(完整版)新课标高中文科数学公式大全

高中数学公式及知识点速记

一、函数、导数

1、函数的单调性

(1)设2121],,[x x b a x x <∈、那么

],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数.

(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减

函数.

2、函数的奇偶性

对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义

函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.

4、几种常见函数的导数

①'

C 0=;②1

'

)(-=n n nx

x ; ③x x cos )(sin '=;④x x sin )(cos '

-=;

⑤a a a x

x ln )('

=;⑥x

x e e ='

)(; ⑦a x x a ln 1)(log '

=

;⑧x

x 1)(ln '

= 5、导数的运算法则

(1)'

'

'

()u v u v ±=±. (2)'

'

'

()uv u v uv =+. (3)''

'2

()(0)u u v uv v v v

-=≠. 6、会用导数求单调区间、极值、最值

7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.

二、三角函数、三角变换、解三角形、平面向量

8、同角三角函数的基本关系式

22sin cos 1θθ+=,tan θ=

θ

θ

cos sin . 9、正弦、余弦的诱导公式

απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;

απ

π±+

2

k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

10、和角与差角公式

sin()sin cos cos sin αβαβαβ±=±;

cos()cos cos sin sin αβαβαβ±=m ;

tan tan tan()1tan tan αβ

αβαβ

±±=m .

11、二倍角公式

sin 2sin cos ααα=.

2222cos 2cos sin 2cos 112sin ααααα=-=-=-.

22tan tan 21tan α

αα

=

-. 公式变形: ;

2

2cos 1sin ,2cos 1sin 2;

2

2cos 1cos ,2cos 1cos 22222α

αααα

ααα-=-=+=+=

12、三角函数的周期

函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期

2T π

ω

=

;函数tan()y x ω?=+,,2

x k k Z π

π≠+

∈(A,ω,?为常数,且A ≠0,ω>0)的周期T πω

=

. 13、 函数sin()y x ω?=+的周期、最值、单调区间、图象变换

14、辅助角公式

)sin(cos sin 22?++=+=x b a x b x a y 其中a

b =

?tan 15、正弦定理

2sin sin sin a b c

R A B C

===. 16、余弦定理

2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.

17、三角形面积公式

111

sin sin sin 222

S ab C bc A ca B ===.

18、三角形内角和定理

在△ABC 中,有()A B C C A B ππ++=?=-+ 19、与的数量积(或内积)

θcos ||||?=?

20、平面向量的坐标运算

(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--u u u r u u u r u u u r

.

(2)设a =11(,)x y ,b =22(,)x y ,则b a ?=2121y y x x +. (3)设a =),(y x ,则22y x a +=

21、两向量的夹角公式

设=11(,)x y ,=22(,)x y ,且≠,则

2

2

2

22

12

12121cos y x y x y y x x b

a b a +?++=

?=

θ

22、向量的平行与垂直

b a //?a b λ= 12210x y x y ?-=.

)0(≠⊥a b a ?0=?12120x x y y ?+=.

三、数列

23、数列的通项公式与前n 项的和的关系

11

,

1,2n n n s n a s s n -=?=?

-≥?( 数列{}n a 的前n 项的和为12n n s a a a =+++L ). 24、等差数列的通项公式

*11(1)()n a a n d dn a d n N =+-=+-∈;

25、等差数列其前n 项和公式为

1()2n n n a a s +=

1(1)2n n na d -=+211

()22

d n a d n =+-. 26、等比数列的通项公式

1*11()n n

n a a a q q n N q

-==

?∈; 27、等比数列前n 项的和公式为

11

(1),11,1n n a q q s q na q ?-≠?=-??=? 或 11,11,1

n n a a q

q q s na q -?≠?

-=??=?.

四、不等式

28、已知y x ,都是正数,则有

xy y

x ≥+2

,当y x =时等号成立。 (1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;

(2)若和y x +是定值s ,则当y x =时积xy 有最大值2

4

1s .

五、解析几何

29、直线的五种方程

(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).

(3)两点式

11

2121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).

