
状态方程组
I er+1 = (AQn)由 Q
Q 0+1 = A 由 Q 0
输出方程
Y =A Q1Q0
Q0Q 0
00 01 10 11
QnQ0
00 01 10 11
Qn+1 QS+1 /Y
A=0 00/0 01/0 10/0 11/0
A=1 01/0 10/0 11/0 00/1
Y=AQiQo
1 2 3 4 5 6 7 8 9 10
CP _n_n_n_n_n_n_ih_n_n_n_
I

1_1 ~l_l U
。。_[ I____
Y
(4)画时序图
_ 以 i_j~I I u
e°m r~| j □::!
Y
(4)画时序图
对于给定的输入波形,画出触发器及电路的输出波形,设触发器的 初
始状态为00。
1 2 3 4 5 6 7 8 9 10
Qn+1 QS+1 /Y
CP _n_n_n_n_n_n_n_n_njn_
QnQ0
I
A=0
A=1
00 00/0 01/0
同步时序逻辑电路分析举例⑴
试分析如图所示时序电路的逻辑功能。
Qo
A
Y
G2
Qi
CP FFi
解:电路是由两个T触发器组成的同步时序电路。
(1)列方程组
激励方程组:
Ti=AQo
A
CP FFi
(1)列方程组
激励方程组:
Ti=AQo T0=A
A
CP FFi
(1)列方程组
激励方程组:
A
T1=AQ0 T0=A
对于给定的输入波形,画出触发器及电路的
输出波形,设触发器的 初始状态为00。
QnQ0
00 01 10 11
Qn+1 QS+1 /Y
A=0 00/0 01/0 10/0 11/0
A=1 01/0 10/0 11/0 00/1
Y=AQiQo
1 2 3 4 5 6 7 8 9 10
CP _n_n_n_n_n_njri_n_n_n_
1 2 3 4 5 6 7 8 9 10
CP _n_n_n_n_n_n_n_n_n_n_ 以
~i_i u
Q。_[
___
I I_________________________
Qi
I I
Y ________
1_1
(4)画时序图
对于给定的输入波形,画出触发器及电路的
输出波形,设触发器的 初始状态为00。
输出波形,设触发器的 初始状态为00。
QnQ0
00 01 10 11
Qn+1 QS+1 /Y
A=0 00/0 01/0 10/0 11/0
A=1 0 1 / 0. 10/0 11/0 00/1
1 2 3 4 5 6 7 8 9 10
CP _n_n_n_n_n_n_n_n_n_n_ 以
~i_i u
I
0 _|
01 01/0 10/0
10 10/0 11/0
11 11/0 00/1
Y=AQiQo

(5)逻辑功能分析
电路为可控二进制计数器。当/=0时,电路状态保持不变;当A=1时, 状 态值加1。当计数到11时,Y为1。输出Y的下降沿可用于触发进位操
作。
0—
I I I
Y _____
1_1
Y=AQiQo
(4)画时序图
对于给定的输入波形,画出触发器及电路的
输出波形,设触发器的 初始状态为00。
QnQ0
00 01 10 11
Qn+1 QS+1 /Y
A=0 00/0 01/0 10/0 11/0
A=1 01/0 10/0 11/0 00/1
Y=AQiQo
相关文档
最新文档