同位素示踪法

合集下载

同位素示踪法

同位素示踪法

同位素示踪法同位素示踪法是现代环境科学中,用以分析特定同位素在环境中的流动、迁移、传输,以及污染物运动轨迹,研究其来源、移动方向等重要污染控制信息的研究方法。

同位素示踪法是地球科学、化学及环境科学的重要手段,应用广泛,曾多次在国际学术刊物上发表论文,是当今环境科学实验技术中的一项重要研究方法。

什么是同位素?它是指具有相同核集合但不同质量的组分,也就是说,相同的元素可以有不同的质量。

比如,氢元素有两个同位素,就是氘和氚,它们都是都同一种元素,但氘的质量是1,而氚的质量是2。

同位素示踪法主要用于研究污染物运动轨迹以及污染物来源等重要信息。

具体而言,它是根据污染物中某种特定同位素的形成和分布来实现的,比如,重氢(氘)是燃烧碳素及硫化物排放时所形成的特定同位素,比较重氢含量的一组样品的时间变化,就可以推测出污染物的是从哪里来的,以及它到达何处。

同时,同位素示踪法还能够反映环境污染的发展趋势,检测污染的严重性。

比如,铀的比值可以反映出核能相关污染的本质,以及当地污染物的来源及变化趋势。

此外,单不稳定性同位素也能够检测土壤污染,比如钚-241在放射性污染中被称为“指示素”,可以用于检测放射性污染的严重性。

同位素示踪法受到了越来越多的关注,不仅因为它的灵活性强、结果可靠性高,还因为它可以用于今后环境污染的研究、治理及监测。

比如,通过同位素示踪法,可以对污染物来源、变化趋势、转移方向等更加清晰地了解,从而为环境污染的防治提供重要依据。

同位素示踪法作为当今环境科学实验技术的一项重要方法,在环境污染的监测和防治方面发挥着越来越重要的作用。

随着社会经济的发展,环境的污染问题也越来越严峻,同位素示踪法的研究应用也将受到越来越多的重视和关注,为污染防治提供更多更有效的手段。

同位素示踪法和同位素标记法

同位素示踪法和同位素标记法

同位素示踪法和同位素标记法
同位素示踪法和同位素标记法都是利用同位素在生物、化学、地球科学等领域中的应用手段。

同位素示踪法指的是通过在样品中添加含放射性同位素的化合物,通过对其衰变方式进行测量,从而追踪样品在化学反应、代谢等过程中的变化。

而同位素标记法是在样品中添加非放射性同位素作为标记,利用这些同位素的特性探究样品在不同反应中物质的行为。

同位素示踪法对于现代化学和生物领域有着非常重要的应用,特别是在生命科学的研究中起着至关重要的作用。

比如说,在病毒研究中,同位素示踪法可以帮助研究人员确定病毒在体内如何复制,从而有助于研发新的治疗方法。

在食品化学中,同位素示踪法也能够用于分析食物成分的代谢途径,从而实现对胰岛素敏感性的评估以及准确评估营养摄入量。

同位素标记法则多用于原子轨道探测及量子物理中,目前主要用于分子生物学、药物研发等领域。

在分子生物学中,同位素标记法可用于研究许多重要的生物学过程。

例如基因表达研究、细胞分裂、DNA修复等等。

在新药研发方面,同位素标记法可以协助科学家确定新型药物在体内耗散的运动方式,从而更加准确地评估其药效。

总的来说,同位素示踪法和同位素标记法具有广泛的应用,尤其是在生命科学、物理化学、地球科学等领域中。

这些技术的应用,不仅为科学家的研究提供了新的手段,也为人类的生活带来了更多的希望和机遇。

同位素示踪与荧光标记技术

同位素示踪与荧光标记技术

同位素示踪与荧光标记技术[热考解读]1.同位素示踪法(1)同位素示踪法:用示踪元素标记的化合物,可以根据这种化合物的放射性,对有关的一系列化学反应进行追踪。

这种科学的研究方法叫做同位素示踪法,也叫同位素标记法。

(2)应用:可用于研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。

还可用于疾病的诊断和治疗,如碘的放射性同位素可以用来治疗甲状腺肿大。

(3)使用注意事项:一次只能使用一种同位素标记2.荧光标记法荧光标记法(Fluorescent Labeling)是利用荧光蛋白或荧光蛋白基因作为标志物对研究对象进行标记的分析方法。

