第二章 导数与微分(测试题)
导数与微分习题及答案

第二章 导数与微分(A)1.设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,相应函数的改变量=∆y ( )A .()x x f ∆+0B .()x x f ∆+0C .()()00x f x x f -∆+D .()x x f ∆02.设()x f 在0x 处可,则()()=∆-∆-→∆xx f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f '3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.设函数()u f y =是可导的,且2x u =,则=dxdy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x5.若函数()x f 在点a 连续,则()x f 在点a ( )A .左导数存在;B .右导数存在;C .左右导数都存在D .有定义6.()2-=x x f 在点2=x 处的导数是( )A .1B .0C .-1D .不存在7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( )A .8B .12C .-6D .68.设()x f e y =且()x f 二阶可导,则=''y ( )A .()x f eB .()()x f e x f ''C .()()()[]x f x f e x f '''D .()()[](){}x f x f e x f ''+'2 9.若()⎩⎨⎧≥+<=0,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=bC .2-=a ,1=bD .2=a ,1-=b10.若函数()x f 在点0x 处有导数,而函数()x g 在点0x 处没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .恰有一个有导数D .至少一个有导数11.函数()x f 与()x g 在0x 处都没有导数,则()()()x g x f x F +=,()()()x g x f x G -=在0x 处( )A .一定都没有导数B .一定都有导数C .至少一个有导数D .至多一个有导数12.已知()()[]x g f x F =,在0x x =处可导,则( )A .()x f ,()x g 都必须可导B .()x f 必须可导C .()x g 必须可导D .()x f 和()x g 都不一定可导13.xarctg y 1=,则='y ( ) A .211x +- B .211x + C .221x x +- D . 221x x + 14.设()x f 在点a x =处为二阶可导,则()()=-+→hh a f h a f h 0lim ( ) A .()2a f '' B .()a f '' C .()a f ''2 D .()a f ''- 15.设()x f 在()b a ,内连续,且()b a x ,0∈,则在点0x 处( )A .()x f 的极限存在,且可导B .()x f 的极限存在,但不一定可导C .()x f 的极限不存在D .()x f 的极限不一定存在16.设()x f 在点a x =处可导,则()()=--→hh a f a f n 0lim 。
高等数学第二章导数与微分习题

h0
h
lim f ( x) f ( x x) f ( x) .
x0
x
lim f ( x x) f ( x x)
x0
x
lim f ( x x) f ( x) f ( x) f ( x x)
x0
x
lim f ( x x) f ( x) lim f ( x) f ( x x)
习题课
f (a) lim f ( x) f (a) lim ( x a)F ( x) 0
xa x a
xa
xa
1
lim ( x a)F ( x) 0
x a 0
xa
g
(a
)
x
lim
a 0
g(
x) x
g(a a
)
2
例2.
研究函数
f
(
x
)
1 x 1 x
解 . lim f ( x) lim
x0
x
x0
x
14
例16 .
f
(
x)
ln x
(1
x)
x0 x0
求 f ( x) .
)[
f (0 0) f (0) ln(1 x) x0 0 ,
0
f (0 0) lim x 0 , f ( x) 在 x 0 处连续 .
x 0
f (0)
ln(1
x)
x
0
1
1
x
1
x0
f (0)
lim
(n)
(1)n n! ( x 1)n1
,
23
例24 . 试从 d x 1 导出: d y y
1.
d d
2x y2
第二章 导数与微分复习题(1)

(4)求 lim 2 x
sin 1
x
解:
原式
lim
x
2
arctan 1
x
lim
x
1 1 x2
1
x
x2
lim
x
1
x
2
x
2
1
(5)求
lim
x0
tan x x2 tan
x x
解:
原式
lim
x0
tan x x3
x
lim
x0
tan2 x 3x2
lim
x0
sec2 3
x x2
1
lim
x0
f '( x) x0 2 cos x 2 x x0 2 在 x 0 处的切线斜率为 2,法线斜率为 1
2 对应的切线方程为 y 2x ,
法线方程为 y 1 x 。 2
5. 已知曲线 y ax 3 bx 2 cx 上点(1,2)处有水平切线,且原点为该曲线的拐
点,求 a, b, c 的值,并写出此曲线的方程。
9. 函数 y x3 3 x 的单调减少区间为 [1,1] ;
10. 函数 y x 4 的单调减少区间为 [2,0),(0,2] ; x
11. 设 y 2 x2 ax 3 在点 x 1取得极小值,则 a = -4 ;
12. 曲线 y x3 3 x2 x 的拐点坐标为 (1,3) ;
x0
x0
x
f ( x) 在 x 0 处连续。
在
x
0 处,
y
(0
x ) sin
1 0 x
0
sin
1
,
x
x
x
导数与微分(含答案)

