经济数学(导数与微分习题与答案)
经济数学第一章练习题

经济数学第一章练习题一、函数与极限1. 判断下列函数的单调性:(1) f(x) = 2x + 3(2) f(x) = x^2 + 4x + 1(3) f(x) = e^x 2x2. 求下列极限:(1) lim(x→0) (sin x / x)(2) lim(x→1) (x^2 1) / (x 1)(3) lim(x→+∞) (1 + 1/x)^x3. 讨论下列函数在指定区间内的连续性:(1) f(x) = |x|,区间为[1, 1](2) f(x) = sqrt(4 x^2),区间为[2, 2]二、导数与微分1. 求下列函数的导数:(1) f(x) = 3x^2 2x + 1(2) f(x) = ln(x + 1)(3) f(x) = e^x sin x2. 计算下列函数的微分:(1) f(x) = x^3 2x^2 + 3x 4(2) f(x) = arcsin(x/2)3. 求下列隐函数的导数:(1) y = e^(x + y)(2) x^2 + y^2 = 4三、高阶导数与微分方程1. 求下列函数的二阶导数:(1) f(x) = x^4 3x^3 + 2x^2(2) f(x) = ln(x^2 + 1)2. 求下列微分方程的通解:(1) y' + y = x(2) y'' 2y' + y = e^x3. 求下列微分方程的特解:(1) y' = 2x + y,初始条件为y(0) = 1(2) y'' + y = sin x,初始条件为y(0) = 0,y'(0) = 1四、泰勒公式与应用1. 将下列函数在指定点处展开成泰勒级数:(1) f(x) = e^x,展开点为x = 0(2) f(x) = sin x,展开点为x = π/22. 利用泰勒公式求下列极限:(1) lim(x→0) (1 cos x) / x^2(2) lim(x→0) (e^(x^2) 1 x^2) / x^43. 计算下列函数的近似值:(1) f(x) = sqrt(1 + x),当x = 0.01时(2) f(x) = ln(1 + x),当x = 0.1时五、多元函数微分法1. 计算下列多元函数的偏导数:(1) z = x^2 + y^2,对x和y求偏导数(2) u = sin(xy) + e^z,对x、y和z求偏导数2. 求下列函数的全微分:(1) z = x^2y + y^2x(2) u = ln(xyz)3. 验证下列函数是否满足拉格朗日中值定理:(1) f(x, y) = x^2 + y^2,在直线y = x上(2) f(x, y) = e^(x^2 + y^2),在圆x^2 + y^2 = 1上六、极值与条件极值1. 求下列函数的极值:(1) f(x) = x^3 3x^2 + 2(2) f(x, y) = x^2 + y^2 2x 4y + 52. 求下列函数在给定区间上的最大值和最小值:(1) f(x) = x^2 + 4x,区间为[0, 3](2) f(x, y) = x^2 + y^2,在圆x^2 + y^2 = 4内3. 求下列条件极值问题:(1) max f(x, y) = x + y,约束条件为x^2 + y^2 = 1(2) min f(x, y, z) = x + y + z,约束条件为x^2 + y^2 + z^2 = 4,x + y + z = 1七、积分与定积分的应用1. 计算下列不定积分:(1) ∫(3x^2 2x + 1)dx(2) ∫(e^x sin x)dx2. 计算下列定积分:(1) ∫_{0}^{1} (x^2 + 1)dx(2) ∫_{π/2}^{π/2} (cos x)dx3. 利用定积分求解下列实际问题:(1) 计算由曲线y = x^2与直线x = 1,y = 0围成的平面图形的面积(2) 计算由曲线y = e^x,直线x = 0,y = e及y轴围成的平面图形的体积八、多元积分1. 计算下列二重积分:(1) ∬_D (x^2 + y^2)dxdy,其中D为圆x^2 + y^2 ≤ 1(2) ∬_D (e^(x + y))dxdy,其中D为矩形区域0 ≤ x ≤ 1,0 ≤ y ≤ 22. 计算下列三重积分:(1) ∭_E (x + y + z)dV,其中E为长方体0 ≤ x ≤ 1,0 ≤ y ≤ 2,0 ≤ z ≤ 3(2) ∭_E (xyz)dV,其中E为球体x^2 + y^2 + z^2 ≤ 13. 