(1)常用的荧光蛋白为绿色和红色两种①绿色荧光蛋白(GFP)常用的是来源于发光水母的一种功能独特的蛋白质,分子量为27 kD,具有238个氨基酸,蓝光或近紫外光照射,发射绿色荧光。

②红色荧光蛋白来源于珊瑚虫,是一种与绿色荧光蛋白同源的荧光蛋白,在紫外光的照射下可发射红色荧光,有着广泛的应用前景。

(2)人教版教材中用到荧光标记法的地方①《必修1》P66“细胞融合实验”:这一实验很有力地证明了细胞膜的结构特点是具有一定的流动性。

②《必修2》P30“基因在染色体上的实验证据”:通过现代分子生物学技术,运用荧光标记的手段,可以很直观地观察到某一基因在染色体上的位置。

(3)荧光标记法特别是在免疫学研究中也有重要的作用,例如免疫荧光抗体标记法。

将已知的抗体或抗原分子标记上荧光素,当与其相对应的抗原或抗体起反应时,在形成的复合物上就带有一定量的荧光素,在荧光显微镜下就可以看见发出荧光的抗原抗体结合部位,检测出抗原或抗体。

[命题设计]1.(2018·山东青岛一模)同位素标记法常用于追踪物质运行和变化规律的研究,下列相关叙述不正确的是()A.给小鼠供应18O2,其呼出气体中可能含有C18O2B.用含3H标记的尿嘧啶核糖核苷酸的营养液培养洋葱根尖,只能在分生区细胞中检测到放射性C.用15N标记DNA分子,可用于研究DNA分子的半保留复制D.用32P标记的噬菌体侵染大肠杆菌,保温、搅拌、离心后可检测到沉淀物中放射性很高解析:选B。

