无界函数的广义积分引例

合集下载

无界函数的广义积分

无界函数的广义积分

b
a f (x)dx 收敛,并定义
b
c
b
a f ( x)dx a f ( x)dx c f ( x)dx
否则,就称广义积分ab f ( x)dx 发散.
a dx
例1 计算广义积分 0
a2 x2

lim 1 , xa0 a2 x2
(a 0).
x a 为被积函数的无穷间断点.
a dx lim a dx
c
b
lim{ f (x)dx f (x)dx}
0 a
c
称此极限为广义积分的柯西主值,记为
b
c
b
P.V. f (x)dx lim{ f (x)dx f (x)dx}
a
0 a
c
2.无穷积分的柯西主值
设函数 f ( x) 在区间(,)上连续,如果
极限
A
lim
f ( x)dx
A A
c
b
lim f ( x)dx lim f ( x)dx
0 a
0 c
否则,就称广义积分ab f ( x)dx 发散.
定义中C为瑕点,以上积分称为瑕积分.
设函数 f ( x)在区间 (a,b) 上连续,而在点
a, b 的邻域内无界.a<c<b,如果两个广义积分
c
a
f
(
x)dx

b
c
f
(
x)dx都收敛,则称广义积分
一、无界函数广义积分的概念
定义 2 设函数 f ( x) 在区间(a, b]上连续,而在
点a 的右邻域内无界.取 0 ,如果极限
b
lim
f ( x)dx 存在,则称此极限为函数 f ( x)

(整理)第06章02节无界函数的广义积分

(整理)第06章02节无界函数的广义积分

第2节 无界函数的反常积分我们知道,在[,]a b 上可积的函数都在[,]a b 上有界。

下面我们考虑如果()f x 在某点[,]c a b ∈的附近无界,该怎么积分()ba f x dx ⎰?如果()f x 在c 的任意邻域内都无界,则c 称为()f x 的瑕点(反常点)。

分别如下3种情况。

(1)设()f x 在[,]a b 上只有唯一的瑕点b ;又设[,)t a b ∀∈,()f x 在[,]a t 上都可积。

考虑极限0()lim ()()[]bb a af x dx f x dx A A f x a b εε+-→⎧⎪⎨=⎪⎩⎰⎰不存在,则称反常积分发散(不存在);存在,则称为在,上的反常积分,记为()lim ()bb aaf x dx A f x dx εε+-→==⎰⎰此时称()b af x dx ⎰收敛。

(先把积分区间缩小一点点。

) 如果在[,)a b 上()F x 是()f x 的随便一个原函数,则()lim ()()()bba abf x dx F F a F x ττ-→=-=⎰(记住:b 是怎样代进去的?)(2)设()f x 在[,]a b 上只有唯一的瑕点a ;又设(,]t a b ∀∈,()f x 在[,]t b 上都可积。

考虑极限0()lim ()()[]bba a f x dx f x dx A A f x ab εε++→⎧⎪⎨=⎪⎩⎰⎰不存在,则称反常积分发散(不存在);存在,则称为在,上的反常积分,记为()lim ()bbaa f x dx A f x dx εε++→==⎰⎰此时称()b af x dx ⎰收敛。

(先把积分区间缩小一点点。

) 如果在(,]a b 上()F x 是()f x 的随便一个原函数,则()()lim ()()bba aaf x dx F a F F x ττ+→=-=⎰(记住:a 是怎样代进去的?)(3)设()f x 在[,]a b 上只有全部的瑕点是12m x x x <<<。

第五节 广义积分

第五节 广义积分

1 1
例2. 计算广义积分
2
x2 sin x dx.
解:

