导数与微分习题(基础题)
(高等数学)导数与微分习题

一. 填空题(理工类)1. , 则= _______.解. , 假设, 则, 所以2. 设, 则______.解. ,3. 设函数y = y(x)由方程确定, 则______. 解. , 所以4. 已知f(-x) =-f(x), 且, 则______.解. 由f(-x) =-f(x)得, 所以所以5. 设f(x)可导, 则_______.解.=+=6. 设, 则k = ________.解. , 所以所以7. 已知, 则_______.解. , 所以. 令x2= 2, 所以8. 设f为可导函数, , 则_______.解.9. 设y = f(x)由方程所确定, 则曲线y = f(x)在点(0, 1)处的法线方程为_______.解. 上式二边求导. 所以切线斜率. 法线斜率为, 法线方程为, 即 x-2y + 2 = 0.二. 单项选择题(理工类)1. 设f(x)可导, F(x) = f(x)(1+|sin x|), 则f(0) = 0是F(x)在x = 0处可导的(a) 充分必要条件 (b) 充分但非必要条件 (c) 必要但非充分条件(d) 既非充分又非必要条件解. 必要性:存在, 所以=, 于是======所以, 2f(0) = 0, f(0) = 0充分性:已知f(0) = 0, 所以========所以存在. (a)是答案.2. 已知函数f(x)具有任意阶导数, 且, 则当n为大于2的正整数时, f(x)的n阶导数是(a) (b) (c) (d)解. , 假设=, 所以=, 按数学归纳法=对一切正整数成立. (a)是答案.3. 设函数对任意x均满足f(1 + x) = af(x), 且b, 其中a, b为非零常数, 则(a) f(x)在x = 1处不可导 (b) f(x)在x = 1处可导, 且 a(c) f(x)在x = 1处可导, 且 b (d) f(x)在x = 1处可导, 且ab解. 在f(1 + x) = af(x)中代入=, 所以. (d)是答案注: 因为没有假设可导, 不能对于二边求导.4. 设, 则使存在的最高阶导数n为(a) 0 (b) 1 (c) 2 (d) 3解. .所以n = 2, (c)是答案.5. 设函数y = f(x)在点x0处可导, 当自变量x由x0增加到x0+ ∆x时, 记∆y为f(x)的增量, dy为f(x)的微分, 等于(a) -1 (b) 0 (c) 1 (d) ∞解. 由微分定义∆y = dy + o(∆x), 所以. (b)是答案.6. 设在x = 0处可导, 则(a) a = 1, b = 0 (b) a = 0, b为任意常数 (c) a = 0, b = 0 (d) a = 1, b为任意常数解. 在x = 0处可导一定在x = 0处连续, 所以, 所以b = 0., , 所以 0 = a. (c)是答案.7. 设f(0) = 0, 则f(x)在x = 0处可导的充要条件为(a) h)存在. (b) 存在.(c) h)存在. (d) 存在.解. 由存在可推出(a)中的极限值为, (b)中的极限值为 , (d)中的极限值为, 而(c)中的极限为:;反之(a) 及(c)中的极限值存在, 不一定存在, 举反例如下: y = |x|, 不存在, (a)、(c)二表达式的极限都存在排除(a)及(c). (d)中的极限存在, 不一定存在, 举反例如下: , 排除(d). 所以(b)是答案.由(b)推出存在证明如下:==所以存在.8. 设函数f(x)在(-∞, +∞)上可导, 则(a) 当时, 必有(b) 当时, 必有(c) 当时, 必有(d) 当时, 必有解. (a)不正确. 反例如下: y = x; (b)不正确. 反例如下: ; (c)不正确. 反例如下: ; (d)是答案. 证明如下: 因为, 所以对于充分大的x,单增. 如果, 则证明结束, 否则单增有上界, 则存在(k为有限数). 任取x, 在区间[x, x + 1]上用拉格朗日定理(x < ξ < x + 1)令x → +∞, 于是0 = +∞, 矛盾. 所以.9. 设函数f(x)在x = a处可导, 则函数|f(x)|在x = a处不可导的充分条件是(a) f(a) = 0且. (b) f(a) = 0且.(c) f(a) > 0且. (d) f(a) < 0且.解. (a) 反例f(x) = 0, 取a = 0. 排除(a); (c) 反例: , 取a = 0. f(0) = 1 > 0, , |f(x)| = f(x), 在x = 0可导. 排除(c); (d) 反例: , 取a = 0. 排除(d); 所以(b)是答案. 对于(b)证明如下: 在(b)的条件下证明不存在.不妨假设. . 所以存在δ, 当x ∈ (a-δ, a + δ)时. 所以当x> a时, f(x) > 0. 于是. 当x < a时f(x) < 0. 于是. 所以不存在.三. 计算题(理工类)1.解.2. 已知f(u)可导,解.=3. 设y为x的函数是由方程确定的, 求. 解., 所以4. 已知, 求.解. ,5. 设, 求解. ,6. 设函数f(x)二阶可导, , 且, 求, .