导数或微分的计算典型例题
导数与微分例题

导数与微分例题1、设函数()y y x =由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线()y y x =在3x =处的法线与x 轴交点的横坐标是【 】.()A 32ln 81+; ()B 32ln 81+-;()C32ln 8+-; ()D 32ln 8+.2、设函数()lim n f x →∞=()f x 在),(+∞-∞内【 】.()A 处处可导; ()B 恰有一个不可导点; ()C 恰有两个不可导点; ()D 至少有三个不可导点.3、已知()f x 在0x =处可导,且(0)0f =,则 233()2()limx x f x f x x→-=【 】. ()A 2(0)f '-; ()B (0)f '-; ()C (0)f '; ()D 0.4、设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则【 】()A 0dx y <<∆;()B 0y dy <∆<; ()C 0y dy ∆<<;()D 0.dy y <∆<5、设函数()f x 在0x =处连续,且()22lim1h f h h→=,则【 】()A ()()000f f -'=且存在; ()B ()()010f f -'=且存在; ()C()()000f f +'=且存在; ()D ()()010f f +'=且存在。
6、设()0()lim 13xt t f x x t →=+,则()f x '= .7、设xx y )sin 1(+=,则|x dy π==______ .8、曲线tan 4yx y e π⎛⎫++= ⎪⎝⎭,在点(0,0)处的切线方程为 . 9、曲线21022ln(2)t u x e du y t t --⎧=⎪⎨⎪=-⎩⎰在(0, 0)处的切线方程为 .10、设()y y x =是由方程1yx y e x +=+确定的隐函数,则22x d y dx== .11、曲线sin()ln()xy y x x +-=在点(0,1)处切线方程为 . 12、曲线2cos cos 1sin x t t y t⎧=+⎨=+⎩上对应于4t π=的点处的法线斜率为_____13、设函数123y x =+,则()0ny=_____.14、设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()2____.f '''= 15、设函数()y f x =由方程4ln 2y x xy =+所确定,则曲线()y f x =在点(1,1)处的切线方程是 .16、设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是2>λ. 17、已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b 18、设()(1)(2)(2001)(2009)f x x x x x =---- ,则=')1(f . 19、设 )(x f 可导,)1(2x f y -=,求 dy dx= .。
导数与微分练习题及解析

导数与微分练习题及解析在微积分学中,导数和微分是最基本的概念之一。
它们可以帮助我们研究函数的变化率和性质,广泛应用于物理、经济、工程等各个领域。
为了帮助你更好地理解导数和微分的概念,以下是一些练习题及其解析。
练习题1:求函数f(x) = x^2 + 3x + 2在x = 2处的导数和切线方程。
解析:首先,我们求函数f(x)的导数。
使用求导法则,对于多项式函数来说,可以将每一项的指数与系数相乘,并将指数减一,得到函数的导数。
f'(x) = 2x + 3接下来,我们计算x = 2处的导数值。
f'(2) = 2(2) + 3 = 7切线方程的一般形式为y = mx + b,其中m代表斜率,b代表截距。
根据导数的定义,导数即为切线的斜率。
所以切线的斜率为m = 7。
将切点的坐标代入切线方程,我们可以得到b的值。
2 = 7(2) + b2 = 14 + bb = -12最终的切线方程为y = 7x - 12。
练习题2:求函数f(x) = e^x * sin(x)的导数。
解析:考虑到函数f(x) = e^x * sin(x)是两个函数的乘积,我们可以使用乘积法则来求导。
乘积法则的公式为:(uv)' = u'v + uv'对于e^x和sin(x)两个函数,它们的导数分别为e^x和cos(x)。
根据乘积法则,我们可以将这两个导数与原函数进行组合,得到最终的导数为:f'(x) = (e^x * cos(x)) + (e^x * sin(x))练习题3:求函数f(x) = ln(x^2 + 1)的导数和微分。
解析:首先,我们求函数f(x)的导数。
根据链式法则,可以分别计算外函数和内函数的导数。
设内函数为u = x^2 + 1,则内函数的导数为du/dx = 2x。
外函数为f(u) = ln(u),则外函数的导数为df/du = 1/u。
根据链式法则,函数f(x)的导数为:f'(x) = df/du * du/dx= (1/u) * (2x)= 2x / (x^2 + 1)接下来,我们计算函数f(x)的微分。
2-6 导数与微分习题课