化学反应中的同位素示踪实验

化学反应中的同位素示踪实验

化学反应中的同位素示踪实验同位素示踪实验是一种在化学反应中使用同位素标记物质的方法,通过追踪同位素的行为,可以了解反应发生的过程和机制。

同位素示踪实验在化学领域中具有重要的地位,广泛地应用于反应动力学、反应机理、生物化学等领域。

本文将展示同位素示踪实验的原理、应用以及相关技术。

一、同位素示踪实验的原理同位素示踪实验的原理是利用同位素在化学反应中的行为与稳定同位素的特性,通过追踪同位素的排布来了解反应的过程。

同位素是具有相同原子序数但不同中子数的同种元素,因此具有相似的化学性质。

在同位素示踪实验中,通常使用的同位素有氢的氘同位素(2H)、碳的碳-14同位素(14C)、氮的氮-15同位素(15N)等。

二、同位素示踪实验的应用1. 反应动力学研究同位素示踪实验在反应动力学研究中起到关键的作用。

通过追踪同位素标记物质的浓度随时间的变化,可以确定反应速率常数、反应级数和活化能等重要参数,从而揭示反应的动力学过程。

2. 反应机理研究同位素示踪实验可用于研究化学反应的机理。

通过引入标记同位素,在不同反应步骤中追踪同位素的转移和分布情况,可以揭示反应中是否存在中间体、裂解反应、交换反应等一系列的反应步骤,进而了解反应的机理。

3. 生物化学研究同位素示踪实验在生物化学研究中具有广泛的应用。

通过给生物体内引入同位素标记物质,可以追踪其在代谢途径中的转化过程,如糖的代谢、蛋白质合成等,从而揭示生物体内的代谢途径、信号转导机制等。

三、同位素示踪实验的技术与方法同位素示踪实验涉及到较多的技术与方法,包括同位素标记化合物的制备、同位素测定方法、标记物质的纯化与追踪等。

通常使用的同位素测定方法有质谱法、辐射测量法等。

1. 同位素标记化合物的制备同位素标记化合物的制备需要选择合适的同位素标记剂和反应条件。

例如,在有机化学反应中,可以使用氘代试剂、碳-14标记试剂等来引入同位素。

制备过程需要注意同位素标记化合物的选择、合成方法的优化以及纯化方法的选择。

同位素示踪法在高中生物中的应用归纳

同位素示踪法在高中生物中的应用归纳

同位素示踪法在高中生物中的应用归纳1同位素示踪法,是利用放射性核素作为示踪剂对研究对象进行标记的微量分析的方法。

常用的标记元素有:(1)14C:常用于标记CO2,葡萄糖,生长素等物质中的C,也可用与标记生长素的运输方向(2)18O:常用于标记光合作用和呼吸作用过程中的H2O,CO2,O2,葡萄糖等,(3)3H:经常用于标记核苷酸示踪DNA,RNA的分布(4)15N:常用于标记无机盐,示踪在自然界中的N循环,也可用来标记氨基酸等(5)32P:常用于标记核酸,标记含P的无机盐可示踪无机盐在植物体内的利用状况,也可用来标记DNA的复制情况(6)35S:标记蛋白质,在研究遗传的物质基础实验中标记噬菌体例11.陆生植物光合作用所需要的碳源,主要是空气中的C02,CO2主要是通过叶片气孔进入叶内。

陆生植物能不能通过根部获得碳源,且用于光合作用?请做出假设,且根据提供的实验材料,完成相关实验问题。

(1)假设为:。

(2)利用实验器材,补充相关实验步骤。

(3)方法和步骤:①;②;③对菜豆幼苗的光合作用产物进行检查。

结果预测和结论:。

该实验最可能的结果是,原因是。

答案 (1)陆生植物能通过根部获得碳源 (2)①把适量含有NaH14CO3,的营养液置于锥形瓶中,并选取生长正常的菜豆幼苗放入锥形瓶中②将上述装置放在温暖、阳光充足的地方培养③结果预测和结论:在光合作用产物中发现有14C,说明陆生植物能通过根部获得碳源,用于光合作用。

如果是在光合作用产物中没有发现14C,说明陆生植物不能通过根部获得碳源,用于光合作用。

最可能的结果和结论是:在光合作用产物中发现有14C,说明陆生植物能通过根部获得碳源,用于光合作用。

原因是陆生植物的根部可以吸收土壤中的CO2和碳酸盐,用于光合作用。

例2将植物细胞放在有3H标记的胸腺嘧啶脱氧核糖核苷酸存在的环境中,温育数小时。

然后收集细胞,粉碎并轻摇匀浆,进行分级离心以获得各种细胞结构。

放射性3H将主存在于()A.核仁、质体和高尔基体 B.细胞核、核仁和溶酶体C.细胞核、核糖体和液泡 D.细胞核、线粒体和叶绿体例3 从某腺体的细胞中提取一些细胞器,放入含有14C氨基酸的培养液中,培养液中有这些细胞器完成其功能所需的物质和条件,连续取样测定标记的氨基酸在这些细胞器中的数量,下图中能正确描述的曲线是()例4.用32P标记了水稻体细胞(含24条染色体)的DNA分子双链,再次这些细胞转入不含32P的培养基中培养,在第二次细胞分裂的中期、后期,一个细胞中的染色体总条数和被32P标记的染色体条数分别是()A.中期24和12、后期48和12 B.中期24和12、后期48和24C.中期24和24、后期48和12 D.中期24和24、后期48和24 例5.用32P和35S分别标记噬菌体的DNA分子和蛋白质外壳,然后去侵染含31P与32S的细菌,待细菌解体后,子代噬菌体的DNA分子和蛋白质外壳()A.少数含32P、大多数含31P和全部含32SB.只含31P和少数含32SC.少数含32P、大多数含31P和少数含35S、大多数含32SD.只含32P和大多数含35S。