解. , 所以=3.所以7. 设曲线x = x(t), y = y(t)由方程组确定. 求该曲线在t = 1处的曲率.解. . 所以所以.所以. 在t = 1的曲率为四. 已知, 其中g(x)有二阶连续导数, 且g(0) = 1(1) 确定a 的值, 使f(x)在x = 0点连续; (2) 求.解. (1) f(x)在x = 0点连续, 所以,所以, 所以g(0) = cos 0 = 1(这说明条件g(0) = 1是多余的). 所以=(2) 方法1:=== (0 < ξ < x)=所以方法2:====五. 已知当x≤ 0时, f(x)有定义且二阶可导, 问a, b, c为何值时二阶可导.解. F(x)连续, 所以, 所以c = f(-0) = f(0);因为F(x)二阶可导, 所以连续, 所以b = , 且存在, 所以, 所以, 所以六. 已知.解., k = 0, 1, 2, …, k = 0, 1, 2, …七. 设, 求.解. 使用莱布尼兹高阶导数公式=所以。
第三章 导数与微分 习题及答案

第三章 导数与微分同步练习 一、填空 1、若[]1cos 1)0()(lim=--→xf x f x x ,则)0(f '= 。
2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。
3、若)(x e f y -=,且x x x f ln )(=',则1=x dxdy = 。
4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。
5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。
6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。
7、已知x x y ln =,则)10(y = 。
8、已知2arcsin )(),2323(x x f x x f y ='+-=,则:0=x dxdy = 。
9、设1111ln22++-+=x x y ,则y '= 。
10、设方程y y x =确定y 是x 的函数,则dy = 。
11、已知()xke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dyxd 。
二、选择1、设f 可微,则=---→1)1()2(lim1x f x f x ( )A 、)1(-'-x fB 、)1(-'fC 、)1(f '-D 、)2(f ' 2、若2)(0-='x f ,则=--→)()2(lim000x f x x f xx ( )A 、41 B 、41- C 、1 D 、-1 3、设⎪⎩⎪⎨⎧=≠=0001arctan )(x x xx x f ,则)(x f 在0=x 处( )A 、不连续B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 32+= B、x x y sin =C、21x x y +=D、x x y cos += 5、设)(x f 为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=( ) A、在0=x 处极限不存在 B、有跳跃间断点0=x C、在0=x 处右极限不存在 D、有可去间断点0=x6、设函数)(),(21x y x y 的弹性分别为)0(,≠b b a ,则函数)()(21x y x y y =的弹性为( ) A、b a - B、b aC、2112y by ay - D、以上都不对 7、已知)(x f e y =,则y ''=( )A、)(x f e B、)]()([)(x f x f e x f ''+' C、)()(x f e x f '' D、)}()]({[2)(x f x f e x f ''+'8、设函数⎩⎨⎧≤+>+=11)ln()(2x bx x x a x f 在1=x 处可导。
微积分基础练习--导数、微分及其应用

(二)导数、微分及其应用一.选择题1.设⎪⎩⎪⎨⎧=≠=0,00,1cos )(2x x xx x f ,则f (x )在点x =0处的导数( ) (A )等于0 (B )等于1 (C )等于-1 (D )不存在 2.设)(x ϕ为连续函数,且0)(≠a ϕ,则)()()(x a x x f ϕ-=在点x =a 处( )(A )连续,但不可导 (B)可导,且()()f a a ϕ'= (C)不连续,更不可导 (D )可导,且()0f a '= 3.设f (x )=(x -1)sin x ,则f (x )在点x =1处的导数( )(A) 等于0 (B )等于cos1 (C )等于-cos1 (D)sin1 4.曲线ln y x =上某点的切线平行于直线23y x =-,该点坐标是( )(A) 1(2,ln )2 (B ) 1(,ln 2)2- (C ) 1(2,ln )2- (D) 1(,ln 2)25. 在抛物线21y x =+上过点(1,2)处的切线的斜率为( )(A )12 (B) 2 (C ) 2- (D) 12- 6.