2
1 x2
sin 1 dx x


2
sin
1 x
d

1 x

lim b
b1
sin
2
x
d

1 x


lim
b
cos
1 b x 2


lim
b
t
f (x) d x
t
t a
例1. 计算广义积分
解:
dx 1 x2

0
dx 1 x2

0
dx 1 x2
lim a
01 a 1 x2
dx lim b
b1 0 1 x2 dx
y
y

1 1 x2
lim a
基本问题: (1)将定积分的概念推广至积分区间 为无限区间; (2)考虑被积函数在积分区间上无界的情形。
一、无穷限的广义积分
引例. 曲线
和直线
及 x 轴所围成的开口曲
边梯形的面积 可记作
A
dx 1 x2
其含义可理解为
A
lim
b
b 1
dx x2

lim b

lim
0
arcsin
x a
a
0
lim
0
arcsin
a
a


0

2
.
原式


arcsin x a

4-19.无界函数的广义积分

4-19.无界函数的广义积分

就称
广义积分 b f (x)dx 发散 a
(2)设函数 f(x)在区间[a b)上连续 而在点 b 的左邻域
t
内无界(称点 b 为 f(x)的瑕点),如果极限 lim f (x)dx 存在 则称 tb a
此极限为函数 f(x)在[a b)上的反常积分
仍然记作
b
f (x)dx

a
b
t
f (x)dx lim f (x)dx
内无界(称点 a 为 f(x)的瑕点),如果极限 lim b f (x)dx 存在 则称 ta t
此极限为函数 f(x)在[a b)上的广义积分
仍然记作
b
f (x)dx
a

b
b
f (x)dx lim f (x)dx
a
ta t
这时也称广义积分 b f (x)dx 收敛 a
如果上述极限不存在
xc
xc
例 1 计算广义积分 a 1 dx 0 a2 x2
(一级)
解 因为 lim 1 所以点 a 为被积函数的瑕点 xa a2 x2
a 0
1 a2 x2
dx
[arcsin
x]a a0
lim arcsin
xa
x a
0
2
例 2
讨论反常积分
1 1
1 x2
dx
的收敛性
(一级)

函数 1 x2
2、掌握无界函数的广义积分的计算
能力目标
1、培养学生对知识的延伸推广能力和分析问题的能力 2、培养学生的计算能力
时间分配
25 分钟 编撰 陈亮
校对 方玲玲 审核 王清玲
修订人
张云霞

广义积分

广义积分

二、无界函数的广义积分
【例7】
二、无界函数的广义积分
【例8】
下列算式是否正确?
二、无界函数的广义积分
二、无界函数的广义积分
二、无界函数的广义积分
思考
(1)本节学习了几种不同类型的广义积分?它与定积分有何 区别与联系?
(2)为什么要学习广义积分?什么情况下要用广义积分?
谢谢聆听
广义积分
一、无穷区间的广义积分
定义1
设f(x)在区间[a,+∞)内连续,任取b>a,若极限 limb→+∞ 存在,则称此极限为f(x)在区间[a,+∞)上的广义积 分,记作∫+∞af(x ,即
(5-7) 此时称广义积分∫+∞af(x 存在或收敛;否则称广义积分 ∫+∞af(x 没有意义或发散. 类似地,可定义f(x)在区间(-∞,b]上的广义积分
一、无穷区间的广义积分
注意分
【例3】
这个广义积分的几何意义是:当a→-∞,b→+∞时,虽然 图5-8中阴影部分向左、右无限延伸,但其面积却有极限值π.
图 5-8
二、无界函数的广义积分
定义3
此时称广义积分
存在或收敛;否则称广义积分
没有意义或发散.这种广义积分又称为瑕积分,a为瑕点.
类似地,可定义f(x)在区间[a,b)上的广义积分
二、无界函数的广义积分
定义4
否则,称其没有意义或发散.
二、无界函数的广义积分
【例4】
二、无界函数的广义积分
图 5-9
二、无界函数的广义积分
【例5】
注意
该题的结论一般要记住,可作为定理使用.
二、无界函数的广义积分
【例6】

5.广义积分

5.广义积分


I I1 I 2



1
x dx 2 (1 x )(1 x )



1
1 dx 2 (1 x )(1 x )