化学反应中的同位素示踪分析方法

化学反应中的同位素示踪分析方法

化学反应中的同位素示踪分析方法同位素示踪分析方法是化学领域中一项重要的技术手段,用以研究物质在化学反应中的变化过程。

同位素示踪分析方法通过标记不同同位素的原子,可以追踪和研究物质在化学反应中的转化路径、速率以及机理等关键信息。

本文将介绍几种常见的同位素示踪分析方法,并探讨其在化学反应研究中的应用。

一、同位素示踪分析方法简介同位素是指具有相同原子序数(即具有相同的质子数)但具有不同中子数的原子。

同位素的存在使得我们可以用具有不同同位素的原子标记分子或原子,在化学反应过程中追踪其转化行为。

同位素示踪分析方法主要包括同位素示踪法、稳定同位素示踪法和放射性同位素示踪法等。

二、同位素示踪法在化学反应中的应用1. 同位素标记法同位素标记法是一种常见的同位素示踪分析方法,通过将具有特定同位素的原子或分子引入反应体系中,用以标记特定物质的变化。

例如,氢气可以用氘(D)代替,从而用氘气作为示踪物,观察氢气在化学反应中的转化程度。

2. 稳定同位素示踪法稳定同位素示踪法是利用稳定同位素的示踪分析方法。

常见的稳定同位素包括氘(D,重氢同位素)、氧-18(^18O)、氮-15(^15N)等。

通过检测反应体系中特定稳定同位素的含量变化,可以确定化学反应中物质的转化路径和速率。

例如通过检测CO2中^13C的含量变化,可以追踪和研究光合作用等碳转化反应。

3. 放射性同位素示踪法放射性同位素示踪法是利用放射性同位素的示踪分析方法。

通过放射性同位素的衰变过程,可以追踪和测量反应体系中物质的转化过程。

放射性同位素示踪法在核化学以及放射性同位素医学中有着广泛的应用。

三、同位素示踪分析方法的优势和挑战同位素示踪分析方法具有许多优势。

首先,由于同位素标记只会改变原子或分子的质量,不会改变其化学性质,所以可以准确地追踪物质的变化。

其次,同位素示踪分析方法可以提供定量的数据,使得对反应转化速率等参数进行精确测量成为可能。

然而,同位素示踪分析方法也存在一些挑战。

化学反应中的同位素示踪实验方法探讨研究

化学反应中的同位素示踪实验方法探讨研究

化学反应中的同位素示踪实验方法探讨研究同位素示踪实验方法在化学反应研究中发挥着重要的作用。

通过替代化学反应物中的同位素,科学家们可以追踪反应过程中同位素的移动和转化,从而揭示出化学反应的机理和动力学。

本文将探讨几种常见的同位素示踪实验方法,并介绍其原理和应用。

一、同位素标记法同位素标记法是一种常见的同位素示踪实验方法。

它通过将待反应的化合物中的某个原子或官能团替换成同位素标记的化合物,来追踪同位素在反应中的转换和分配。

同位素标记法可以通过不同的同位素选择来实现对不同反应过程的研究。

例如,在有机合成化学中,常用的同位素标记法是将13C或2H等稳定同位素标记到化合物的特定位置。

这种方法能够提供有关化合物的结构、构象和反应动力学的重要信息。

另外,同位素标记法在药物代谢研究中也有广泛的应用,可以追踪药物在体内的代谢途径和消除速率。

二、同位素交换法同位素交换法是另一种常见的同位素示踪实验方法。

它通过使用标记同位素与待反应的化合物进行同位素交换,实现对反应过程中原子转移的研究。

同位素交换法可以提供有关反应机理和催化剂的信息,对于理解复杂的化学反应有着重要的作用。

一种常见的同位素交换方法是氢氘交换法。

在氢氘交换法中,氢原子会与氘原子交换位置,通过质子核磁共振技术等手段可以观察到交换过程的动力学和热力学参数。

这种方法在有机化学和生物化学中有广泛的应用,可以揭示化学反应的具体机制和过渡态的形成。