利用二重积分求解下列实际问题:(1) 计算由抛物线y = x^2与直线x = 1,y = 0围成的平面图形绕x轴旋转一周所形成的旋转体的体积(2) 计算由曲面z = x^2 + y^2与平面z = 4围成的立体图形的体积答案一、函数与极限1. (1) 单调递增(2) 单调递减(3) 单调递增2. (1) 1(2) 2(3) e3. (1) 在[1, 1]上连续(2) 在[2, 2]上连续,但在x = ±2处不连续二、导数与微分1. (1) f'(x) = 6x 2(2) f'(x) = 1 / (x + 1)(3) f'(x) = e^x sin x + e^x cos x2. (1) df(x) = (6x^2 4x + 3)dx(2) df(x) = (1 / sqrt(1 (x/2)^2))dx3. (1) y' = (e^(x + y) y') / e^(x + y)(2) y' = x / y三、高阶导数与微分方程1. (1) f''(x) = 12x^2 12x(2) f''(x) = 2 / (x^2 + 1)^22. (1) y = C e^(x) + x(2) y = C1 e^x + C2 e^(x)3. (1) y = x + 1(2) y = (1/2) sin x (1/2) cos x四、泰勒公式与应用1. (1) e^x = 1 + x + x^2/2! + x^3/3! +(2) sin x = 1 (x π/2)^2/2! + (x π/2)^4/4!2. (1) 1/2(2) 1/23. (1) f(0.01) ≈ 1.005(2) f(0.1) ≈ 0.09516五、多元函数微分法1. (1) ∂z/∂x = 2x,∂z/∂y = 2y(2) ∂u/∂x = y cos(xy),∂u/∂y = x cos(xy),∂u/∂z = e^z2. (1) dz = (2xy + y^2)dx + (x^2 + 2xy)dy(2) du = (1/x + 1/y + 1/z)dx + (1/x + 1/y + 1/z)dy + (1/x + 1/y + 1/z)dz3. (1) 满足(2) 满足六、极值与条件极值1. (1) 极大值f(1) = 0,极小值f(2/3) = 4/27(2) 极小值f(1, 2) = 52. (1) 最大值f(3) = 3,最小值f(1) = 1(2) 最大值f(0, 2) = 4,最小值f(0, 2) = 03. (1) 最大值f(√2/2, √2/2)= √2(2) 最小值f(1, 0, 0) = 1七、积分与定积分的应用1. (1) (x^3 x^2 + x) + C(2) (e^x + cos x) + C2. (1) 5/3(2) 23. (1) 1/3 π(2) (e^2 e)π八、多元积分1. (1) π(2) e^2 12. (1) 3(2) 0(因为积分区域关于y轴对称,被积函数关于x为奇函数)3. (1) (2/3)π(2) (π/6)。
导数与微分练习题及解析

导数与微分练习题及解析在微积分学中,导数和微分是最基本的概念之一。
它们可以帮助我们研究函数的变化率和性质,广泛应用于物理、经济、工程等各个领域。
为了帮助你更好地理解导数和微分的概念,以下是一些练习题及其解析。
练习题1:求函数f(x) = x^2 + 3x + 2在x = 2处的导数和切线方程。
解析:首先,我们求函数f(x)的导数。
使用求导法则,对于多项式函数来说,可以将每一项的指数与系数相乘,并将指数减一,得到函数的导数。
f'(x) = 2x + 3接下来,我们计算x = 2处的导数值。
f'(2) = 2(2) + 3 = 7切线方程的一般形式为y = mx + b,其中m代表斜率,b代表截距。
根据导数的定义,导数即为切线的斜率。
所以切线的斜率为m = 7。
将切点的坐标代入切线方程,我们可以得到b的值。
2 = 7(2) + b2 = 14 + bb = -12最终的切线方程为y = 7x - 12。
练习题2:求函数f(x) = e^x * sin(x)的导数。
解析:考虑到函数f(x) = e^x * sin(x)是两个函数的乘积,我们可以使用乘积法则来求导。
乘积法则的公式为:(uv)' = u'v + uv'对于e^x和sin(x)两个函数,它们的导数分别为e^x和cos(x)。
根据乘积法则,我们可以将这两个导数与原函数进行组合,得到最终的导数为:f'(x) = (e^x * cos(x)) + (e^x * sin(x))练习题3:求函数f(x) = ln(x^2 + 1)的导数和微分。
解析:首先,我们求函数f(x)的导数。
根据链式法则,可以分别计算外函数和内函数的导数。
设内函数为u = x^2 + 1,则内函数的导数为du/dx = 2x。
外函数为f(u) = ln(u),则外函数的导数为df/du = 1/u。
根据链式法则,函数f(x)的导数为:f'(x) = df/du * du/dx= (1/u) * (2x)= 2x / (x^2 + 1)接下来,我们计算函数f(x)的微分。
经济数学 第三章

(9) :
(10) :
(11) :
(12) :
2. 若函数 ,且 ,求 。
解: 。
3. 证明:
(1)可导的偶函数的导数是奇函数。
证明:设 为偶函数且可导,则有 ,两边对 求导,有 ,即 ,得证。
(2)可导的奇函数的导数是偶函数。
证明:设 为奇函数且可导,则有 ,两边对 求导,有 ,即 ,得证。
第三章 导数与微分习题答案
练习题3.1
1. 根据导数定义,求下列函数的导数:
(1) ,求 。
解: 。
(2) ,求 。
解: 。
2. 求抛物线 在点 处的切线方程和法线方程。
解:在 处的切线斜率为 ,法线斜率为 ,
在 处的切线方程为 ;法线方程为 。
3. 为何值时, 与 相切?