函数y 由方程y y x =+)(ϕ确定,)(y ϕ'若存在且不等于1,则dydx的值是( )(A ))(1y ϕ'+ (B ))(11y ϕ'- (C ))(11y ϕ'+ (D )不存在7.若f (x )为可导函数,且)(xe f y =,则y ′=( )(A ))(xxe f e ' (B))()(x f e f x'' (C ))(xe f ' (D))(xxe f e 8.f (x )是x 的可导函数,则2()df x dx=( ) (A ))(323x f x ' (B )22()xf x ' (C ))(2x f ' (D))(2x f x '9.若f (x )为可导函数,且)(x f ey =,则y ′=( )(A ))()(x f ex f ' (B ))(x f e (C ))()(x x f e f e ' (D ))(x f e x '10.导数等于1sin 22x 的函数是 ( ) (A)1cos 24x (B )21sin 2x (C ) 21cos 2x (D )11cos 22x -11.若f (u )为可导,且)(xe f y =,则有d y =( )(A ) dx e f e x x )(' (B )dx e f x)(' (C) dx e e f x x x ])([' (D) xx x de e f ])(['12.函数( )的微分等于它的增量。
导数与微分习题及答案

第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆02.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f '3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数()u f y =是可导的,且2x u =,则=dxdy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6.()2-=x x f 在点2=x 处的导数是( )A .1B .0C .-1D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( )A .8B .12C .-6D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f eB .()()x f e x f ''C .()()()[]x f x f e x f '''D .()()[](){}x f x f e x f ''+'2 9.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.若函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数12.已知()()[]x g f x F =,在0x x =处可导,则( )A .()x f ,()x g 都必须可导B .()x f 必须可导C .()x g 必须可导D .()x f 和()x g 都不一定可导13.xarctg y 1=,则='y ( ) A .211x +- B .211x + C .221x x +- D . 221x x + 14.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( ) A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 15.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在16.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim 。
高等数学第二章导数与微分习题

h0
h
lim f ( x) f ( x x) f ( x) .
x0
x
lim f ( x x) f ( x x)
x0
x
lim f ( x x) f ( x) f ( x) f ( x x)
x0
x
lim f ( x x) f ( x) lim f ( x) f ( x x)
习题课
f (a) lim f ( x) f (a) lim ( x a)F ( x) 0
xa x a
xa
xa
1
lim ( x a)F ( x) 0
x a 0
xa
g
(a
)
x
lim
a 0
g(
x) x
g(a a
)
2
例2.
研究函数
f
(
x
)
1 x 1 x
解 . lim f ( x) lim
x0
x
x0
x
14
例16 .
f
(
x)
ln x
(1
x)
x0 x0
求 f ( x) .
)[
f (0 0) f (0) ln(1 x) x0 0 ,
0
f (0 0) lim x 0 , f ( x) 在 x 0 处连续 .
x 0
f (0)
ln(1
x)
x
0
1
1
x
1
x0
f (0)
lim
(n)
(1)n n! ( x 1)n1
,
23
例24 . 试从 d x 1 导出: d y y
1.