第二单元 导数与微分一、基本题1、设()23f '=,则()()232limh f h f h h→--+=2、()cos x y e -=,则()0y '=3、3sin y x =,则dy =4、y =1|x dy ==5、()3ln f x x x =,则()1f ''=6、设()62ln 3x y e =+,则()8y =7、设()23sin 7n y x e -=+,则()n y =8、设210cos 2x y e x x =++,则()10y = ;()12y =9、设()()22f x x y ef e =+,则dy dx=10、曲线2x y e -=+在点0x =处的切线方程为 法线方程为 11、()()()()()123......10f x x x x x x =----,则()1f '= 12、()22,43f x y x xy y =-+,则()()1,1,limh f y h f y h→+-=13、ln 2y z x x ⎛⎫=+ ⎪⎝⎭,则()1,0z x ∂=∂ ;()1,0y f '=14、()zu xy =,则du = 15、2ln xz y=,则12x y dz ===16、yz x=在点()2,1处当0.1x ∆=,0.2y ∆=时的z ∆= ;dz = 17、设233z x xy y =-+,则22z x∂=∂ ;22z y ∂=∂ ;2zy x ∂=∂∂18、22,x z f x y y ⎛⎫=- ⎪⎝⎭,则x f '= ;y f '=19、一元函数可微、可导、连续、极限之间关系:可微可导是连续的 条件; 连续是极限存在的 条件 极限存在是连续的 条件; 连续是可微可导的 条件20、多元函数可微、可导(偏导数存在)、连续之间关系:(1)(),f x y 在点(),x y 处可微分是在该点连续的 条件; (),f x y 在点(),x y 处连续是在该点可微分的 条件(2)(),f x y 在点(),x y 处两偏导数存在是在该点处可微分的 条件; (),f x y 在点(),x y 处可微分是在该点处两偏导数存在的 条件 (3)(),f x y 在点(),x y 处两偏导数存在且连续是在该点处可微分的 条件(4)(),f x y 在点(),x y 处两二阶混合偏导22,z zx y y x∂∂∂∂∂∂连续 是该两混合偏导相等的 条件二、计算题1、xaaa x e y e e x =++ ()0,1a a >≠,求y ' 2、()3ln 32cos 2sin 332x x y e x x +=+-+,求(0)y '3、()2sin 2x y x =,求y ' 4、sin x y x =y '5、y =y ' 6、设ln tan x y arc t ⎧⎪=⎨=⎪⎩,求dy dx7、设sin cos t tx e ty e t⎧=⎨=⎩,求0t dy =8、设()ln(2)111x x f x x x -≤⎧=⎨->⎩,求()2f '-,()f x '9、设函数()22111x f x x ax b x ⎧≤⎪=+⎨⎪+>⎩在点1x =处可导,求,a b10、设()2135f x x x -=++,求()f x '11、设()3sin 2sin 3cos24f x x x =+-,求()f x '12、设()2cos 2z x x y =-,求22z x∂∂;22z y ∂∂;2zx y ∂∂∂13、设(),,sin u v z e u xy v x y +===+,求zx ∂∂;z y∂∂ 14、设()223x z x y =-,求zx ∂∂;z y∂∂ 15、设()2,cos 2,ln 32x y z e x t y t -===+,求dz dt16、函数()y y x =由方程:()1cos x y e e xy -+=所确定的隐函数,求0x dy dx=17、设方程22220x z y z y ++=确定函数(),z z x y =,求zx ∂∂;z y∂∂ 18、设函数(),z z x y =由方程22xy z e z e -+-=所确定,求212x y dz==-19、设()22,y z xf xy g x y x ⎛⎫=++ ⎪⎝⎭,求z x ∂∂;z y ∂∂三、证明题1、设()2arcsin 3y z xy x =+,证明:220z zx xy y x y ∂∂-+=∂∂ 2、设()2sin 2323x y z x y z +-=+-,证明:1z zx y∂∂+=∂∂导数与微分答案二、基本题1、设()23f '=,则()()232limh f h f h h →--+=()4212f '-=-2、设()12f '=-,则()()11limh f f h h→-+=()12f '-=3、()cos x y e -=,则()0y '=sin14、3sin y x =,则233cos dy x x dx =5、()3ln f x x x =,则()15f ''=6、设()62ln 3x y e =+,则()824x y e =7、设()2sin 7n y x -=,则()49sin 7ny x =-8、设210cos 2x y e x x =++,则()10102101021022cos 21010!22cos 210!2x x y e x e x π⎛⎫=++⋅+=-+ ⎪⎝⎭ ;()12122121221222cos 21222cos 22x x y e x e x π⎛⎫=++⋅=+ ⎪⎝⎭9、设()()22f x x y e f e =+,则()()()222222f x x x dy xe f x xf e e dx''=⋅+⋅10、曲线2x y e -=+在点0x =处的切线方程为3y x =- 法线方程为3y x =+11、()()()()()123......10f x x x x x x =----,则()19!f '=-()()()()()123......10f x x x x x x =----⇒⎡⎤⎣⎦()()()()()()()()()123......10123......10f x x x x x x x x x x x '''=----+----⎡⎤⎡⎤⎣⎦⎣⎦ ()()()()()()()23......10123......10x x x x x x x x x '=---+----⇒⎡⎤⎡⎤⎣⎦⎣⎦()()()()11121311009!f '=⋅-⋅-⋅⋅⋅-+=-12、一元函数可微、可导、连续、极限之间关系:可微可导是连续的 充分 条件; 连续是极限存在的 充分 条件 极限存在是连续的 必要 条件; 连续是可微可导的必要 条件 13、()212y x x x x =-+-不可导点2x =-14、ln 2y z x x ⎛⎫=+ ⎪⎝⎭,则()1,01z x ∂=∂ ;()11,02y