(1) : ,
(2) : ,
6. 利用对数求导法求下列函数的导数:
(1) : ,
(2) : ,
()
;
(4) :
7. 求下列函数的高阶导数:
(1) ,求 。
解: , 。
(2) ,求 。
解: ,
。
(3) ,求 。
解: ,
(4) ,求 。
4. 一球在斜面上向上滚,在 s末与开始的距离为 m,其初速度是多少?何时开始向下滚?
解: ,当 时,初速度 ;当 ,即 时,开始向下滚动。
5. 一矩形两边长分别用 来表示,若 边以 m/s的速度减少, 边以 m/s的速度增加,求在 m, m时矩形面积的变化速度积对角线的变化速度。
解:矩形的面积 , ;
解:切线的斜率为 ,切线过 点,则切线方程为 ,法线方程为 。
经济数学练习题答案

经济数学练习题答案1. 计算下列极限:- \(\lim_{x \to 0} \frac{\sin(x)}{x}\)- \(\lim_{x \to \infty} \frac{1}{x}\)- \(\lim_{x \to 1} (x^2 - 1)\)2. 求下列函数的导数:- \(y = x^3 - 2x^2 + 3x - 4\)- \(y = e^x \ln(x)\)- \(y = \sin^2(x)\)3. 求下列函数的不定积分:- \(\int (3x^2 - 2x + 1) \, dx\)- \(\int \frac{1}{x^2 + 1} \, dx\)- \(\int e^x \cos(x) \, dx\)4. 解下列微分方程:- \(y' + 2y = e^{-x}\)- \(y'' - 4y' + 4y = 0\)- \(y' + y^2 = x\)5. 计算下列二重积分:- \(\iint_D (x^2 + y^2) \, dA\),其中 \(D\) 是由 \(x^2 + y^2 \leq 1\) 定义的圆盘。
- \(\iint_D (xy) \, dA\),其中 \(D\) 是由 \(0 \leq x \leq 1\) 和 \(0 \leq y \leq 1\) 定义的矩形区域。
6. 求下列级数的和:- \(\sum_{n=1}^{\infty} \frac{1}{n^2}\)- \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}\)- \(\sum_{n=0}^{\infty} \frac{x^n}{n!}\),对于 \(|x| < 1\)7. 确定下列函数的连续性和可导性:- \(f(x) = \begin{cases}x & \text{if } x \geq 0 \\-x & \text{if } x < 0\end{cases}\)- \(g(x) = x^{\frac{1}{3}}\)- \(h(x) = \sin(x) / x\),对于 \(x \neq 0\) 且 \(h(0) = 1\)8. 计算下列矩阵的行列式:- \(A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\)- \(B = \begin{bmatrix} 5 & 0 & 1 \\ 0 & 6 & 0 \\ 7 & 0 &8 \end{bmatrix}\)- \(C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 &6 \end{bmatrix}\)9. 解下列线性方程组:- \(\begin{cases}x + y = 1 \\2x - y = 0\end{cases}\)- \(\begin{cases}3x + 2y - z = 1 \\x - y + 2z = -1 \\2x + y + z = 2\end{cases}\)10. 求下列函数的最大值和最小值:- \(f(x) = x^3 - 3x^2 + 2\) - \(g(x) = -x^2 + 4x - 3\) - \(h(x) = e^x - x^2\)。
导数与微分习题及答案

导数与微分习题及答案导数与微分习题及答案在数学学科中,导数与微分是非常重要的概念。
它们不仅在数学分析中有广泛的应用,还在物理、经济学等领域中起着重要的作用。
本文将为大家提供一些导数与微分的习题,并附上详细的答案,希望能够帮助大家更好地理解和掌握这一内容。
1. 习题一:求函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数。
解答:根据导数的定义,我们有f'(x) = lim(h→0) [f(x+h) - f(x)] / h。
代入函数 f(x) = x^2 + 3x - 2 和 x = 2,得到f'(2) = lim(h→0) [(2+h)^2 + 3(2+h) - 2 - (2^2 + 3(2) - 2)] / h。
化简后得到f'(2) = lim(h→0) [4h + h^2 + 6h] / h = lim(h→0) (h^2 + 10h) / h = lim(h→0) (h + 10) = 10。
因此,函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数为 10。