三、同位素示踪法同位素示踪法是一种直接追踪同位素在反应中的移动和转化的方法。

通过在化学反应物中引入同位素示踪剂,可以追踪同位素在反应过程中的转化情况。

同位素示踪法在研究底物的转化率、反应速率和发生路径等方面具有重要价值。

例如,在环境科学领域,同位素示踪法可以用于追踪有害物质在土壤或水体中的迁移和转化。

通过标记同位素的示踪剂,科学家们可以准确测定有害物质的分布和迁移速率,为环境保护和资源管理提供重要依据。

总结起来,同位素示踪实验方法是化学反应研究中的一项重要工具。

化学反应机理的同位素标记与示踪技术

化学反应机理的同位素标记与示踪技术

化学反应机理的同位素标记与示踪技术引言:化学反应机理是研究化学反应过程中发生的分子和原子之间的相互作用的核心。

了解反应机理对于揭示化学反应的本质以及优化反应条件具有重要意义。

同位素标记与示踪技术在研究化学反应机理方面发挥了关键作用。

本文将介绍同位素标记的原理、示踪技术的应用以及相关方法和技术的优势。

一、同位素标记的原理同位素是指具有相同原子序数但质量数不同的原子。

同位素标记就是用特定的同位素替代分子中的某些原子,从而实现对化学反应过程的追踪和研究。

常用的同位素标记元素包括氢、碳、氮、氧等。

同位素标记主要通过同位素稳定性和化学反应速率的差异来实现。

二、示踪技术的应用1. 同位素示踪法同位素示踪法是利用同位素在化学反应过程中的特殊性质,通过对其在反应中的转化过程进行示踪从而研究反应机理。

例如,利用碳同位素标记的化合物可以追踪其在反应中的位置和转移路线,从而揭示反应的不同步骤和机理。

同位素示踪法在有机合成、反应动力学和自由基反应研究中有广泛应用。

2. 放射性同位素示踪法放射性同位素示踪法是利用具有放射性的同位素标记化合物来研究反应机理。

放射性同位素的衰变过程可以通过放射性探测器进行实时监测,从而获得反应速率和中间体的信息。

这种方法在核化学、辐射化学和生物医学研究中得到了广泛应用。

三、相关方法和技术的优势1. 高分辨质谱法高分辨质谱法是同位素标记中常用的分析技术之一。

通过该技术,可以确定同位素标记化合物的分子结构、转化等信息。

高分辨质谱法具有高灵敏度、高分辨率和多变量测量能力等优势。

2. 核磁共振法核磁共振法是同位素标记中常用的非破坏性分析技术。

它可以用于研究同位素标记化合物的空间构型、化学环境和反应进程。

核磁共振法具有高选择性、高灵敏度和非破坏性等特点。

3. 放射性测量技术放射性测量技术广泛应用于放射性同位素示踪法中。

通过放射性测量技术,可以实时监测放射性同位素的衰变过程,获得反应速率和中间体的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“同位素示踪法”专题复习同位素示踪法是利用放射性元素作为示踪剂对研究对象进行标记的微量分析方法,研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。

用于示踪技术的放射性同位素一般是用于构成细胞化合物的重要元素。

如3H、14C、15N、18O、32P、35S等。

一、3H练习1.将植物细胞在3H标记的尿苷存在下温育数小时,然后收集细胞,经适当处理后获得各种细胞器。

放射性将主要存在于:()A.叶绿体和高尔基体B.细胞核和液泡C.细胞核和内质网D.线粒体和叶绿体2.用3H标记葡萄糖中的氢,经有氧呼吸后,下列物质中可能有3H的是()A、H2OB、CO2C、C2H5OHD、C3H6O33.愈伤组织细胞在一种包含所有必需物质的培养基中培养了几个小时,其中一种化合物具有放射性(3H标记)。