f '=15、()22,43f x y x xy y =-+,则()()()01,1,lim1,46y h f y h f y f y y h→+-'==-+16、2lnxz y=,则1212x y dz dx dy ===-17、设233z x xy y =-+,则222z x∂=∂ ;226z y y ∂=∂ ;23zy x ∂=-∂∂ 18、()z u xy =,则()()()()11ln z z zdu yz xy dx xz xy dy xy xy dz --=++19、yz x =在点()2,1处当0.1x ∆=,0.2y ∆=时的()()2.1,1.22,10.0714z f f ∆=-= 21110.10.20.07542y dz dx dy dz x x =-+⇒=-⋅+⋅=20、22,x z f x y y ⎛⎫=- ⎪⎝⎭,则1212x f f xf y '''=+ ;1222y xf f yf y '''=--21、(1)(),f x y 在点(),x y 处可微分是在该点连续的 充分 条件; (),f x y 在点(),x y 处连续是在该点可微分的 必要 条件(2)(),f x y 在点(),x y 处两偏导数存在是在该点处可微分的 必要 条件; (),f x y 在点(),x y 处可微分是在该点处两偏导数存在的 充分 条件 (3)(),f x y 在点(),x y 处两偏导数存在且连续是在该点处可微分的 充分条件(4)(),f x y 在点(),x y 处两二阶混合偏导22,z zx y y x∂∂∂∂∂∂连续是该两混合偏导相等的 充分 条件22、曲线2cos 2sin 3x t y t z t=⎧⎪=⎨⎪=⎩上对应于6t π=处的切线方程213z x π-==- , 法平面方程:()1302x y z π⎛⎫--+-+-= ⎪⎝⎭23、曲面27z e z xy -+=在点()2,3,0处的切平面方程()()()322310032120x y z x y z -+---=⇒+--= , 法线方程 :230231x y z ---==-二、计算题1、x a aa x e y e e x =++ ()0,1a a >≠,求y '【解】:()()111ln x a a x a a a x x a a e a x x a a e y e a e x e x e a a e ax e x ---'''=⋅+⋅+=⋅+⋅+2、()3ln 32cos 2sin 332xx y e x x +=+-+,求y ' 【解】:()()()33213323ln 32323cos 22sin 2032x xx x x y e x e x x ⋅⋅+-++'=-+-+ ()()33233ln 323cos 22sin 232x x x e x e x x -+=-++3、sin x y x =y ' 【解】:()1sin sin ln 223xx xy xex x ==++⇒()()1s i n l n22s i n 1c o s l n 3232x x x y e x x x x x x -⎛⎫'=⋅+++⋅+ ⎪⎝⎭4、()2sin 2x y x =,求y ' 【解】:()222lnsin 2lnsin 22cos 2sin 22ln sin 22sin 2x x xxxx y x e y e x x x x ⎛⎫'==⇒=+⋅⋅⎪⎝⎭ ()2l n s i n 222l n s i n 22c ot 2xx e x xx x =+⋅5、y =y ' 【解】:1)()()()()()21ln ln 1ln 13ln 5ln 1ln 212y x x x x x =+--++--+ 2)等式两边同时对x 求导()()212135211221221x y y x x xx x --'=-++-⇒+--+ ()()2213511122121x y y x xx x x ⎡⎤'=++--⎢⎥+--+⎣⎦()()2213511122121x x xx x x ⎡⎤=++--⎢⎥+--+⎣⎦6、函数()y y x =由方程:()1cos x y e e xy -+=所确定的隐函数,求0x dydx =【解】:1)0x =时0y =2)()()()1cos sin x y x y e e xy e e y xy y xy ''''-+=⇒-⋅=-⋅+⎡⎤⎣⎦ ()0,0sin sin 01sin sin x x x y yy e y xy e y xyy y e x xy e x xy==++''=⇒==--7、求由方程:()()cos sin xyy x =所确定的函数()y y x =的导数dydx【解】:1)等式两边同时取对数()()ln cos ln sin x y y x = 2)等式两边同时对x 求导数:()()sin cos ln cos ln sin cos sin y xy x y y x y y x-''+⋅⋅=+⋅⇒ ()()ln cos cot ln sin tan y y xdy dx x x y -=+8、设ln tan x y arc t⎧⎪=⎨=⎪⎩,求dy dx【解】:1)()()2222121ln 12tan 1tan 1t t t x t x t x y arc t y arc t y t ⎧'=⎧⎪⎧+=+⎪⎪⎪=⇒⎨⎨⎨=⎪⎪⎪⎩=⎩'=⎪+⎩2)1t t y dy dx x t'==' 9、设2323sin 10y x t t e t y ⎧=++⎨-+=⎩,求t dy dx =【解】:1)0t =时,1y =2) 6262cos sin cos 01sin t t y y yt t t y x t x t e t e y t e t y y e t '=+⎧'=+⎧⎪⇒⇒⎨⎨⋅''⋅+⋅-='=⎩⎪-⎩3)0,1cos cos 1sin 1sin 62622y y y yt t t y t e te ty dy dy e e t e t dx x t dxt ===⋅⋅'--==⇒=='++ 10、设()ln 111x x f x x x ≥⎧=⎨-<⎩,求()2f ',()f x '【解】:1)()()()2212ln 2x x f f x x =='''===2)()()11ln x f x x f x x'>⇒=⇒=, ()()111x f x x f x '<⇒=-⇒= 1x =为分段点,且()1=ln1=0f ()()()111101lim lim 111x x