d d
2x y2
第三章 导数与微分习题

习 题 三1.根据导数的定义求下列函数的导数:(1)221x y -= (2)21x y = (3)32x y =2.给定函数f (x )=ax 2+bx +c ,其中a 、b 、c 为常量,求:)(x f ',)0(f ',)21(f ',)2(a b f -' 3.一物体的运动方程为s =t 3+10,求该物体在t =3时的瞬时速度。
4.求在抛物线y =x 2上点x =3处的切线方程。
5.自变量x 取哪些值时,抛物线y =x 2与y =x 3的切线平行?6.函数⎪⎩⎪⎨⎧≤-<≤+=x x x x x f 113101)(2在点x =1处是否可导?为什么?7.讨论函数y =x|x|在点x =0处的可导性。
8.用导数定义求⎩⎨⎧≥+<=0)1ln(1)(x s x xx f 在点x =0处的导数。
9.设⎩⎨⎧<<--+≤<-+=101101)1ln()(x xx x x x f 讨论f (x )在x =0处的连续性与可导性。
10.函数⎪⎩⎪⎨⎧=+≠=0)1ln(1sin )(12x s x x x f x 在点x =0处是否继续?是否可导?11.讨论⎪⎪⎩⎪⎪⎨⎧<≤<+≤<+≤=x xx x x x x x f 2212101201)(2在x =0,x =1,x =2处的连续性与可导性。
12.求下列各函数的导数(其中a ,b 为常量):(1)532+-=x x y (2)b a x y +=(3)3412+-=xx y (4)2222x x y += (5)x x y 31-= (6))12(2-=x x y(7))11)(1(-+=x x y (8)x x y 2)1(+=(9)ba b ax y ++= (10)))((b x a x y --=(10))1)(1(a b bx ax y ++=13.求下列各函数的导数(其中a ,b ,c ,d ,n 为常量):(1))3)(2)(1(+++=x x x y(2)x x y ln =(3)x x y n ln = (4)x y alog = (5)11-+=x x y (6)215xx y += (7)x x x y --=223 (8)n cx b a y += (9)x x y ln 1ln 1+-= (10)2211xx x x y +--+= 14.求下列各函数的导数:(1)x x x y cos sin += (2)xx y cos 1-=(3)x x x y tan tan -= (4)xx y cos 1sin 5+= (5)x x x x y sin sin += (6)x x x y ln sin ⋅= 15.求曲线x y sin =在点x =π处的切线方程。
导数与微分测试题

由于 f ( x + 5) = f (5) , 所以 f (6) = f (1) = 0 , f ′(6) = f ′(1) = 2 .
故所求切线方程为 y = 2( x − 6) .
测 验题
(第一、二章 ) 第一、
每题3分 一、填空题 (每题 分,共12分) 每题 分
f (1 + sin x ) − 3 f (1 − sin x ) 即 lim x →0 sin x
f (1 − sin x ) − f (1) f (1 + sin x ) − f (1) = lim +3 x →0 sin x − sin x
= f ′(1) + 3 f ′(1) = 4 f ′(1) = 8 .
二、设曲线 y = x n 在点 (1,1) 处的切线与 x 轴的交点 为 (ξ n ,0), 求 lim f (ξ n ).
n→ ∞
1 c 满足关系式: 三、设 f ( x ) 满足关系式:af ( x ) + bf ( ) = (| a |≠| b |) . x x 求 f ′( x ) . x −1 ( x + 1)2 ; | x |≤ 1 四、设 f ( x ) = 4 | x |> 1 | x | −1 .
易知 , f ( x ) 在 | x |= 1 处连续 . 在 x = −1 处 , f ( x ) − f ( −1) − x −1 = −1 , ′ (−1) = lim− f− − = lim− x → −1 x → −1 x − ( −1) x +1
f +′ (−1) = lim f ( x ) − f ( −1) − x → −1+ x − ( −1)
导数与微分习题及答案

第二章导数与微分(A)1 .设函数y 二f x ,当自变量x 由x 0改变到x 0 * e x 时,相应函数的改变量 y =()A. f x 0 : =x B . fx^_x C . f x 0 : =x f x 0D . f x 0 x2. 设f(x )在 x 处可,则曲区弋ix °)= () A. - f x oB . f -X 。
C . f x oD . 2f x o3 .函数f x 在点x 0连续,是f x 在点x 0可导的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数y = f u 是可导的,且u =x 2,则dy=()dxA. f x 2B . xf x 2C . 2xf x 2D . x 2f x 25. 若函数f x 在点a 连续,则f x 在点a () A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6 . f(x)=x-2在点x=2处的导数是() A . 1 B . 0 C . -1 D .不存在 7.曲线y =2x 3 -5x 2 • 4x -5在点2,-1处切线斜率等于()A . 8B . 12C . -6D . 68. 