(4)截距式 1x y

a b

+=(a b 、分别为直线的横、纵截距,0a b ≠、)

(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).

30、两条直线的平行和垂直

若111:l y k x b =+,222:l y k x b =+

①121212||,l l k k b b ?=≠;

②12121l l k k ⊥?=-. 31、平面两点间的距离公式

,A B

d =A 11(,)x y ,B 22(,)x y ).

(完整版)新课标高中文科数学公式大全

32、点到直线的距离

d =

(点00(,)P x y ,直线l :0Ax By C ++=).

33、 圆的三种方程

(完整版)新课标高中文科数学公式大全

(1)圆的标准方程 2

2

2

()()x a y b r -+-=.

(2)圆的一般方程 2

2

0x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θ

θ

=+??

=+?.

34、直线与圆的位置关系

直线0=++C By Ax 与圆2

2

2

)()(r b y a x =-+-的位置关系有三种:

0相离r d ; 0=???=相切r d ;

0>???<相交r d . 弦长=222d r -

其中22B

A C

Bb Aa d +++=.

35、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质

椭圆:22221(0)x y a b a b +=>>,2

22b c a =-,离心率1<=a c e ,参数方程是cos sin x a y b θθ=??=?

.

双曲线:12222=-b y a x (a>0,b>0),2

22b a c =-,离心率1>=a c e ,渐近线方程是x a

b y ±=.

抛物线:px y 22

=,焦点)0,2

(p ,准线2p x -=。抛物线上的点到焦点距离等于它到准线的距离.

36、双曲线的方程与渐近线方程的关系

(1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a

b

y ±=.

(2)若渐近线方程为x a

b

y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x .

(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22

22b

y a x (0>λ,焦点在x 轴上,0<λ,

焦点在y 轴上).

37、抛物线px y 22

=的焦半径公式 抛物线2

2(0)y px p =>焦半径2

||0p

x PF +=.(抛物线上的点到 焦点距离等于它到准线的距离。) 38、过抛物线焦点的弦长p x x p

x p x AB ++=+++

=21212

2.

六、立体几何

39、证明直线与直线平行的方法

(1)三角形中位线 (2)平行四边形(一组对边平行且相等) 40、证明直线与平面平行的方法

(1)直线与平面平行的判定定理(证平面外一条直线与平面内的一条直线平行) (2)先证面面平行

41、证明平面与平面平行的方法

平面与平面平行的判定定理(一个平面内的两条相交....直线分别与另一平面平行) 42、证明直线与直线垂直的方法。转化为证明直线与平面垂直 43、证明直线与平面垂直的方法

(1)直线与平面垂直的判定定理(直线与平面内两条相交....

直线垂直) (2)平面与平面垂直的性质定理(两个平面垂直,一个平面内垂直交线的直线垂直另一个平面) 44、证明平面与平面垂直的方法

平面与平面垂直的判定定理(一个平面内有一条直线与另一个平面垂直) 45、柱体、椎体、球体的侧面积、表面积、体积计算公式

圆柱侧面积=rl π2,表面积=2

22r rl ππ+圆椎侧面积=rl π,表面积=2

r rl ππ+

13V Sh =柱体(S 是柱体的底面积、h 是柱体的高)

.1

3

V Sh =锥体(S 是锥体的底面积、h 是锥体的高). 球的半径是R ,则其体积343

V R π=,其表面积2

4S R π=.

46、异面直线所成角、直线与平面所成角、二面角的平面角的定义及计算 47、点到平面距离的计算(定义法、等体积法)

48、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。

正棱锥的性质:侧棱相等,顶点在底面的射影是底面正多边形的中心。

七、复数

53、复数的除法运算

2

2)()())(())((d c i

ad bc bd ac di c di c di c bi a di c bi a +-++=-+-+=++.

(完整版)新课标高中文科数学公式大全

54、复数z a bi =+的模||z =||a bi +

相关文档
  • 高中文科数学公式大全

  • 文科高中数学公式

  • 高中数学公式大全最全

  • 大学高中数学公式大全

相关推荐: