郑州外国语学校七年级上学期期末数学试题及答案

合集下载

河南省郑州市郑州外国语中学等4校2022-2023学年七年级上学期期末数学试题

河南省郑州市郑州外国语中学等4校2022-2023学年七年级上学期期末数学试题

河南省郑州市郑州外国语中学等4校2022-2023学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________二、填空题11.请你帮助乐乐同学写一个满足下列条件的一元一次方程:①含未知数项的系数为负x=-.你写的方程是.数;②方程左边只有两项且右边等于零;③方程的解为212.如图1,点A,B,C是数轴上从左到右排列的三个点,对应的数分别为3-,b,6,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对齐刻度1.8cm,点C对齐刻度5.4cm.则数轴上点B所对应的数b为.13.观察如图所示的程序,若输出的结果为5,则输入的x值为.14.元旦期间,丹尼斯为了促销商品,特推出两种消费券:A券:满80元减20元;B 券:满100元减30元,即一次购物大于等于80元、100元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款170元,则所购商品的标价是元.15.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和.如3235=+,3=+++,…,若3m“分裂”后,其中有一个奇数是223,则m =++,341315171937911的值是.三、解答题a______,b=______;(1)=当30α=︒时,1OA ,2OA ,3OA ,4OA 的位置如图2所示,其中3OA 恰好落在ON 上,34120A OA ∠=︒;当20α=︒时,1OA ,2OA ,3OA ,4OA ,5OA 的位置如图3所示,其中第4步旋转到ON 后弹回,即3480A ON NOA ∠+∠=︒,而5OA 恰好与2OA 重合.解决如下问题:(1)若45α=︒,在图4中借助量角器画出2OA ,3OA ,其中32A OA ∠的度数是______;(2)若40α<︒,且3OA 所在的射线平分2A ON ∠,求出α的值;(3)若35α<︒,是否存在对应的α值使2430A OA ∠=︒?若存在直接写出对应的α值,若不存在请说明理由.。

郑州外国语学校七年级上学期期末数学试题及答案

郑州外国语学校七年级上学期期末数学试题及答案

郑州外国语学校七年级上学期期末数学试题及答案一、选择题1.如果一个角的补角是130°,那么这个角的余角的度数是( )A .30°B .40°C .50°D .90°2.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t =,若球的起始高度为102米,则球落地所用时间与下列最接近的是( )A .3秒B .4秒C .5秒D .6秒 3.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×1074.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9 B .327- C .3- D .(3)--5.将图中的叶子平移后,可以得到的图案是()A .B .C .D .6.观察下列算式,用你所发现的规律得出22015的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A .2B .4C .6D .87.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c<8.当x=3,y=2时,代数式23x y -的值是( ) A .43B .2C .0D .3 9.如果单项式13a xy +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b == B .1,2a b == C .1,3a b == D .2,2a b ==10.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<011.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )A .1685B .1795C .2265D .212512.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.14.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.15.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.16.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.17.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.18.已知23,9n m n a a -==,则m a =___________.19.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 20.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克. 21.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.22.用“>”或“<”填空:13_____35;223-_____﹣3. 23.若523m x y +与2n x y 的和仍为单项式,则n m =__________.24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、解答题25.某市某公交车从起点到终点共有六个站,一辆公交车由起点开往终点,在起点站始发时上了部分乘客,从第二站开始下车、上车的乘客数如表:站次人数二 三 四 五 六 下车(人)3 6 10 7 19 上车(人) 12 10 9 4 0(1)求本趟公交车在起点站上车的人数;(2)若公交车的收费标准是上车每人2元,计算此趟公交车从起点到终点的总收入?26.如图,图1中小正方形的个数为1个;图2中小正方形的个数为:1+3=4=22个;图3中小正方形的个数为:1+3+5=9=32个;图4中小正方形的个数为:1+3+5+7=16=42个;…(1)根据你的发现,第n 个图形中有小正方形:1+3+5+7+…+ = 个.(2)由(1)的结论,解答下列问题:已知连续奇数的和:(2n +1)+(2n +3)+(2n +5)+……+137+139=3300,求n 的值.27.温州市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题.(1)这次共抽取了 名学生进行调查.(2)用时在2.45~3.45小时这组的频数是_ , 频率是_ .(3)如果该校有1000名学生,请估计一周电子产品用时在0.45~3.45小时的学生人数.28.如图,在四边形ABCD 中,BE 平分ABC ∠交线段AD 于点E, 12∠=∠.(1)判断AD 与BC 是否平行,并说明理由.(2)当,140A C ︒∠=∠∠=时,求D ∠的度数.29.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取______名学生;(2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是_______;(4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.30.解方程:(1)()()32324y y -=-;(2)13124x x +--=. 四、压轴题31.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

2022-2023学年河南省郑州市外国语中学七年级数学第一学期期末质量跟踪监视试题含解析

2022-2023学年河南省郑州市外国语中学七年级数学第一学期期末质量跟踪监视试题含解析

2022-2023学年七上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.点A ,B ,C 在同一条直线上,6cm AB =,2cm BC =,M 为AB 中点,N 为BC 中点,则MN 的长度为( ) A .2cm B .4cm C .2cm 或4cm D .不能确定2.若x =﹣1是关于x 的方程2x ﹣m ﹣5=0的解,则m 的值是( )A .7B .﹣7C .﹣1D .13.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利40%,另一个亏损30%,则在这次买卖中,商店的盈亏情况是( )A .盈利4.2元B .盈利6元C .亏损6元D .不盈不亏4.下列由四舍五入法得到的近似数精确到千位的是( )A .44.110⨯B .0.0035C .7658D .2.24万5.某学校实行小班化教学,若每间教室安排20名学生,则缺少3间教室;若每间教室安排24名学生,则空出一间教室,那么这所学校共有教室( )A .18间B .22间C .20间D .21间6.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .7.下列判断中正确的是( )A .2a 2bc 与﹣2bca 2不是同类项B .单项式﹣x 2的系数是﹣1C .5x 2﹣xy+xy 2是二次三项式D .23m 不是整式 8.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°9.下列判断错误的是( )A .多项式2524x x -+是二次三项式B .单项式233a b c -的系数是3-C .式子5m +,ab ,()261a -,2-,s t都是代数式 D .若a 为有理数,则9a 一定大于a 10.下列各式中,不相等的是( )A .(﹣2)3和﹣23B .|﹣2|3和|﹣23|C .(﹣3)2和﹣32D .(﹣3)2和32 二、填空题(本大题共有6小题,每小题3分,共18分)11.在时钟的钟面上,8:30 时的分针与时针夹角是______度.12.|13-|等于_____;m 的相反数是_____,﹣1.5的倒数是_____ 13.如图,点C 在线段AB 上,若10AB =,2BC =,M 是线段AB 的中点,则MC 的长为_______.14.一个角的补角是这个角的余角的3倍小20°,则这个角的度数是_______15.单项式﹣2xy 2的系数是_____,次数是_____.16.如果单项式5a m +2b n +5与a 2m +1b 2n +3是同类项,则m =_________,n =___________三、解下列各题(本大题共8小题,共72分)17.(8分)如图,已知点C 在线段AE 上,:4:3AC CE =,3DE cm =,点B 是线段AC 的中点,点D 是线段CE 的中点.(1)求线段AC 的长;(2)求线段BD 的长.18.(8分)先化简,再求值:()222221323a a a a b b ⎛⎫ ⎪⎝⎭+--+--,其中a=-1,b=1. 19.(8分)小李靠勤工俭学的收入支付上大学的费用,下面是小李某周的收支情况表,记收入为正,支出为负(单位:元)星期 一 二 三 四 五 六 日 收入 65+68+ 50+ 66+ 50+ 75+ 74+ 支出 60- 64- 63- 58- 60- 64-65- (1)到本周日,小李结余多少?(2)根据小李这一周每日的支出水平,估计小李一个月(按30天算)的总收入至少达到多少,才能维持正常开支?20.(8分)如图是某市民健身广场的平面示意图,它是由6个正方形拼成的长方形,已知中间最小的正方形A 的边长是1米;(1)若设图中最大正方形B 的边长是x 米,请用含x 的代数式分别表示出正方形F E C 、、的边长(2)观察图形的特点可知,长方形相对的两边是相等的(即MN PQ =, MQ PN =)请根据以上结论,求出x 的值 (3)现沿着长方形广场的四条边铺设下水管道,由甲、乙工程队单独铺设分别需要10天、15天完成,如果两队从同一位置开始,沿相反的方向同时施工2天后,因甲队另有任务,余下的工程由乙队单独施工,还要多少天完成?21.(8分)对于有理数a ,b 定义a △b =3a +2b ,化简式子[(x +y )△(x -y )]△3x22.(10分)下表是某年篮球世界杯小组赛C 组积分表: 排名国家比赛场数 胜场 负场 总积分 1美国 5 5 0 10 2土耳其 5 3 2 8 3乌克兰 5 2 3 7 4多米尼加 5 2 3 7 5新西兰 5 2 3 7 6 芬兰 51 m n(1)由表中信息可知,胜一场积几分?你是怎样判断的?(2)m = ;n = ;(3)若删掉美国队那一行,你还能求出胜一场、负一场的积分吗?怎样求?(4)能否出现某队的胜场积分与负场积分相同的情况,为什么?23.(10分)计算:(1)()()1218715--+-- .(2)()23201621124233⎛⎫-+÷--⨯ ⎪⎝⎭. 24.(12分)先化简,再求值:()()2232322x xy x y xy y ⎡⎤---++⎣⎦,其中x=-4,y=1.参考答案一、选择题(每小题3分,共30分)1、C【分析】分点C 在直线AB 上和直线AB 的延长线上两种情况,分别利用线段中点的定义和线段的和差解答即可.【详解】解:①当点C 在直线AB 上时∵M 为AB 中点,N 为BC 中点∴AM=BM=12AB=3,BN=CN=12BC=1, ∴MN=BM-BN=3-1=2;②当点C 在直线AB 延长上时∵M 为AB 中点,N 为BC 中点∴AM=CM=12AB=3,BN=CN=12BC=1, ∴MN=BM+BN=3+1=4综上,MN 的长度为2cm 或4cm .故答案为C .【点睛】本题主要考查了线段中点的定义以及线段的和差运算,掌握分类讨论思想成为解答本题的关键.2、B【解析】把x=-1代入方程计算求出m 的值,即可确定出m-1的值.【详解】解:把x =−1代入方程得:250m ---=,解得:7.m =-故选:B【点睛】考查方程解的概念,使方程左右两边相等的未知数的值就是方程的解.3、C【分析】设盈利的书包的进价为x 元/个,亏损的书包的进价为y 元/个,根据售价-进价=利润,即可得出关于x (y )的一元一次方程,42-x=40%x ,42-y= -30%y ,解之即可得出x (y )的值,再利用利润=售价-进价即可找出商店的盈亏情况.【详解】解:设盈利的书包的进价为x 元/个,亏损的书包的进价为y 元/个,根据题意得:42-x=40%x ,42-y= -30%y ,解得:x=30,y=60,∴42×2-30-60=-6(元).答:商店亏损6元.故选:C .【点睛】本题主要考查一元一次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程. 4、A【分析】根据近似数的定义和计数单位逐一判断即可.【详解】A . 444100.1100=⨯,数字1在千位,故本选项符合题意;B . 0.0035中,数字5在万分位,故本选项不符合题意;C . 7658中,数字8在个位,故本选项不符合题意;D . 2.24万=22400,数字4在百位,故本选项不符合题意;故选A .【点睛】此题考查的是判断一个近似数精确到哪一位,掌握近似数的定义和计数单位是解决此题的关键.5、D【分析】设这所学校共有教室x 间,依据题意列出方程求解即可.【详解】设这所学校共有教室x 间,由题意得()()203241x x +=-20602424x x +=-844x =21x =故这所学校共有教室21间故答案为:D .【点睛】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键.6、B【解析】试题分析:三棱柱的展开图为3个矩形和2个三角形,故B 不能围成.考点:棱柱的侧面展开图.7、B【分析】分别根据同类项定义,单项式定义,多项式定义,整式定义逐一判断即可.【详解】解:A.2a 2bc 与-2bca 2是同类项,故本选项不合题意;B .单项式-x 2的系数是-1,正确,故本选项符合题意;C.5x 2-xy+xy 2是三次三项式,故本选项不合题意;D. 23m 是整式,故本选项不合题意. 故选:B .【点睛】此题考查多项式,单项式,同类项的定义,熟记相关定义是解题的关键.8、D【解析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确.