2. 习题二:求函数 g(x) = 2sin(x) + cos(x) 在点x = π/4 处的导数。
解答:同样地,我们可以利用导数的定义来求解。
根据定义,g'(x) = lim(h→0) [g(x+h) - g(x)] / h。
代入函数 g(x) = 2sin(x) + cos(x) 和x = π/4,得到g'(π/4) = lim(h→0) [2sin(π/4+h) + cos(π/4+h) - (2sin(π/4) + cos(π/4))] / h。
化简后得到g'(π/4) = lim(h→0) [2(sin(π/4)cos(h) + cos(π/4)sin(h)) + (cos(π/4)cos(h) -sin(π/4)sin(h))] / h。
经济数学函数试题及答案

经济数学函数试题及答案一、选择题(每题2分,共10分)1. 函数f(x) = 2x^2 - 3x + 5在x=1处的导数是:A. 1B. 4C. 7D. 9答案:B2. 若函数g(x) = sin(x) + cos(x),则g(π/4)的值等于:A. 1B. √2C. 2D. 0答案:B3. 微分方程dy/dx = x^2的通解是:A. y = x^3/3 + CB. y = x^3 + CC. y = x^3/3D. y = x^2 + C答案:A4. 经济学中的边际成本函数MC(x)表示的是:A. 总成本对产量的导数B. 平均成本对产量的导数C. 总成本对时间的导数D. 总产量对时间的导数答案:A5. 若需求函数为D(p) = a - bp,其中a和b为正常数,价格p上升时,需求量将:A. 增加B. 减少C. 保持不变D. 先增加后减少答案:B二、填空题(每题3分,共15分)6. 函数h(x) = √x的值域是_________。
答案:[0, +∞)7. 若成本函数C(x) = mx + b,其中m和b为常数,那么平均成本AC(x) = _________。
答案:m + b/x8. 边际收益递减原理表明,当产量增加到一定程度后,每增加一个单位的产量,所带来的收益增量将_________。
答案:减少9. 经济学中的无差异曲线表示消费者在不同商品组合之间_________。
答案:同等偏好10. 在完全竞争市场中,厂商的短期供给曲线位于_________的平均成本之上。
答案:平均变动成本三、解答题(共75分)11. (15分)设生产函数为Q = K^(1/2) * L^(1/3),其中K为资本,L为劳动。
(1)求劳动的平均产量和边际产量。
(2)若资本K=100,求劳动的平均产量和边际产量。
12. (20分)考虑一个市场,需求曲线为D(p) = 200 - 5p,供给曲线为S(p) = -10 + 2p。
经济数学第2章所有答案

第二章 习题一1.设函数210)(x x f =,试按定义求)1(/-f 。
解: 由于xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/,故xx x f x f f x x ∆--∆+-=∆--∆+-=-→∆→∆2200/)1(10)1(10lim )1()1(lim )1(x x x x x x x ∆--∆+∆-+-=∆--∆+-=→∆→∆2220220)1()()1(2)1(lim 10)1()1(lim 10[]x xx x x x ∆+-=∆∆+∆-=→∆→∆2lim 10)(2lim 10020[]200210-=+-=。
2.设)(0/x f 存在,试利用导数的定义求下列极限: (1)x x f x x f x ∆-∆-→∆)()(lim000; (2)hh x f h x f h )()(lim 000--+→;解:(1)()()[]()x x f x x f xx f x x f x x ∆--∆-+-=∆-∆-→∆-→∆)(lim)()(lim000000, 将上式中的()x ∆-看成导数定义)()()(lim0/000x f xx f x x f x =∆-∆+→∆中的x ∆,便得()[])()(lim0/000x f xx f x x f x =∆--∆-+→∆-,故)()()(lim0/000x f xx f x x f x -=∆-∆-→∆;(2)[][]hx f h x f x f h x f h h x f h x f h h )()()()(lim )()(lim00000000----+=--+→→ [][]⎭⎬⎫⎩⎨⎧----+=→h x f h x f h x f h x f h )()()()(lim 00000 [][]hx f h x f hx f h x f h h )()(lim )()(lim000000----+=→→上式中的第一项即为导数的定义,结果为)(0/x f ; 第二项参见前一小题,结果为)(0/x f -, 故[])(2)()()()(lim0/0/0/000x f x f x f hh x f h x f h =--=--+→。
导数与微分真题答案及解析

导数与微分真题答案及解析一、基础概念在微积分中,导数与微分是非常重要的概念。