f x f x f x x ---→→---'===--, ()()()()()()11111ln 01lim lim lim 11111111x x x f x f x x f f f f x x ++++-+→→→--''''====⇒=⇒=-- ()1111x f x xx ⎧>⎪'=⎨⎪≤⎩11、设函数()22111x f x x ax b x ⎧≤⎪=+⎨⎪+>⎩在点1x =处可导,求,a b【解】:1)可导必连续,故()()()()211112lim lim 1lim lim 11x x x x f x f x f ax b x -+-+→→→→==⇒=+=+ 即11a b b a +=⇒-=-2)因为可导,故()()()()()()111111lim lim 11x x f x f f x f f f x x -+-+→→--''=⇒=-- ()()()()221111211111lim lim lim lim 11111x x x x x x ax b ax a x a x x x x x -+-+→→→→--++--+=⇒==----+ 1,2a b =-=12、设()2135f x x x -=++,求()f x '【解】:1)()()()()()()22135131521325f x x x f x x x f x x x '-=++⇒=++++⇒=++=+ 13、设()3sin 2sin 3cos24f x x x =+-,求()f x '【解】:()()()3232sin 2sin 312sin 4261f x x x f x x x =+--⇒=-- ()2612f x x x '⇒=-14、设()2cos 2z x x y =-,求22z x∂∂;22z y ∂∂;2zx y ∂∂∂【解】:1)()()()()22222322cos 22sin 26sin 24cos 2z z x y x x y x x y x x y x x∂∂=---⇒=----∂∂2)()()22222sin 24cos 2z z x x y x x y y y ∂∂=-⇒=--∂∂3)()()22222sin 24cos 2zx y x x y x y∂=-+-∂∂15、设(),,sin u v z e u xy v x y +===+,求zx ∂∂;z y∂∂ 【解】:()()()()()sin u v u v x x u v z z u z ve xy e x y x u x v x++∂∂∂∂∂''''=⋅+⋅=⋅+⋅+∂∂∂∂∂()()()sin cos cos xy x y u v u v ye e x y y x y e ++++=+⋅+=++⎡⎤⎣⎦()()()()()sin u v u v y y u v z z u z ve xy e x y y u y v y++∂∂∂∂∂''''=⋅+⋅=⋅+⋅+∂∂∂∂∂()()()sin cos cos xy x y u v u v xe e x y x x y e++++=+⋅+=++⎡⎤⎣⎦16、设()223x z x y =-,求zx ∂∂;z y∂∂ 【解】:()()22ln 2323x x x y z x y e-=-=()()22ln 2322ln 2323x x y z x e x x y x x y -⎛⎫∂=⋅-+ ⎪∂-⎝⎭()212323x z x x y y -∂=--∂ ,17、设()2,cos 2,ln 32x y z e x t y t -===+,求dzdt【解】:()()()22cos2ln 32cos2ln 326ln 322sin 232t t t t t dz z ee t dt t -+-+⎡⎤⎡⎤⎣⎦⎣⎦+⎛⎫=⇒=⋅-- ⎪+⎝⎭ 18、设方程22220x z y z y ++=确定函数(),z z x y =,求zx ∂∂;z y∂∂ 【解】:1)()222,,2F x y z x z y z y =++2222,41,4x y z F xz F yz F x y z '''==+=+2)2224x z F z xz x F x y z '∂=-=-'∂+, 222414y z F z yz y F x y z '∂+=-=-'∂+19、设方程()222sin xy e y x y +=+确定函数()y y x =,求dy dx【解1】:()()()()()()22222s i n 2c o s 22x y x y e y x y e y x y y x y x y '''''+=+⇒⋅++=+⋅+()()22222cos 22cos xyxy x x y ye y xe y y x y +-'⇒=+-+ 【解2】:1)()()222,sin xy F x y e y x y =+-+ ()()22222cos ,22cos xy xy x y F ye x x y F xe y y x y ''=-+=+-+2)()()()()222222222cos 2cos 2cos 2cos xy xy x xy xy y ye x x y x x y ye F dy dx F xe y x y xe y x y -++-'=-=-='-+-+ 20、设函数(),z z x y =由方程22xy z e z e -+-=所确定,求212x y dz ==-【解】:1)(),,22xy z F x y z e z e -=+--, 12,12x y z ==-⇒= ,,2xy xy z x y z F ye F xe F e --'''=-=-=- 12,,12224xy x z x y z z F z ye z e x F e xe -==-='∂∂=-=⇒='∂-∂-, 12,,12222xy y z x y z z F z xe z e y F e y e -==-='∂∂=-=⇒='∂-∂- 2)2122242x y e e dzdx dy e e==-=+-- 21、设()22,y z xf xy g x y x ⎛⎫=++ ⎪⎝⎭,求z x ∂∂;z y ∂∂ 【解】:1)()()1222z y f xy xyf xy xg g x x ∂'''=++-∂2)()21212z x f xy yg g y x∂'''=++∂三、证明题1、设()2arcsin 3y z xy x =+,证明:220z z x xy y x y∂∂-+=∂∂ 2、设()2sin 2323x y z x y z +-=+-,证明:1z z x y ∂∂+=∂∂ 设()(),,2sin 2323F x y z x y z x y z =+---+。