【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立,∵1∠与4∠是邻补角,∴∠1+∠4=180°,故D 正确.故选D .【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.9、D【分析】根据整式的知识批次判断各选项即可.【详解】A 、多项式2524x x -+是二次三项式,故选项正确;B 、单项式233a b c -的系数是3-,故选项正确;C 、式子5m +,ab ,()261a -,2-,s t都是代数式 ,故选项正确; D 、若a 为有理数,当a 为负数时,则9a 小于a ,故选项错误;故选D.【点睛】本题是对整式知识的综合考查,熟练掌握多项式的次数,单项式的系数知识是解决本题的关键.10、C【分析】分别计算(﹣2)3=﹣23=﹣8;|﹣2|3=|﹣23|=8;(﹣3)2=9,﹣32=﹣9;(﹣3)2=32=9,即可求解.【详解】解:(﹣2)3=﹣23=﹣8;|﹣2|3=|﹣23|=8;(﹣3)2=9,﹣32=﹣9;(﹣3)2=32=9;故选:C .【点睛】此题主要考查有理数的运算,解题的关键是熟知乘方的定义及运算法则.二、填空题(本大题共有6小题,每小题3分,共18分)11、1【分析】根据钟面上每两个刻度之间是30°,8点半时,钟面上分针与时针的夹角是两个半刻度,可得答案.【详解】解:2.5×30°=1°,故答案为:1.【点睛】本题考查了钟面角,注意每两个刻度之间是30°.12、13﹣m﹣23【分析】直接利用绝对值以及相反数、倒数的定义分别分析得出答案.【详解】解:|13-|=13;m的相反数是:﹣m;﹣1.5的倒数是:﹣23.故答案为:13,﹣m,﹣23.【点睛】考查了绝对值、相反数和倒数的定义,解题关键是正确掌握理解相关定义.13、1【分析】根据线段中线性质可得BM=5,线段BM的长度减去BC的长度即是MC的长度.【详解】解:∵M是线段AB中点,10AB=,∴BM=5,∵2BC=,∴MC=BM-BC=5-2=1.故答案为:1.【点睛】本题考查了与线段中点有关的计算,掌握线段中点性质和线段的计算方法是解题关键.14、35︒【分析】设这个角的度数为x,分别表示出这个角的补角和余角,即可列出方程解答.【详解】设这个角的度数为x,1803(90)20x x︒-=︒--︒,35x=︒.故答案为:35︒.【点睛】此题考查角的余角和补角定义及计算,设出所求的角,表示出其补角和余角,才好列式进行计算.15、-21【分析】根据单项式的系数和次数的定义解答即可【详解】解:单项式﹣2xy2的系数是﹣2,次数是1+2=1.故答案是:﹣2;1.【点睛】考查了单项式,单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.16、1 1【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,即可列出方程,然后解方程即可.【详解】∵单项式5a m+1b n+5与a1m+1b1n+3是同类项,∴221523m mn n+=+⎧⎨+=+⎩,解得:12 mn=⎧⎨=⎩,故答案为:1,1.【点睛】此题考查的是同类项的定义,根据同类项的定义:所含字母相同,并且相同字母的指数也相同,列出方程是解决此题的关键.三、解下列各题(本大题共8小题,共72分)17、(1)AC的长是8cm;(2)BD的长是7cm【分析】(1)根据中点的性质求出CE的长度,再根据:4:3AC CE=即可求出AC;(2)根据中点的性质求出BC,即可求出BD.【详解】解:(1)∵点D是线段CE的中点,∴CE=2DE∵ DE=3cm∴CE=6cm∵AC:CE=4:3∴AC=8cm答:AC的长是8cm(2)∵AE=AC+CE∴AE=6+8=14cm∵点B是线段AC的中点,∴BC=12AC ∵点D 是线段CE 的中点, ∴CD=12CE ∴BD=BC+CD=12AC+12CE=12AE=7cm 答:BD 的长是7cm【点睛】本题考查了线段中点的运算,解题的关键是理解线段中点的定义.18、22a b +-,0【分析】去括号,合并同类项,再代入求值即可.【详解】()222221323a a a a b b ⎛⎫ ⎪⎝⎭+--+-- 224223232a a a a b b =+---+-22a b =+-当1,1a b =-=时原式()2112=-+- 0=【点睛】本题考查了整式的加减求值,熟练掌握去括号的法则是解题的关键.19、(1)14元;(2)1860元【分析】(1)把周一至周日的收入和支出加在一起计算即可;(2)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘以30即可求得.【详解】(1)()()656850665075746064635860646514++++++++-------=(元) 答:到这个周末,小李有14元的节余;(2)()160646358606465627++++++=(元) 62×30=1860(元)答:小李一个月(按30天计算)至少要有1860元的收入才能维持正常开支.【点睛】本题主要考查正数和负数的概念、有理数的加减混合运算,比较简单,读懂表格数据并列出算式是解题的关键.20、(1)F的边长为(x-1)米;C的边长为12x+米;E的边长为(x-2)米;(2)7;(3)1【分析】(1)若设图中最大正方形B的边长是x米,最小的正方形的边长是1米,从图中可看出F的边长为(x-1)米,C的边长为12x+,E的边长为(x-1-1),即可得到答案;(2)根据长方形相对的两边是相等的(如图中的MN和P Q).请根据这个等量关系,求出x的值;(3)根据工作效率×工作时间=工作量这个等量关系且完成工作,工作量就为1,可列方程求解.【详解】解:(1)若设图中最大正方形B的边长是x米,最小的正方形的边长是1米.∴F的边长为:(x-1)米,∴C的边长为:12x+米,∴E的边长为:x-1-1=(x-2)米;(2)∵MQ=PN,∴x-1+x-2=x+1 2x+,解得:x=7,∴x的值为7;(3)设余下的工程由乙队单独施工,还要x天完成.∴(110+115)×2+115x=1,解得:x=1.答:余下的工程由乙队单独施工,还要1天完成.【点睛】本题考查理解题意能力和看图的能力,根据题目给出的条件,找出合适的等量关系列出方程,再求解是解题的关键.21、21x+3y【解析】整体分析:根据定义a△b=3a+2b,先小括号,后中括号依次化简[(x+y)△(x-y)]△3x.解:原式=[3(x+y)+2(x-y)]△3x=(3x+3y+2x-2y)△3x=(5x+y)△3x=3(5x+y)+6x=15x+3y+6x=21x+3y.22、(1)胜一场积2分,理由见解析;(2)m=4,n=6;(3)胜一场积2分,负一场积1分;(4)不可能,理由见解析【分析】(1)由美国5场全胜积10分,即可得到答案;(2)由比赛场数减去胜场,然后计算m 、n 的值;(3)由题意,设胜一场积x 分,然后列出方程组,即可求出胜一场、负一场的积分; (4)由题意,列出方程,解方程即可得到答案.【详解】解:(1)根据题意,则∵美国5场全胜积10分,∴1052÷=,∴胜一场积2分;(2)由题意,514m =-=;设负一场得x 分,则3228x ⨯+=;∴1x =;∴12416n =⨯+⨯=;故答案为:6;4;(3)设胜一场积x 分,由土耳其队积分可知负一场积分832x -, 根据乌克兰队积分可列方程:8323()72x x -+=, 解得:2x =, 此时8312x -=; 即胜一场积2分,负一场积1分;(4)设某球队胜y 场,则21(5)y y =⨯-, 解得:53y =; ∴不可能出现某队的胜场积分与负场积分相同的情况.【点睛】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程是解题的关键.23、 (1)8;(2)-5.【分析】(1)运用有理数的加减混合运算计算即可(2)运用有理数的加减乘除混合运算计算即可.【详解】(1)()()121871512187153071523158--+--=+--=--=-=(2)()23201621124233⎛⎫-+÷--⨯ ⎪⎝⎭ 1124(8)99=-+÷--⨯ 131=---5=-【点睛】本题主要考查有理数的加减乘除混合运算,需要注意两点:一是运算顺序,二是运算符号.24、8xy -,64【分析】先去括号,再合并同类项,然后把x,y 的值代入化简后的式子计算即可.【详解】解:原式22363222x xy x y xy y =--+-- 8xy =-当x=-4,y=1时,原式()84264=-⨯-⨯=【点睛】本题考查了整式的化简求值,掌握整式的加减的计算法则是解题关键.。