当这些细胞被固定后进行显微镜检,利用放射自显影技术发现放射性集中于细胞核、线粒体和叶绿体中。

因此,可以肯定被标记的化合物是()A一种氨基酸B尿嘧啶核苷C胸腺嘧啶脱氧核苷酸D葡萄糖4.(多选)下列生物学研究选择的技术(方法)恰当的是()A.用3H标记的尿嘧啶核糖核苷酸研究DNA的复制B.用利用纸层析法提取叶绿体中的色素C.用标志重捕法进行鼠的种群密度的调查D.用无毒的染料研究动物胚胎发育的过程5.为了促进有丝分裂物质对细胞分裂的促进作用,将小鼠的肝细胞悬浮液分成等细胞数的甲、乙两组,在甲组的培养液中加入3H标记的胸腺嘧啶脱氧核苷(3H-TdR);乙组中加入等剂量的3H-TdR加入促进有丝分裂物质。

培养一段时间后,分别测定甲、乙两组细胞的总放射强度。

据此回答下列问题:(1)细胞内3H-TdR参与合成的生物大分子是,该种分子所在的细胞结构名称是,。

(2)乙组细胞的总放射性强度比甲组的,原因是。

(3)细胞利用3H-TdR合成生物大分子的过程发生在细胞周期的期。

(4)在上述实验中选用3H-TdR的原因是。

答案:1、D2、A3、C4、CD5、(1)DNA染色体线粒体(2)高乙组细胞分裂旺盛,产生的细胞含有由胸腺嘧啶脱氧核苷合成的胸腺嘧啶脱氧核苷酸等为原料合成的DNA。

(3)间(4)合成胸腺嘧啶脱氧核苷酸的原料,胸腺嘧啶脱氧核苷酸又是合成DNA的原料。

二、14C练习来源:www.examda.co m1.若用14C 标记CO2 分子,则放射性物质在C4植物光合作用过程中将会依次出现在()A.C5、C4、(CH2 O)B.C5、C3、(CH2 O)C.C3、C4、(CH2 O)D.C4 、C3、(CH2 O)2.用同位素标记追踪血液中的某些葡萄糖分子,若该分子流经人的肾脏后又由肾静脉流出,则该分子很可能穿过几层细胞膜?()A2层B4层C6层D0层或8层3.科学家利用“同位素标记法”搞清了许多化学反应的详细过程。

下列说法正确的是()A.用14C 标记CO2 最终探明了CO2 中碳元素在光合作用中的转移途径B.用18O标记H2 O和CO2 有力地证明了CO2 是光合作用的原料C.用15N标记核苷酸搞清了分裂期染色体形态和数目的变化规律D.用35S标记噬菌体的DNA并以此侵染细菌证明了DNA是遗传物质4.用同位素14C 标记的吲哚乙酸来处理一段枝条一端,然后探测另一端是否含有放射性1 4C 的吲哚乙酸存在。

枝条及位置如下图。

下列有关处理方法及结果的叙述正确的是()A.处理图甲中A端,不可能在图甲中的B端探测到14C 的存在B.处理图乙中A端,能在图乙中的B端探测到14C 的存在C.处理图乙中B端,能在图乙中的A端探测到14C 的存在D.处理图甲中B端,能在图甲中的A端探测到14C 的存在答案:1、D2、D3、A4、C三、15N练习1.科学家用15N 的硝酸盐作为标记物浸泡蚕豆幼苗,追踪蚕豆根尖细胞分裂情况,得到蚕豆根尖分生区细胞连续分裂的有关数据,如下图。