当0 x 2时, f ( x) 3x2 4x;
2019年12月24日星期二
蚌埠学院 高等数学
9
当x 2时,
f ( 2)
lim
x2
f ( x) f (2) x2
lim x2 ( x 2) 4. x2 x 2
f ( 2)
lim
f (0) lim f (0 x) f (0)
x0
x
lim f (0 x) f (0)
x0
x
f (0).
2 f (0) 0, 即 f (0) 0.
2019年12月24日星期二
蚌埠学院 高等数学
16
例13. 设
x2, f (x)
d(a x ) a x ln adx
d(e x ) e xdx
d (loga
x)
1 dx x lna
d(arcsin x) 1 dx 1 x2
d
(arctan
x
)
1
1 x
2
dx
d(ln x) 1 dx x
d(arccos x) 1 dx 1 x2
d
(arc
cot
x)
2019年12月24日星期二
蚌埠学院 高等数学
13
例9. 设 y xab abx axb , 求 y.
解 y [x(ab ) ] [a(bx ) ] [a(xb ) ]
ab xab 1 (abx ln a) (bx ln b) (axb ln a) (b xb1).
(1)n n! ( x 1)n1
,
数学复习中的常见微积分题解析

数学复习中的常见微积分题解析微积分是数学中的重要分支之一,涉及到对函数的导数、积分等运算。
在数学的学习与应用中,对微积分的理解和掌握至关重要。
本文将对常见的微积分题进行解析,帮助读者更好地复习和掌握微积分知识。
一、导数的计算导数是微积分中的基本概念,表示函数在某一点上的变化率。
常见的导数计算包括使用基本导数公式、链式法则、求导法则等。
下面以几个常见的例子进行解析。
1. 例题1:求函数f(x)=(3x^2+2x+1)^2的导数。
解析:首先,我们可以使用链式法则,将该函数拆解为两个函数的复合形式,即f(x)=u^2,其中u=3x^2+2x+1。
接下来,我们求u的导数,即u'。
根据求导法则,我们得到u' = 6x + 2。
然后,将u'代入链式法则的公式中,即d(f(u))/du * u'。
根据链式法则的公式,我们可以求得f(x)的导数为f'(x) = 2u * u' = 2(3x^2+2x+1)(6x+2)。
2. 例题2:求函数f(x)=sin(2x+3)的导数。
解析:对于这个问题,我们可以利用三角函数的导数规则。
根据导数规则,sin函数的导数是cos函数,因此该函数的导数f'(x) =cos(2x+3)。
二、定积分的计算定积分是微积分中另一个重要的概念,表示函数在某一区间上的面积。
常见的定积分计算包括使用基本积分表、换元积分法、分部积分法等。
下面以几个常见的例子进行解析。
1. 例题1:计算定积分∫[0, 1] x^2 dx。
解析:对于这个问题,我们可以直接应用定积分的公式,即∫[a, b]f(x) dx = F(b) - F(a),其中F(x)是f(x)的原函数。
根据该公式,我们可以求得∫[0, 1] x^2 dx = 1/3 * x^3 |[0, 1] = 1/3 - 0 = 1/3。
2. 例题2:计算定积分∫[0, π] sin(x) dx。
高等数学第二章导数与微分习题

h0
h
lim f ( x) f ( x x) f ( x) .
x0
x
lim f ( x x) f ( x x)
x0
x
lim f ( x x) f ( x) f ( x) f ( x x)
x0
x
lim f ( x x) f ( x) lim f ( x) f ( x x)
习题课
f (a) lim f ( x) f (a) lim ( x a)F ( x) 0
xa x a
xa
xa
1
lim ( x a)F ( x) 0
x a 0
xa
g
(a
)
x
lim
a 0
g(
x) x
g(a a
)
2
例2.
研究函数
f
(
x
)
1 x 1 x
解 . lim f ( x) lim
x0
x
x0
x
14
例16 .
f
(
x)
ln x
(1
x)
x0 x0
求 f ( x) .
)[
f (0 0) f (0) ln(1 x) x0 0 ,
0
f (0 0) lim x 0 , f ( x) 在 x 0 处连续 .
x 0
f (0)
ln(1
x)
x
0
1
1
x
1
x0
f (0)
lim
(n)
(1)n n! ( x 1)n1
,
23
例24 . 试从 d x 1 导出: d y y
1.
d d
2x y2
微积分求导例题带答案