设y=e f 卜且f(x 二阶可导,则y"=() A . e f (x ) B . e f *)f "(x ) C . e f (x )〔f "(x f "(x jD . e f (x X 【f *(x 9 + f*(x 》e axx < 09. 若f"〔b+sin2x, x,0在x=°处可导'则a,b的值应为()717118.210. 若函数f x 在点X o 处有导数,而函数 g x 在点X o 处没有导数,则 F X 二 f X g X , G X A f X — g X 在 x ° 处()A .一定都没有导数B . 一定都有导数C .恰有一个有导数D .至少一个有导数11. 函数fx 与g X 在X o 处都没有导数,则Fx 二fx^gx , G x i= f x -g x 在 X o 处()A .一定都没有导数B . 一定都有导数C .至少一个有导数D .至多一个有导数12. 已知F x 二f !g x 1,在x 二X 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数与微分习题(基础题)
1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )
A .()x x f ∆+0
B .()x x f ∆+0
C .()()00x f x x f -∆+
D .()x x f ∆0
2.设()x f 在0x 处可导,则()()=∆-∆-→∆x
x f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f '
3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( )
A .必要不充分条件
B .充分不必要条件
C .充分必要条件
D .既不充分也不必要条件
4.设函数()u f y =是可导的,且2x u =,则=dx
dy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x
5.若函数()x f 在点a 连续,则()x f 在点a ( )
A .左导数存在;
B .右导数存在;
C .左右导数都存在
D .有定义
6.()2-=x x f 在点2=x 处的导数是( )
A .1
B .0
C .-1
D .不存在
7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( )
A .8
B .12
C .-6
D .6
8.设()x f e y =且()x f 二阶可导,则=''y ( )
A .()x f e
B .()()x f e x f ''
C .()()()[]x f x f e x f '''
D .()()[](){}
x f x f e x f ''+'2 9.若()⎩⎨⎧≥+<=0
,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=b
C .2-=a ,1=b
D .2=a ,1-=b
10.函数)(x f y =在点0x 处的左导数0()f x -'和右导数0()f x +'都存在,是()f x 在0x 可导 的( )
A . 充分必要条件;
B . 充分但非必要条件;
C . 必要但非充分条件;
D . 既非充分又非必要条件.
11.设()f x 对定义域中的任意x 均满足(1)()f x mf x +=,且(0)f n '=则必有 (
) A . (1)f '不存在;
B . (1)f m '=;
C . (1)f n '=;
D . (1)f mn '=.
12.x
y 1arctan =,则='y ( ) A .211x
+- B .211x + C .221x x +- D . 221x x + 13.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )
A .()x f 的极限存在,且可导
B .()x f 的极限存在,但不一定可导
C .()x f 的极限不存在
D .()x f 的极限不一定存在
14.设()x f 在点a x =处可导,则()()=--→h
h a f a f n 0lim 。
15.函数1+=x y 导数不存在的点 。
16.设函数()⎪⎭⎫ ⎝⎛+=22sin πx x f ,则=⎪⎭
⎫ ⎝⎛'4πf 。
17.设函数()x y y =由方程0=+-y x e e xy 所确定,则()=0'y 。
18.曲线x y ln =在点()1,e P 处的切线方程 。
19.若()()
⎩⎨⎧+=+==t y t t x x f 1ln 22,则==0t dx dy 。
20.若函数()x x e y x sin cos +=,则=dy 。
21.若()x f 可导,()[]{}x f f f y =,则='y 。
22.曲线()()531225+=+x y 在点⎪⎭⎫ ⎝
⎛-51,0处的切线方程是 。
23.讨论下列函数在0=x 处的连续性与可导性:
(1)x y sin =;(2) ⎪⎩⎪⎨⎧=≠=0,
00,1sin x x x x y 24. 设a x x a y x a x a =+++(0,1)a a >≠,求d d y x。
24.已知()⎩
⎨⎧≥<=0,0,sin x x x x x f ,求()x f '。
25.设1
ln 44+=x x
e e y ,求y '及0='x y 。
26.设()()x
f x e e f y =且()x f '存在,求
dx dy 。
27.设若223=-y x y ,求y '。
28.已知x x x y +=,求y '。
29.设7777++=x x y ,求2=x dy 。
30.设()()54132x x x y +-+=
,求y '。