郑州外国语中学人教版七年级上册数学期末试卷

郑州外国语中学人教版七年级上册数学期末试卷

郑州外国语中学人教版七年级上册数学期末试卷一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .3.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 4.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10-B .10C .5-D .55.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5926.下列方程是一元一次方程的是( )A.213+x=5x B.x2+1=3x C.32y=y+2 D.2x﹣3y=17.A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是( )A.1601603045x x-=B.1601601452x x-=C.1601601542x x-=D.1601603045x x+=8.有m 辆客车及n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘45 人,则还有 5 人不能上车.有下列四个等式:① 40m+25=45m+5 ;②2554045n n+-=;③2554045n n++=;④ 40m+25 = 45m- 5 .其中正确的是()A.①③B.①②C.②④D.③④9.已知关于x的方程ax﹣2=x的解为x=﹣1,则a的值为()A.1 B.﹣1 C.3 D.﹣3 10.计算:2.5°=()A.15′B.25′C.150′D.250′11.下列变形中,不正确的是( )A.若x=y,则x+3=y+3 B.若-2x=-2y,则x=yC.若x ym m=,则x y=D.若x y=,则x ym m=12.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有()A.45人B.120人C.135人D.165人13.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A.亏了10元钱B.赚了10钱C.赚了20元钱D.亏了20元钱14.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A .2B .1C .0D .-115.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题16.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.17.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____. 18.已知单项式245225n m xy x y ++与是同类项,则m n =______.19.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.20.计算: 101(2019)5-⎛⎫+- ⎪⎝⎭=_________21.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.22.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.23.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.24.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.25.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.26.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.27.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.28.A 学校有m 个学生,其中女生占45%,则男生人数为________. 29.当x= 时,多项式3(2-x )和2(3+x )的值相等.30.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.三、压轴题31.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