1
1 dx 2 4 1 x
三、小结
无穷限的广义积分
f ( x )dx

b
f ( x )dx
a

f ( x )dx
n x
dx ( n 为自然数 ) ;4、
2
dx (1 x )
2
0

5、 7、
2
xdx x1
1 0
1

6、


x ln x (1 x )
2 2
0
dx ;

ln n xdx .
b
三 、 求 当 k 为何值时 , 广 义 积 分
dx
k
( x a) 收敛?又 k 为何值时 ,这广义积分发散? 0 , x 0 1 四 、 已知 f ( x ) x , 0 x 2 ,试用分段函数表示 2 1 , 2 x
1 dx p x
1 因此当 p 1 时广义积分收敛,其值为 ; p1 当 p 1 时广义积分发散.
例 4 证明广义积分 当 p 0 时发散.
a
e
px
dx 当 p 0 时收敛,
px b
e 证 e dx lim e dx lim a b b a p a ap e e pa e pb p , p0 lim b p p , p0 即当 p 0 时收敛,当 p 0 时发散.

第06章02节无界函数的广义积分

第06章02节无界函数的广义积分

第2节 无界函数的反常积分我们知道,在[,]a b 上可积的函数都在[,]a b 上有界。

下面我们考虑如果()f x 在某点[,]c a b ∈的附近无界,该怎么积分()ba f x dx ⎰?如果()f x 在c 的任意邻域内都无界,则c 称为()f x 的瑕点(反常点)。

分别如下3种情况。

(1)设()f x 在[,]a b 上只有唯一的瑕点b ;又设[,)t a b ∀∈,()f x 在[,]a t 上都可积。

考虑极限0()lim ()()[]bb a af x dx f x dx A A f x a b εε+-→⎧⎪⎨=⎪⎩⎰⎰不存在,则称反常积分发散(不存在);存在,则称为在,上的反常积分,记为()lim ()bb aaf x dx A f x dx εε+-→==⎰⎰此时称()b af x dx ⎰收敛。

(先把积分区间缩小一点点。

) 如果在[,)a b 上()F x 是()f x 的随便一个原函数,则()lim ()()()bba abf x dx F F a F x ττ-→=-=⎰(记住:b 是怎样代进去的?)(2)设()f x 在[,]a b 上只有唯一的瑕点a ;又设(,]t a b ∀∈,()f x 在[,]t b 上都可积。

考虑极限0()lim ()()[]bba a f x dx f x dx A A f x ab εε++→⎧⎪⎨=⎪⎩⎰⎰不存在,则称反常积分发散(不存在);存在,则称为在,上的反常积分,记为()lim ()bbaa f x dx A f x dx εε++→==⎰⎰此时称()b af x dx ⎰收敛。

(先把积分区间缩小一点点。

) 如果在(,]a b 上()F x 是()f x 的随便一个原函数,则离 散数 学()()lim ()()bba aaf x dx F a F F x ττ+→=-=⎰(记住:a 是怎样代进去的?)(3)设()f x 在[,]a b 上只有全部的瑕点是12m x x x <<< 。

第七章第四节广义积分

第七章第四节广义积分

t a 0 t

b
f ( x )dx
当极限存在时,称广义积分收敛;当极限不存在 时,称广义积分发散.
类似地,设函数 f ( x ) 在区间[a , b )上连续, 而在点b 的左邻域内无界.取 tb ,极限
t b 0 a
lim

t
f ( x )dx 称为函数
f ( x ) 在区间[a , b ) 上的广
二、无界函数的广义积分
设函数 f ( x ) 在区间 (a , b] 上连续,
则对任意a<t<b,f(x)在区 间[t,b]上连续。 所以积分下限函数
y
y f ( x)

b
t
f ( x )dx
O a t
t a 0 t
存在。 考虑它的极限
b x
lim

b
f ( x )dx
不妨记为

baf (Fra bibliotekx )dx lim arctan x a lim arctan x 0
0 b a b
lim arctan a lim arctan b . a b 2 2
例2 讨论广义积分 解