下列叙述正确的是()A.蚕豆根尖细胞分裂的一个细胞周期为19.3hB.非等位基因的自由组合可发生在19.3~21.3hC.0~2h 期间,DNA分子始终处于解旋状态D.高尔基体、线粒体、叶绿体在细胞分裂过程中活动旺盛2.将用15N 标记的尿嘧啶核苷酸引入某种绿色植物细胞内,一段时间后,下列各组结构中,放射性较强的一组结构是()A.细胞核、核仁、中心体B.细胞膜、核糖体、高尔基体C.细胞核、核糖体、线粒体、叶绿体D.细胞核、核糖体、内质网、液泡3.假设将含有一对同源染色体的精原细胞的DNA分子用15N 标记,并供给含14N 的原料。

该细胞经减数分裂产生的四个精子中,含15N 标记的DNA的精子占全部精子的比例为()A.0B.25%C.50%D.100%4.如果用15N 、32P、35S标记噬菌体后,让其侵染细菌,在产生的子代噬菌体的组成结构成分中,能够找到的放射性元素为()A.可在外壳中找到15N 和35S B.可在DNA中找到15N 和32PC.可在外壳中找到15ND.可在DNA中找到15N 、32P和35S5.从某腺体的细胞中提取一些细胞器,放入含有15N 氨基酸的培养液中(培养液还具备这些细胞器完成其功能所需要的物质和条件),连续取样测定标记的氨基酸在这些细胞器中的数量,下图中正确的是()6.给某种蔬菜施含放射性同位素15N的氮肥,植物吸收后主要用于合成蛋白质。

人食用该种蔬菜后,通过代谢,15N 最终出现在中。

()A氨基酸B氨C尿素D蛋白质7.用放射性15N 标记的(NH4)2 SO4给水稻施肥,并将施用该种肥料后水稻的稻谷饲料喂猪,对猪的唾液和尿液定时进行放射性同位素的跟踪检测。

结果,在猪的唾液和尿液中均能检测到有15N 存在。

根据以上实例,请回答下列有关问题:⑴在(NH4)2 SO4中掺入15N 的用途是。

⑵把色素滤液放在光源和分光镜之间,则可见在光谱上出现了黑色线或暗带,黑线和暗带主要集中在。

⑶(NH4)2 SO4中的N进入猪细胞内的简要过程是。

⑷15N 进入唾液和尿液的物质变化过程的主要区别。

⑸与唾液中含15N 的物质的合成和分泌有关的细胞器。

答案:1、A2、C3、D4、B5、B6、C7、⑴作为示踪原子⑵红光区和蓝紫光区⑶水稻根吸收的氮与光合作用的产物形成稻谷内的蛋白质,稻谷内蛋白质经猪消化、吸收,进入猪细胞内⑷前者是合成唾液淀粉酶为同化作用,后者是氨基酸经脱氨基作用后氨基的转化过程⑸核糖体、内质网、高尔基体四、18O练习来源:www.examda.co m1.在一个密封的玻璃钟罩内,有绿色植物,并养有以此为食的小动物,罩内的O2 用18O 原子为标记,每天给予光照,若干时间后,18O 可在下列哪项自身有机物中出现()A.只在植物体中B.动植物体内均有C.只在动物体内D.动植物体内均无2.在光照充足的环境里,将黑藻放入含有18O 的水中,过一段时间后,分析18O 放射性的存在,最有可能的是()A.在植物体内的葡萄糖中发现B.在植物体内的淀粉中发现C.在植物体内的脂肪、蛋白质、淀粉中均可发现D.在植物体周围的空气中发现3、将一株水培草莓用钟罩罩住,在培养液中添加H2 18O ,追踪18O 的所在。