导数描述了函数在某一点的变化率,而微分则描述了函数在某一点附近的局部变化情况。
了解导数与微分的概念对于解决数学问题至关重要,下面就是一些导数与微分的真题及其答案解析。
二、导数计算真题1. 求函数f(x) = 3x^2 - 2x + 1的导数。
解析:根据导数的定义,可以使用求导法则来计算导数。
对于多项式函数f(x) = ax^n + bx^m + cx^l + ...,其导数可以通过对每一项求导后再相加的方式得到。
根据此法则,对于f(x) = 3x^2 - 2x + 1,求导后得到f'(x) = 6x - 2。
2. 求函数f(x) = sin(2x)的导数。
解析:根据导数的链式法则,对于复合函数f(g(x)),其导数可以通过对外层函数求导后再乘以内层函数的导数得到。
对于f(x) = sin(2x),将外层函数设为f(u) = sin(u),内层函数设为g(x) = 2x,则f'(x) = f'(g(x)) * g'(x) = cos(2x) * 2 = 2cos(2x)。
三、微分计算真题1. 求函数f(x) = e^x的微分。
解析:对于指数函数f(x) = e^x,其微分可以通过导数乘以微小变化量dx的方式得到。
由于f'(x) = e^x,所以微分df = f'(x) * dx = e^x * dx。
2. 求函数f(x) = ln(x)的微分。
解析:对于对数函数f(x) = ln(x),其微分可以通过导数除以x的方式得到。
由于f'(x) = 1/x,所以微分df = f'(x) / x = 1 / (x * dx)。
四、综合计算真题1. 求函数f(x) = (x^2 + 1) / (x - 1)在点x = 2处的导数和微分。
解析:首先,求导数。
利用求导法则,对于f(x) = (x^2 + 1) / (x - 1),可以通过分子分母求导再计算商的导数的方式来求得导数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 函数的导数与微分习题 3-11. 根据定义求下列函数的导数: (1)x y 1=(2)x y cos =(3)b ax y +=(a ,b 为常数) (4)x y =解(1)因为00()()'limlimx x y f x x f x y x x ∆→∆→∆+∆-==∆∆=x x x x x ∆-∆+→∆11lim 0=01lim ()x x x x ∆→-+∆=21x -所以21y x '=-. (2) 因为00cos()cos 'limlimx x y x x x y x x ∆→∆→∆+∆-==∆∆02sin()sin22 limsin x x xx x x ∆→∆∆-+==-∆所以sin y x '=-(3) 因为00[()][]'limlimx x y a x x b ax b y x x ∆→∆→∆+∆+-+==∆∆=x x a x ∆∆→∆0lim=a所以y a '=(4)因为00'limlimx x y y x x ∆→∆→∆-==∆∆=)(lim0x x x x xx +∆+∆∆→∆lim x ∆→==所以y '=.2. 下列各题中假定)(0'x f 存在, 按照导数的定义观察下列极限, 指出A 表示什么?(1) A x x f x x f x =∆-∆-→∆)()(lim 000(2) A x x f x =→)(lim 0(其中0)0(=f 且)0('f )存在)(3) A x f tx f x =-→)0()(lim 0(其中)0('f 存在)(4) Ah h x f h x f h =--+→)()(lim000解(1)因为x x f x x f x ∆-∆-→∆)()(lim000=x x f x x f x ∆--∆--→∆)()(lim 000=)(0'x f - 故)(0'x f A -=. (2) 因为x x f x )(lim→=0)0()(lim 0--→x f x f x =)0('f故)0('f A =. (3) 因为x f tx f x )0()(lim-→=tx f tx f t x )0()0(lim 0-+→=)0('tf故)0('tf A =.(4) 因为000()()limh f x h f x h h →+--00000000000()()()()lim[]()()()()lim lim ]h h h f x h f x f x h f x h hf x h f x f x h f x h h →→→+---=-+---=+-=)()(0'0'x f x f +=)(20'x f 故)(20'x f A =. 3.已知2,,x y x ⎧=⎨⎩11≥<x x , 求d d y x 解由已知易得当1<x 时, x y 2'=, 当1x >时, 1'=y 又1)1()(lim )1(1'--=+→+x f x f f x =11lim 1--+→x x x =11)1()(lim )1(1'--=-→-x f x f f x =11lim 21---→x x x =2)1()1(''-+≠f f即)1('f 不存在.故'2,()1,x f x ⎧=⎨⎩11><x x . 4. 