0
cos xdx 敛散性
由于 sin x是 cos x的一个原函数,
则 cos xdx sin a, 而 limsin a
0 a
a
极限不存在,所以广义积分发散
例3

计算广义积分

b

0
te
pt
dt (p是常数,且p>0)。


0
te
pt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

书面作业
P240-242
1 单数题,
2,
5,
6
A
0
x
定义2. 设 f (x) C (a, b], 而在点 a 的右邻域内无数 f (x) 在 [a , b] 上的广义积分, 记作
这时称广义积分
收敛 ; 如果上述极限不存在,
就称广义积分
发散 .
类似地 , 若 f (x)C[a, b), 而在 b 的左邻域内无界,
)
注意: 若瑕点 c (a,b), 则
b
a
f
( x) dx

F (b)
F(c )
F(c ) F(a)
可相消吗?
三、 函数(定义与性质)
1. 定义
(s) xs1ex d x (s 0) 0
函数在 s 0 内收敛 .
是上述的两种广义积分的结合体.
2. 性质
b 1

lim 1 b

1 b


1
y

1 x2
A
1b
定义1. 设 f (x)C[a, ), 取b a, 若
存在 , 则称此极限为 f (x) 的无限区间上的广义积分, 记作
这时称广义积分
收敛 ; 如果上述极限不存在,
就称广义积分
发散 .
类似地 , 若 f (x) C (, b], 则定义
间断点, 则本质上是常义积分, 而不是广义积分.
例如,
则也有类似牛 – 莱公式的
的计算表达式 :
若 b 为瑕点, 则
b
a
f
(x)
dx

F
(b
)

F
(a)
若 a 为瑕点, 则
b
a
f
( x) dx

F (b)

F (a
)
若 a , b 都为瑕点, 则
b
a
f
( x) dx

F (b
)

F (a
则定义
而在点 c 的
邻域内无界 , 则定义
c
b
a f (x) dx c f (x) dx
lim c1 f (x) dx lim b f (x) dx
10 a
2 0 c2
无界函数的积分又称作第二类广义积分, 无界点常称
为瑕点(奇点) .
说明: 若被积函数在积分区间上仅存在有限个第一类
第7节 广义积分
一、无限区间上的广义积分 二、无界函数的广义积分 三、 函数(定义与性质)
一、无限区间上的广义积分
引例. 曲线
和直线
及 x 轴所围成的开口曲
边梯形的面积 可记作
A
dx 1 x2
其含义可理解为
A
lim
b
b 1
dx x2

lim b

1 x
(1) 递推公式 (s 1) s (s) (s 0)
内容小结
积分区间无限 1. 广义积分 被积函数无界
2. 两个重要的广义积分
,
(
p
1 1)
a
p1
,
常义积分的极限
p 1 p 1
,
q 1
内容小结
3. 函数的定义及性质 . 4. 若在同一积分式中出现两类反常积分, 可通过分项 使每一项只含一种类型的反常积分, 只有各项都收敛时, 才可保证给定的积分收敛 .
F(b) F() F() F()
二、无界函数的广义积分
引例:曲线
与 x 轴, y 轴和直线
开口曲边梯形的面积 可记作
y
所围成的
其含义可理解为
A lim 0
1 dx

lim 2 x 0
x
1

lim 2(1 ) 2
0
y 1 x
若 f (x) C (, ), 则定义
c
b
lim f (x) dx lim f (x) dx
a a
b c
( c 为任意取定的常数 )
只要有一个极限不存在 , 就称
发散 .
无穷限的广义积分也称为第一类广义积分.
说明: 上述定义中若出现 , 并非不定型 ,
它表明该反常积分发散 .
引入记号
F () lim F (x) ; F () lim F (x)
x
x
则有类似牛 – 莱公式的计算表达式 :

a f (x) dx F(x) F() F(a)
b
f (x) dx F(x)

f (x) dx F(x)
相关文档
最新文档