先在草莓根毛细胞里发现,这是植物细胞对水的作用,继而钟罩壁上凝结有,这是植物的作用所致。

在光照的情况下,罩内空气中又出现,这是依赖于植物的作用,将钟罩再次移到黑暗环境后气体减少了,而罩壁上凝结的反而增加了,这是植物的作用所致。

4.将生长旺盛的两盆绿色植物分别置于两个玻璃钟罩内,甲罩内的花盆浇足含18O 的水(H 2 18O ),乙罩内充足含18O 的CO2 (C 18O 2 ),将两个花盆用塑料袋包扎起来,并用玻璃钟罩密封(如下图),在适宜的温度下光照1小时。

请回答:(1)此时,甲罩壁上出现许多含18O 的水珠,这些水珠是经植物体的作用产生的。

甲罩内还有许多18O2 ,这是植物体进行将H2 18O分解成和的结果。

(2)乙罩壁上出现许多含18O 的水珠,这些是植物吸收C 18O2 进行作用产生的。

(3)将甲装置移入黑暗环境中,几小时后,罩内的18O2 逐渐减少,减少的18O2 被转移到植物体内形成了。

这一生理过程的主要意义是。

答案:1、B2、D3、H218O 渗透H218O 蒸腾O2 光合作用O2 H2 18O呼吸作用4.(1)蒸腾光合作用[H]18O2 (2)光合(3)水为植物的各项生命活动提供能量五、32P、35S练习1.下列那一种方法能为T2噬菌体的DNA作上32P标记()A.用含32P标记的大肠杆菌培养B.用含32P标记的植物细胞培养C.用含32P标记的动物细胞培养D.用含32P标记的固体培养基培养2.把菜豆幼苗放在含32P的培养液中培养,一小时后测定表明,幼苗各部分都含32P。

然后将该幼苗转移到不含32P的培养液中,数天后32P()A不在新的茎叶中B主要在新的茎叶中C主要在老的茎叶中D主要在老的根中3.噬菌体是一类细菌病毒。

下列关于噬菌体侵染细菌的实验相关叙述中不正确的是()A.该实验不能证明蛋白质不是遗传物质B.侵染过程的原料、ATP、酶、场所等条件均由细菌提供C.为确认何种物质注入细菌体内,可用32P、35S共同标记一组噬菌体的DNA和蛋白质D.连续培养噬菌体n代,则含母链的DNA应占子代DNA总数的1/2(n-1)4.用35S标记的大肠杆菌T2噬菌体去侵染32P标记DNA的细菌,则新产生的噬菌体中()A.全部含有35S,32PB.全部含有32P,不含35SC.部分含有35S,不含32PD.部分含有32P,不含35S5.用含有35S标记氨基酸的培养基培养动物细胞,该细胞能合成并分泌一种含35S蛋白质。

(1)请写出35S在细胞各结构间移动的先后顺序(用"→"表示先后顺序)。

(2)写出上述蛋白质合成和分泌过程中相关细胞器的功能。

答案:1、A2、B3、C4、B5、(1)核糖体→内质网→高尔基体→小泡→细胞膜(→胞外);(2)核糖体是蛋白质合成的场所;内质网与蛋白质合成有关,是蛋白质运输通道;高尔基体是蛋白质加工和转运的场所。

六、其它标记1.诊断苯丙酮尿症选用的探针是()A.32P半乳糖苷转移酶基因B.荧光标记的苯丙氨酸羟化酶C.3H苯丙氨酸羟化酶基因D.荧光标记的B-珠蛋白基因2.放射性同位素标记法一般不应用于()A.基因诊断B.修复有缺陷的基因C.分泌蛋白分泌过程的研究D.探究C3、C4植物固定CO2 的途径3.用放射性同位素分别标记U和T的培养基培养蚕豆根尖分生区细胞,观察其有丝分裂周期为20小时,根据这两种碱基被细胞利用的速率,绘制成的曲线如下图所示。

下列对此结果的分析中,不正确的是()A.b点时刻,细胞正大量合成RNAB.d点时刻,细胞中DNA含量达到最高值C.c-e阶段,细胞内最容易发生基因突变D.处于a-c阶段的细胞数目较多4、一系列实验证明细胞模具有流动性。

相关文档
最新文档