如果f (x )为偶函数,且(0)f '存在,证明(0)0f '=.证由于f (x )为偶函数,所以f (-x ) = f (x ) 则0()(0)()(0)(0)limlim00x x f x f f x f f x x →-→---'==---- 0()(0)lim '(0)0t f t f t x f t →-=--=--故(0)0f '=.5.讨论下列函数在0=x 处的连续性和可导性:(1)21sin ,0,x y x ⎧⎪=⎨⎪⎩00=≠x x (2) cos y x = (3)2,,x y x ⎧=⎨-⎩00<≥x x 解(1) 因为()(0)'(0)lim0x f x f f x →-=- 2001sin1limlim sin 0x x x x x x x →→===所以函数21sin ,0,x y x ⎧⎪=⎨⎪⎩00=≠x x 在0=x 处可导,从而也连续.(2) 因为()(0)'(0)lim0x f x f f x →-=- 0cos cos 0limx x x→-=2002sin cos 12limlimx x xx xx→→--===所以函数cos y x =在x = 0处可导,从而也连续.(3)因为200lim ()lim 0(0)x x f x x f ++→→===00lim ()lim ()0(0)x x f x x f --→→=-==所以函数)(x f 在0=x 处连续.又因为2'00()(0)0(0)lim lim 000x x f x f x f x x +++→→--===--'00()(0)0(0)limlim 100x x f x f x f x x ---→→---===--- ''(0)(0)f f +-≠故'(0)f 不存在, 即函数)(x f 在0=x 不可导.6. 设函数2, 1(), 1x x f x ax b x ⎧≤=⎨+>⎩,为使函数f (x ) 在x = 1处连续且可导,a ,b 应取什么值?解由题意,有11lim ()lim ()(1)(1)(1)x x f x f x f f f -+→→-+==⎧⎪⎨''=⎪⎩首先可得 a+b = 1 即b =1-a又因为211(1)lim 21x x f x --→-'==-11111(1)lim lim 11x x ax b ax a f a x x +++→→+-+--'===--所以a = 2 ,于是b = -1.故当a = 2, b = -1时,函数f (x ) 在x = 1处连续且可导.7.求曲线2x y =在点(-1,1)处的切线方程. 解因1'2,'2x y x y =-==-故曲线2x y =在点(-1,1)处的切线方程为12(1)y x -=-+即21y x =--.8*.设曲线f (x ) = x n 在点 (1, 1) 处的切线与x 轴的交点为(a n ,0), 求lim ()n n f a →∞.解因为1(1)n x f nx n ='==所以曲线()nf x x =在点(1, 1)处的切线方程为y -1 = n ( x -1)切线与x 轴的交点为1(1,0)n -,即11n a n =-从而1()(1)nn f a n =-习题 3-21 求下列函数的导数:(1)52423+-=x x y (2)x y xln 2= (3 )x x y sin 23= (4) 4tan 3-=x y (5) )32)(23(x x y -+=(6)x x x y ln 1ln +=(7) x x e y x 22+=(8) t ty cos 1sin 1++=解(1)x x y 4122'-=. (2)x x y x x2)2)(2(ln ln '+=. (3) x x x x y cos 2sin 632'+=. (4) x y 2'sec 3=.(5))3)(23()32(2'-++-=x x y =x 125--. (6)x xx x x x y 22'ln 1ln 1-+-==x x x x 22ln 1ln 1--.(7) 2'4222x x e x e x y x x -=-=42222x x xe e x x x --.(8)2')cos 1()sin )(sin 1()cos 1(cos t t t t t y t +-+-+==2cos sin 1(1cos )t t t +++.2. 求下列函数在给定点的导数:(1)xxe y =, 求0'|=x y (2)θθθρcos 21sin +=, 求0'|=θρ(3)553)(2x x x f +-=, 求)0('f 和)2('f . 解(1) 因为xx xe e y +=', 所以10|000'=+==e e y x(2) 因为'11sin cos sin sin cos 22θρθθθθθθθ=+-=+所以'211|sin cos 22222θπθπππρ==+=.(3) 因为x x x x f 52)5()5(3)(2'+---==x x 5253+- 所以53)0('-=f , 51)2('-=f . 3. 求21123(1)n x x nxx -++++≠L 的和.解注意到1()n n x nx -'=,有1212121123(1)11(1) (1).