《微积分》第2章 导数与微分 单元测试题

第二章 导数与微分 单元测试题考试时间:120分钟 满分:100分 一、选择题(每小题2分,共40分)1.两曲线21y y ax b x ==+,在点1(2)2,处相切,则( ) A .13164a b =-=, B .11164a b ==,C .912a b =-=,D .712a b ==-,2.设(0)0f =,则()f x 在0x =可导的充要条件为( )A .201lim(1cos )h f h h →-存在 B .01lim (1)h h f e h→-存在 C .201lim (sin )h f h h h →-存在 D .[]01lim (2)()h f h f h h→-存在3.设函数()f x 在区间()δδ-,内有定义,若当()x δδ∈-,时恒有2()f x x ≤,则0x =必是()f x 的( )A .间断点B .连续而不可导的点C .可导的点,且(0)0f '=D .可导的点,且(0)0f '≠4.设函数()y f x =在0x 点处可导,x y ,分别为自变量和函数的增量,dy 为其微分且0()0f x '≠,则0limx dy yy→-=( )A .-1B .1C .0D .∞5.设()f x 具有任意阶导数,且[]2()()f x f x '=,则()()n f x =( )A .[]1()n n f x + B .[]1!()n n f x + C .[]1(1)()n n f x ++ D .[]1(1)!()n n f x ++6.已知函数 0() 0x x f x a b x x x ≤⎧⎪=⎨>⎪⎩+cos 在0x =处可导,则( )A .22a b =-=,B .22a b ==-,C .11a b =-=,D .11a b ==-,7.设函数32()3f x x x x =+,则使()(0)n f不存在的最小正整数n 必为( )A .1B .2C .3D .4 8.若()f x 是奇函数且(0)f '存在,则0x =是函数()()f x F x x=的( )A .无穷型间断点B .可去间断点C .连续点D .振荡间断点 9.设周期函数()f x 在()-∞+∞,内可导,周期为4,又0(1)(1)lim12x f f x x→--=-,则曲线()y f x =在点(5(5))f ,处的切线的斜率为( )A .12B .0C .1-D .2- 10.设()f x 处处可导,则( )A .当lim ()x f x →-∞=-∞时,必有lim ()x f x →-∞'=-∞B .当lim ()x f x →-∞'=-∞时,必有lim ()x f x →-∞=-∞C .当lim ()x f x →+∞=+∞时,必有lim ()x f x →+∞'=+∞D .当lim ()x f x →+∞'=+∞时,必有lim ()x f x →+∞=+∞11.若()sin f x x x =,则( )A .(0)f ''存在B .(0)0f ''=C .(0)f ''=∞D .(0)f π''=12.若2()max{2},(04)f x x x x =∈,,,且知()f a '不存在,(04)a ∈,,则必有( )A .1a =B .2a =C .3a =D .12a =13.若函数sin 2 0() 10xx x f x x x ⎧+≠⎪=⎨⎪=⎩,, 则使()f x '在点0x =处( )A .存在但不连续B .不存在C .不仅存在而且连续D .无穷大14.设n1cos 0() 0 0x x f x xx ⎧≠⎪=⎨⎪=⎩ 则使()f x '在点0x =点处连续的最小自然数为( )A .1n =B .2n =C .3n =D .4n =15.若函数()f x 对任意实数x 1,x 2均满足关系式1212()()()f x x f x f x +=,且(0)2f '=,则必有( )A .(0)0f =B .(0)2f =C .(0)1f =D . (0)1f =- 16.若()f x 是在()-∞+∞,内可导的以l 为周期的周期函数,则()f ax b '+(0a a b≠,、为常数)的周期为( )A .lB .l b -C .laD . l a17.函数23()(2)f x x x x x =-- -不可导的点的个数为( ) A .3 B .2 C .1 D . 018.设220()()0x x f x x g x x ⎧>= ≤⎩ 其中()g x 是有界函数,则()f x 在0x =处( ) A .极限不存在 B .极限存在但不连续 C .连续但不可导 D .可导 19.设()f x 在0x =的一个领域内有定义,且(0)0f =,若21cos 1lim()2(1)x x x f x x e →-=-,则()f x 在0x =处( )A .不连续B .连续但不可导C .可导且(0)0f '=D .可导且(0)1f '=20.设()()()f x f x x =--∈-∞+∞,,,且在(0)+∞,内()0()0f x f x '''><,,则在(0)-∞,内( )A .()0()0f x f x '''>>,B .()0()0f x f x '''><,C .()0()0f x f x '''<>,D .()0()0f x f x '''<<,二、填空题(每小题3分,共60分)1.设 1() 1ax b x f x x x 2+≤⎧=⎨ >⎩ 在1x =处可导,则a =____________,b =____________。
导数与微分自测题及答案

2.设 x y 2 y, u x 2 x 2 ,则
3
二、选择题(共 1ቤተ መጻሕፍቲ ባይዱ 分,每小题 3 分) 1.下列条件与 f ( x) 在 x x0 处可导的定义等价的是( (A) lim
)
f x0 h f x0 h ; h 0 2h f x0 2h f x0 h (B) lim ; h 0 h f x0 f x0 h (C) lim ; h 0 2h 1 (D) lim n f ( x0 ) f ( x0 ) . h 0 n 2.设函数 g ( x) 可微, h( x) e1 g ( x ) , h(1) 1, g (1) 2 ,则 g (1) 等于( ( A) ln 3 1 ;(B). ln 3 1 ; (C) ln 2 1 ; (D) ln 2 1 .