微积分求导例题带答案一、微积分求导例题1、求解函数$y=x^2+ax+b$的导数;答:函数$y=x^2+ax+b$的导数= $\dfrac{dy}{dx}=2x+a$。
2、求解函数$y=sin2x+cos2x$的导数;答:函数$y=sin2x+cos2x$的导数= $\dfrac{dy}{dx}=2cos2x-2sin2x=2cos(2x-\frac{\pi}{2})$。
3、求解函数$y=e^xlnx$的导数;答:函数$y=e^xlnx$的导数= $\dfrac{dy}{dx}=(e^x+x) \dfrac{1}{x}$。
二、答案详解通过求导法则,可以计算函数的导数,也叫做斜率。
用求导法则来计算的好处是,可以知道函数在给定某点的斜率,从而了解函数的变化情况,也就是说可以求出一个函数的单调性,进而证明函数的解的确定性。
第一题中的函数$y=x^2+ax+b$,求出它的导数就可以得到$\dfrac{dy}{dx}=2x+a$,也就是在某一点上斜率为$2x+a$。
第二题中的函数$y=sin2x+cos2x$,求出它的导数就可以得到$\dfrac{dy}{dx}=2cos2x-2sin2x=2cos(2x-\frac{\pi}{2})$,也就是在某一点上斜率为$2cos(2x-\frac{\pi}{2})$。
第三题中的函数$y=e^xlnx$,求出它的导数就可以得到$\dfrac{dy}{dx}=(e^x+x) \dfrac{1}{x}$,也就是在某一点上斜率为$(e^x+x) \dfrac{1}{x}$。
总之,通过求导,我们可以快速的计算出函数的斜率,从而了解函数的变化情况及其解的确定性。
导数与微分习题及答案

导数与微分习题及答案导数与微分习题及答案在数学学科中,导数与微分是非常重要的概念。
它们不仅在数学分析中有广泛的应用,还在物理、经济学等领域中起着重要的作用。
本文将为大家提供一些导数与微分的习题,并附上详细的答案,希望能够帮助大家更好地理解和掌握这一内容。
1. 习题一:求函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数。
解答:根据导数的定义,我们有f'(x) = lim(h→0) [f(x+h) - f(x)] / h。
代入函数 f(x) = x^2 + 3x - 2 和 x = 2,得到f'(2) = lim(h→0) [(2+h)^2 + 3(2+h) - 2 - (2^2 + 3(2) - 2)] / h。
化简后得到f'(2) = lim(h→0) [4h + h^2 + 6h] / h = lim(h→0) (h^2 + 10h) / h = lim(h→0) (h + 10) = 10。
因此,函数 f(x) = x^2 + 3x - 2 在点 x = 2 处的导数为 10。
2. 习题二:求函数 g(x) = 2sin(x) + cos(x) 在点x = π/4 处的导数。
解答:同样地,我们可以利用导数的定义来求解。
根据定义,g'(x) = lim(h→0) [g(x+h) - g(x)] / h。
代入函数 g(x) = 2sin(x) + cos(x) 和x = π/4,得到g'(π/4) = lim(h→0) [2sin(π/4+h) + cos(π/4+h) - (2sin(π/4) + cos(π/4))] / h。
化简后得到g'(π/4) = lim(h→0) [2(sin(π/4)cos(h) + cos(π/4)sin(h)) + (cos(π/4)cos(h) -sin(π/4)sin(h))] / h。
导数与微分实际问题案例

导数与微分实际问题案例导数和微分是微积分中重要的概念,它们在现实世界中有着广泛的应用。
本文将通过一些实际问题案例,详细介绍导数和微分的应用。
案例一:车辆行驶问题假设一辆汽车在一段时间内以匀速行驶。
我们可以通过求解导数来计算汽车的速度。
设汽车的位移函数为s(t),其中t表示时间,s表示位移。
那么汽车的速度可以通过求解导数s'(t)来得到。
例如,假设汽车的位移函数为s(t) = 2t^2 + 3t。
我们可以通过求解导数s'(t)来计算汽车的速度,即s'(t) = 4t + 3。
通过求解导数,我们可以得知汽车的速度在任意时间点上是多少。
这对于研究车辆行驶过程中的加速度、减速度等问题非常有帮助。
案例二:物体移动问题在物理学中,有一类常见的问题是求解物体的运动过程。
通过求解导数,我们可以推导出物体的速度和加速度函数。
设物体的位移函数为s(t),其中t表示时间,s表示位移。
那么物体的速度可以通过求解导数s'(t)来得到,加速度可以通过求解导数s''(t)来得到。
例如,假设物体的位移函数为s(t) = 3t^2 - 4t + 2。
我们可以通过求解导数s'(t)来计算物体的速度,即s'(t) = 6t - 4;通过求解导数s''(t)来计算物体的加速度,即s''(t) = 6。
通过求解导数,我们可以分析物体的运动规律,例如物体的最大速度、加速度的变化情况等。
案例三:利润最大化问题在经济学中,有一个经典的问题是求解利润最大化。
假设某公司生产一种产品,售价为p(单位价格),销量为x(单位数量)。
成本函数可以表示为C(x),那么利润可以表示为P(x) = px - C(x)。
为了求解利润最大化,我们需要计算利润函数P(x)的导数。
通过求解导数P'(x) = p - C'(x),我们可以确定最大利润对应的销量。