(1)n n nn n x x x nxx x x x n x nx x x +-+'⎛⎫-'++++=+++= ⎪-⎝⎭-++=≠-L L4. 求曲线2sin x x y +=上横坐标为0=x 的点处的切线方程和法线方程.解当0=x 时,0=y , 且有x x y 2cos '+=则00cos |0'+==x y =1习题 3-31. 求下列函数的导数:(1)223x y -=(2)32x e y =(3)x y arcsin = (4))ln(22x a x y ++= (5)2cos ln x e y -= (6)x y 1arctan =解(1))4(23212'x x y --==.(2) 33'2222(6)6x xy e x x e ==.(3)x x y 2111'-==)1(21x x -.(4) y '=+=. (5) 22222'1(sin )(2)2tan cos x x x x x y e e x xe e e -----=--=. (6) )1(11122'x x y -+==211x +-.2. 求下列函数的导数: (1)x ey x 2cos 2-=(2))]ln[ln(ln x x y =(3)nx x y n cos sin =(4)x x y 22ln 2-= 解(1)'221()cos 2(sin 2)22x xy e x e x --=-+-⋅()21cos 24sin 22xe x x -=-+.(2)[]1'ln[ln(ln )]ln(ln )ln y x x x -=+⋅. (3) nx x x n y n cos cos sin 1'-=n nx x n)sin (sin -+()1sin cos cos sin sin n n x x nx x nx -=-sin cos(1)n n x n x =+.(4) x x y 2'ln 22-=)ln 221(22x x -+x x 1)ln 2(- =xx 2ln 22-x xx 2ln 2ln --.3. 设f 可导,求下列函数的导数d d yx :(1))(e x x e f y +=(2))(sin 2cos 2x f x y -= (3)na x f y )]([2+=(4))]ln ([x x f f y +=(5))arctan 1(x xf ey +=解(1)()'1dy()d x e x e f e x e ex x -=++.(2)'2d 2sin 2(sin )d yx f x x=--x x cos sin 2.=x x f x 2sin )(sin 2sin 22'--2sin 22(sin )x f x '⎡⎤=-+⎣⎦.(3) 212d [()]()2d n yn f x a f x a xx -'=+⋅+⋅1222()()n nx f x a f x a -'⎡⎤=+⋅+⎣⎦.(4) []d 1(1)(ln )(ln )dx y f f x x f x x x ''=+⋅+⋅+. (5) 1(arctan )d d f x x y e x+=)arctan 1('x x f +)111(22x x ++- 1(arctan )2211arctan (1)f x xf x e x x x +⎛⎫'=-+ ⎪+⎝⎭.4设2ln(1), >0()0, 0 , ().sin , 0x x f x x f x x x x ⎧⎪+⎪⎪'==⎨⎪⎪<⎪⎩求解当x > 0时,[]1()ln(1)1f x x x ''=+=+ 当x < 0时,222sin sin 2sin ()x x x xf x x x '⎛⎫-'== ⎪⎝⎭当x = 0时,由0()(0)ln(1)(0)lim lim 0x x f x f x f x x +++→→-+'==-10lim ln(1)ln 1x x x e +→⎡⎤=+==⎢⎥⎢⎥⎣⎦22000sin ()(0)sin (0)lim =lim lim 10x x x xf x f x x f x x x ----→→→-⎛⎫'=== ⎪-⎝⎭得(0)1f '=.故221, 01()1, 0sin 2sin , 0x x f x x x x x x x ⎧<⎪+⎪⎪'==⎨⎪-⎪<⎪⎩ .5. 设2()1 ()()ln f x y a f x f x a '==且,证明2y y '=. 证由复合函数的求导法则,得2()ln 2()()fx y a a f x f x ''=⋅⋅将1()()ln f x f x a '=代入上式, 可得22()()1ln 2()=22()ln fx f x y a a f x a yf x a '=⋅⋅⋅=即2y y '=.6. 设函数f 可导,且y = f (a + t ) -f (a - t ), 求0d d t yt =.解因为d ()()()()d yf a t a t f a t a t t ''''=+⋅+--⋅- ()()f a t f a t ''=++- 故0d ()()2()d t yf a f a f a t ='''=+=.*7 设()lim xx x t f t t x t →∞+⎛⎫= ⎪-⎝⎭,求()f t '. 