n 3n
,则 f ( x) 在 , 内(
)
( A)处处可导 ; (C) 恰好有两个不可导点
(B) 恰好有一个不可导点 ; ; (D)至少有三个不可导点.
lim f ( x) 5. 设 f ( x) 在 x x0 处连续,则 x x0 存在且等于 A 是 f ( x0 ) 存在且等于 A
xf ( x) f ( x) ; x0 2 x 九、 由导数定义 g ( x) 。 1 f (0); x0 2
4 , x 1 七、(10 分)设 f ( x) ,试确定 a 与 b ,使 f ( x) 在 x 1 可导。 x 2 ax bx c, x 1
八、(10 分). 试确定 A, B, C 的值,使 e 1 Bx Cx
x
2
导数与微分测试题

由于 f ( x + 5) = f (5) , 所以 f (6) = f (1) = 0 , f ′(6) = f ′(1) = 2 .
故所求切线方程为 y = 2( x − 6) .
测 验题
(第一、二章 ) 第一、
每题3分 一、填空题 (每题 分,共12分) 每题 分
f (1 + sin x ) − 3 f (1 − sin x ) 即 lim x →0 sin x
f (1 − sin x ) − f (1) f (1 + sin x ) − f (1) = lim +3 x →0 sin x − sin x
= f ′(1) + 3 f ′(1) = 4 f ′(1) = 8 .
二、设曲线 y = x n 在点 (1,1) 处的切线与 x 轴的交点 为 (ξ n ,0), 求 lim f (ξ n ).
n→ ∞
1 c 满足关系式: 三、设 f ( x ) 满足关系式:af ( x ) + bf ( ) = (| a |≠| b |) . x x 求 f ′( x ) . x −1 ( x + 1)2 ; | x |≤ 1 四、设 f ( x ) = 4 | x |> 1 | x | −1 .
易知 , f ( x ) 在 | x |= 1 处连续 . 在 x = −1 处 , f ( x ) − f ( −1) − x −1 = −1 , ′ (−1) = lim− f− − = lim− x → −1 x → −1 x − ( −1) x +1
f +′ (−1) = lim f ( x ) − f ( −1) − x → −1+ x − ( −1)
第2章 导数与微分 题目

第二章导数与微分一、考试大纲考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数。
当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径. 二、主要内容三、基础题1.如果()f x 为偶函数,且(0)f '存在,证明(0)0f '=. 2.求曲线cos y x =上点1(,)32π处的切线方程和法线方程.3.讨论下列函数在0x =处的连续性与可导性:(1) |sin |y x = ; (2)21sin ,00,0x x y xx ⎧≠⎪=⎨⎪=⎩. 4.已知sin ,0(),0x x f x x x <⎧=⎨≥⎩,求'()f x .5.证明:双曲线2xy a =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a .6.以初速度0v 竖直上抛的物体,其上升高度s 与时间t 的关系是2012s v t gt =-,求: (1) 该物体的速度;(2) 该物体达到最高点的时刻.7.设函数()f x 和()g x 可导,且22()()0f x g x +≠,试求函数y =的导数.8.设()f x 可导,求下列函数y 的导数dy dx: (1)2()y f x =; (2) 22(sin )(cos )y f x f x =+.9.若()f x ''存在,求下列函数y 的二阶导数22d ydx:(1) 2()y f x = (2) ln[()]y f x =.10.求由下列方程所确定的隐函数的导数:dydx(1)+-=3330x y ax ; (2)=-1y y xe . 11.求下列参数方程所确定的函数的导数:(1) 23x aty bt⎧=⎪⎨=⎪⎩; (2)2223131at x t at t ⎧=⎪+⎪⎨⎪⎪+⎩. 12.求下列参数方程所确定的函数的二阶导数22d ydx:(1)cos sin x a ty b t =⎧⎨=⎩ (2)32t tx e y e-⎧=⎨=⎩ 13.求下列函数的微分:(1) =sin2y x x ; (2) 2ln (1)y x =-. 14.计算下列反三角函数值的近似值::(1) arcsin 0.5002; (2) arccos 0.4995.四、提高题1.试从1dx dy y ='导出: (1) 223"(')d x y dy y =-; (2) 32353(")''''(')d x y y y dy y -=. 2.求下列函数所指定的阶的导数:(1) cos ,x y e x =求 (4)y ; (2) ,y xshx =求(100)y ;(3) 2sin 2,y x x =求 (50)y . 3.求函数2sin y x =的n 阶导数的一般表达式.4.求曲线222333x y a +=在点)处的切线方程. 5.求下列方程所确定的隐函数y 的二阶导数22d ydx:(1) tan()y x y =+:(2)1yy xe =+.6.用对数求导法求下列函数的导数:(1);(2)1xx y y x ⎛⎫==⎪+⎝⎭7.求下列参数方程所确定的函数的三阶导数33d ydx:(1) 231,;x t y t t ⎧=-⎨=-⎩ (2) 2ln(1),arctan .x t y t t ⎧=+⎨=-⎩ 8.溶液自水深18cm 顶直径12cm 的正圆锥形漏斗中漏入一直径为10cm 的圆柱形筒中,开始时漏斗中盛满了溶液,已知当溶液在漏斗中深为12cm 时,其表面下降的速率为1/min cm ,问此时圆柱形筒中溶液表面上升的速率为多少?9.设3,0()||0,0x x f x x x ⎧≠⎪=⎨⎪=⎩,求复合函数()[()]x f f x Φ=的导数,并讨论'()x Φ的连续性.