解因为1lim lim 1xxx x t x t x t x t x →∞→∞⎛⎫+ ⎪+⎛⎫= ⎪ ⎪-⎝⎭ ⎪-⎪⎝⎭2lim 1 lim 1xtx t xt x t e x e e t x →∞-→∞⎛⎫+ ⎪⎝⎭===⎛⎫- ⎪⎝⎭所以2()lim lim xxt x x x t x t f t t t t e x t x t →∞→∞++⎛⎫⎛⎫==⋅=⋅ ⎪ ⎪--⎝⎭⎝⎭故22()()(12)t tf t t e e t ''=⋅=+.习题 3-41. 求下列函数的二阶导数:(1)x xe y 2=(2))1ln(2x y -= (3)x y arctan =(4))21(sin 2x y +=(5))1ln(2x x y ++=(6)2(1)arctan y x x =+解(1)2222(12)xx x y exe e x '=+=+2222(12)24(1)x x x y e x e e x ''=⋅++⋅=+.(2) 因为)1ln(2x y -==)1ln()1ln(x x ++- 所以='y x x --+1111=''y 22222112(1)(1)(1)(1)x x x x -+-=-+--.(3) ='y 211x +, =''y 22)1(2x x +-.(4)()2sin(12)cos(12)22sin 212)y x x x '=++⋅=+ ()()2cos21248cos212y x x ''=+⋅=+.(5)='y =()3221x y x''==-+.(6)='y 2211arctan 2x x x x +++=1arctan 2+x x =''y 22"2arctan .1x y x x=++2. 已知)(''x f 存在,且0)(≠x f ,求22d d yx .(1))(2a x f y +=(2))](ln[x f y = 解(1) '22d ()22()d yf x a x xf x a x '=+⋅=+2'222d 2()2()2d y f x a xf x a x x ''=+++⋅2222()4()f x a x f x a '''=+++.(2) 'd 1()d ()y f x x f x =2'''''''2222d ()()()()()()[()]d ()()y f x f x f x f x f x f x f x x f x f x --==.3. 设f (x ) 的n 阶导数存在,求[]()()n f ax b +. 解因[]()()()f ax b f ax b a af ax b '''+=+⋅=+[][]2()()()f ax b af ax b a f ax b ''''''+=+=+………………………………故[]()()()()n n n f ax b a f ax b +=+.4. 验证函数x e y x sin =满足关系式022'''=+-y y y . 解因x e y x sin '=x e xcos +''sin x y e x =x e x cos +x e x cos +x e x sin -=x e x cos 2故'''22y y y -+=x e x cos 2x e x sin (2-)cos x e x +x e x sin 2+=0. 5.求下列函数的n 阶导数的一般表达式:(1)ln y x x = (2) 3xy =解 (1) 因(4)23112ln 1,, , ,y x y y y x x x ''''''=+==-=L故()1(1)(2)!(2)n n n n yn x --⋅-=≥.(2)23ln 3,3ln 3, x x y y '''=⋅=⋅L故()3(ln 3)n x ny =⋅.*6 设22411x y x -=-,求y (100). 解2224133114411211x y x x x x -⎛⎫==+=+- ⎪---+⎝⎭ 而(100)(100)1011011100!1100!, 11(1)(1)x x x x ⎛⎫⎛⎫==⎪ ⎪-+-+⎝⎭⎝⎭(100)10110110110121013100!100! 2(1)(1)3100!(1)(1) .2(1)y x x x x x ⎡⎤=-⎢⎥-+⎣⎦⎡⎤⨯+--=⎢⎥-⎣⎦故习题 3-51. 求由下列方程确定的隐函数的导数'y : (1)y x e xy +=(2))arctan(2xy xy x =+ (3)1=-y xe y (4)033=-+a y x (a 为常数) 解(1)方程两边同时对x 求导, 得)1(''y e xy y y x +=++ 解方程得='y yx y x e x y e ++--.(2) 方程两边同时对x 求导,得=++'2xy y x 22'1y x xy y ++ 解方程得3222222xy x y y x y ++'=-.(3) 方程两边同时对x 求导, 得0''=--y xe e y y y解方程得='y y yxe e -1.(4) 方程两边同时对x 求导, 得033'22=+y y x解方程得='y 22y x -.2. 求曲线2ln ()cot 02yy x x e π-+-=在点(e , 1)处的切线方程。