三、考研题1.(01,3分) 设=(0)0f ,则()f x 在点0x =可导的充要条件为(A) 201lim (1cosh)h f h→-存在. (B) 01lim (1)h h f e h →-存在.(C) 201lim (1sinh)h f h→-存在. (D) 01lim [(2h)()]h f f h h →-存在.2.(04.4分)设函数()f x 连续,且'(0)0,f >则存在0δ>,使得(A )()f x 在(,0)δ-内单调增加. (B) ()f x 在(0,)δ内单调减少.(C) 对任意的(0,)x δ∈有()(0).f x f > (D) 对任意的(,0)x δ∈-有()(0).f x f >3.(02.3分)已知函数()y y x =由方程2610y e x y x ++-=确定,则(0)y ''= .4.(03.12分)设函数()y y x =在(,)-∞+∞内具有二阶导数,且'0,()y x x y ≠=是()y y x =的反函数.(1) 试将()x x y =所满足的微分方程322(sin )0d xdx y x dy dy ⎛⎫++= ⎪⎝⎭变换为()y y x =满足的微分方程;(2) 求变换后的微分方程满足初始条件3(0)0,'(0)2y y ==的解. 5.(92.3分) 设22()3||f x x x x =+,则使()(0)n f 存在的最高阶数n 为(A) 0. (B) 1. (C) 2. (D) 3.6.(05.3分)设函数()lim n f x =()f x 在(,)-∞+∞内 ( )( A )处处可导 ( B )恰有一个不可导点. ( C ) 恰有两个不可导点 (D)至少有三个不可导点. 7.(06.3分)设函数()=y f x 具有二阶导数,且'''>>∆()0,()0,f x f x x 为自变量x 在点0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应增量与微分,若0x ∆>,则 ( )( A )0.dy y <<∆ ( B )0y dy <∆<. ( C )0y dy ∆<<. ( D ) 0.dy y <∆< 8.(98.3分)函数23()(2)||f x x x x x =---不可导点的个数是(A )3. (B ) 2 ( C ) 1 . ( D ) 0 9.(97.3分) 对数螺旋线e θρ=在点2(,)(,)2e ππρθ=处的切线的直角坐标方程为.10.(04.3分) 曲线ln y x =上与直线1x y +=垂直的切线方程为 .四、测试题1.填空题(1).已知函数()y y x =由方程2610y e xy x ++-=确定,由''=(0)y . (2.)设函数()y y x =由方程2xy x y =+所确定,则0|x dy == .(3) 曲线33cos sin x t y t⎧=⎪⎨=⎪⎩,上对应于6t π=点处的法线方程是 .(4). 设函数()y y x =由方程2cos()1x y e xy e +-=-所确定,则曲线()y f x =在点(1,0)处的法线方程为 .2.单项选择题(1).设函数()y y x =在任意点x 处的增量2,1y xy a x∆∆=++且当0x ∆→时,a 是x ∆的高阶无穷小,(0),y π=则(1)y 等于(A) 442.().().().B C e D e πππππ(2).()f x 在0x 处存在左、右导数,则()f x 在0x 点( A ) 可导 ( B ) 连续. ( C ) 不可导. ( D ) 不连续.(3).设''0lim ()lim ()x x f x f x a +-→→==,则(A) ()f x 在0x x =处必可导且'0().f x a = ( B ) ()f x 在0x x =处必连续,但未必可导. ( C ) ()f x 在0x x =处必E 有极限但未必连续. ( D ) 以上结论都不对. (4).设()f x 可导,且满足 0(1)(1)lim 1,2x f f x x→=-=-则曲线()y f x =在(1,(1))f 处的切线斜率为: ( A )2. ( B ) -2. (C )12. ( D ) -1.3.讨论2|2|,1(),1x x f x x x -≥⎧⎪=⎨<⎪⎩的可导性.4.求下列函数的导数:(1)0y a => (2) tan (tan )x x y x x =+(3)y =(4)|(3)|y x x x =-5.求下列隐函数的导数'y(1)y x x y = (2)2y x x y =6.求参数式函数的导数'y :2arctan 25tx ty ty e =⎧⎪⎨-+=⎪⎩ 7.求下列函数的微分:(1)(0)x y x x =>(2)21ln(12sin ),(2y x x θθ=-+为常数).8.设()f x 在[,)a +∞可导,lim ()x f x →+∞存在,→+∞'=lim ()x f x b ,求证:0b =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 导数与微分 单元测试题
考试时间:120分钟 满分:100分 试卷代码:M1-2b
一、选择题(每小题2分,共40分) 1.两曲线21y y ax b x =
=+,在点1(22
,处相切,则( ) A.13164a b =-=, B.11164
a b ==, C.912a b =-=, D.712a b ==-, 2.设(0)0f =,则()f x 在0x =可导的充要条件为( ) A.201lim
(1cos )h f h h →-存在 B.01lim (1)h h f e h
→-存在 C.201lim (sin )h f h h h →-存在 D.[]01lim (2)()h f h f h h →-存在 3.设函数()f x 在区间()δδ-,内有定义,若当()x δδ∈-,时恒有2()f x x ≤,则0x =必是()f x 的( )
A.间断点 B.连续而不可导的点
C.可导的点,且(0)0f '= D.可导的点,且(0)0f '≠
4.设函数()y f x =在0x 点处可导,x y ,分别为自变量和函数的增量,dy 为其微分且0()0f x '≠,则0lim x dy y y
→-= ( ) A.-1 B.1 C.0 D.∞
5.设()f x 具有任意阶导数,且[]2
()()f x f x '=,则()()n f x =( ) A.[]1()n n f x + B.[]1!()n n f x + C.[]1(1)()n n f x ++ D.[]1(1)!()n n f x ++ 6.已知函数 0() 0x x f x a b x x x ≤⎧⎪=⎨>⎪⎩
+cos 在0x =处可导,则( ) A.22a b =-=, B.22a b ==-,
C.11a b =-=, D.11a b ==-, 7.设函数32()3f x x x x =+,则使()(0)n f 不存在的最小正整数n 必为( )
A.1 B.2 C.3 D.4
8.若()f x 是奇函数且(0)f '存在,则0x =是函数()()f x F x x
=的( )
A.无穷型间断点 B.可去间断点
C.连续点 D.振荡间断点
9.设周期函数()f x 在()-∞+∞,内可导,周期为4,又0(1)(1)lim 12x f f x x
→--=-,则曲线()y f x =在点(5(5))f ,处的切线的斜率为( ) A.12
B.0 C.1- D.2- 11.若()sin f x x x =,则( )
A.(0)f ''不存在 B.(0)0f ''= C.(0)f ''=∞ D.(0)f ''=
12.若2()max{2},(04)f x x x x =∈,,,且知()f a '不存在,(04)a ∈,,则必有( )
A.1a = B.2a = C.3a = D.12
a = 13.若函数sin 2 0() 1
0x x x f x x x ⎧+≠⎪=⎨⎪=⎩,, 则使()f x '在点0x =处( )
A.存在但不连续 B.不存在
C.不仅存在而且连续 D.无穷大 14.设n 1cos 0() 0 0
x x f x x x ⎧≠⎪=⎨⎪=⎩ 则使()f x '在点0x =点处连续的最小自然数为( )
A.1n = B.2n = C.3n = D.4n = 17.函数23
()(2)f x x x x x =-- -不可导的点的个数为( )
A.3 B.2 C.1 D. 0 18.设220()()0x x f x x x g x x ⎧ >= ≤⎩
其中()g x 是有界函数,则()f x 在0x =处( ) A.极限不存在 B.极限存在但不连续
C.连续但不可导 D.可导
19.设()f x 在0x =的一个领域内有定义,且(0)0f =,若201cos 1lim ()2
(1)x x x f x x e →-=-,则()f x 在0x =处( )
A.不连续 B.连续但不可导
C.可导且(0)0f '= D.可导且(0)1f '=
20.设()()()f x f x x =--∈-∞+∞,,,且在(0)+∞,内()0()0f x f x '''><,,则在(0)-∞,内( )
A.()0()0f x f x '''>>, B.()0()0f x f x '''><,
C.()0()0f x f x '''<>, D.()0()0f x f x '''<<,
二、填空题(每小题3分,共60分)
1.设 1() 1
ax b x f x x x 2+≤⎧=⎨ >⎩ 在1x =处可导,则a =____________,b =____________。
2.已知()()f x f x -=-且0()0f x m '-=≠,则0()f x '=____________。
3.设()(ln )f x y f x e =,其中f 可微,则dy =____________
4.函数()f x 在()-∞+∞,内连续,0()()x
F x x f t dt =⎰,则(0)F ''=____________。
5.设2221
cos cos (cos /2(0)t x t y t t u u du t ⎧=⎪⎨=->⎪⎩⎰, 则dy dx =____________。
7.已知函数()y y x =由方程2
6+10y e xy x +-=所确定,则(0)y ''=____________。
8.设曲线()n f x x =在点(11),处的切线与x 轴的交点为(0)n ξ,,则lim ()n n f ξ→∞=_______。
9.设函数()y y x =由方程ln 01
xy y e x +=+所确定,则(0)y '=____________。
10.设()(1)(2)()f x x x x x n =+++ ,则(0)f '=____________。
11.设3()(1)
t x f t y f e π=-⎧⎨=-⎩,其中f 可导,且(0)0f '≠,则0t dy dx ==____________。
12.已知232(()arcsin 32x y f f x x x -'==+,,则0x dy dx ==____________。
13.设函数()y y x =由参数方程3
2ln(1)x t t y t t =-+=+,所确定,则22d y dx =______。
14.已知0()1f x '=-,则000lim (2)()
x x f x x f x x →=---____________。
15若21()lim (1)tx x f t t x
→∞=+,则()f t '=____________。
16.设()f x 有一阶连续导数,且(0)0(0)1f f '=,=,则[]1/ln(1)0lim 1()x x f x +→+=_______。
17.设()f x 在0x =处连续,且0()1lim 2sin x f x x x
→+=+,则(0)f '=____________。
18.设()f x 为连续函数,且有()1()()f x x a x a g x =---+,其中2()lim 1()x a g x x a →=-,则 ()f a '=____________。
19.已知()g x 是微分方程()()sin cos g x g x x x '+=的满足条件(0)0g =的解,则0()
lim x g x x →=_____。