2025届郑州市外国语中学数学七年级第一学期期末质量跟踪监视试题含解析

2025届郑州市外国语中学数学七年级第一学期期末质量跟踪监视试题含解析

2025届郑州市外国语中学数学七年级第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.如果A 、B 、C 三点共线,线段6AB cm =,5BC cm =,那么A 、C 两点间的距离是( ) A .1B .11C .5.5D .11或12.笔记本的单价是m 元,钢笔的单价是n 元,甲买3本笔记本和2支钢笔,乙买4本笔记本和3支钢笔,买这些笔记本和钢笔,甲和乙一共花了多少元?( ) A .75m n +B .57m n +C .66m n +D .75n m +3.如图,是一个正方体的表面展开图,则圆正方体中与“建”字所在的面相对的面上标的字是( )A .美B .丽C .鹤D .城4.一个数的相反数大于它本身,这个数是( ) A .正数B .负数C .0D .非负数5.在数轴上表示有理数a ,b ,c 的点如图所示,若ac <0,b+c <0,则下列式子一定成立的是( )A .a+c >0B .a+c <0C .abc <0D .|b|<|c|6.如图,一张地图上有A ,B ,C 三地,B 地在A 地的东北方向,若∠BAC =103°,则C 地在A 地的( )A .北偏西58方向B .北偏西68︒方向C .北偏西32方向D .西北方向7.用代数式表示,m 的3倍与n 的2倍的和,下列表示正确的是( ) A .32m n +B .32m n -C .3(2)m n +D .3(2)m n -8.下列各组数中,相等的一组是( ) A .-2和 -(-2) B .-|-2|和 -(-2) C .2和|-2|D .-2和|-2|9.下面说法错误的个数是( )①a -一定是负数;②若||||a b =,则a b =;③一个有理数不是整数就是分数;④一个有理数不是正数就是负数. A .1个B .2个C .3个D .4个10.已知:2,1a b ab +==-,计算:(2)(2)a b --的结果是( ) A .1B .3C .1-D .5-11.在﹣(+2),﹣(﹣8),﹣5,﹣|﹣3|,+(﹣4)中,负数的个数有( ) A .1个B .2个C .3个D .4个12.若1x =是方程302x k+-=的解,则k 的值为( ) A .5B .5-C .2D .2-二、填空题(每题4分,满分20分,将答案填在答题纸上)13.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出九,盈五;人出八,不足五.问人数几何?译文为:现有一些人共同买一个物品,每人出9元,还盈余5元;每人出8元,则还差5元,问共有________人.14.设有三个互不相等的有理数,既可表示为-1,a +b ,a 的形式,又可表示为0,-b a ,b 的形式,则20192020-a b的值为____.15.下列图形能围成一个无盖正方体的是_____________________(填序号)16.如果221x x ++的值是7,则代数式2241x x +-的值是__________.17.利民水果批发超市在2018年共批发苹果和香蕉320000kg ,其中批发香蕉56000kg ,那么批发苹果______kg .(结果用科学记数法表示)三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.) 18.(5分)解方程:36x --234x -=119.(5分)根据阅读材料,回答问题.材料:如图所示,有公共端点(O )的两条射线组成的图形叫做角(AOB ∠).如果一条射线(OC )把一个角(AOB ∠)分成两个相等的角(AOC ∠和BOC ∠),这条射线(OC )叫做这个角的平分线.这时,12AOC BOC AOB ∠=∠=∠(或22AOC BOC AOB ∠=∠=∠).问题:平面内一定点A 在直线MN 的上方,点O 为直线MN 上一动点,作射线OA ,OP ,OA ',当点O 在直线MN 上运动时,始终保持90MOP ∠=︒,AOP A OP '∠=∠,将射线OA 绕点O 顺时针旋转60°得到射线OB . (1)如图1,当点O 运动到使点A 在射线OP 的左侧时,若OB 平分A OP '∠,求AOP ∠的度数; (2)当点O 运动到使点A 在射线OP 的左侧,3AOM A OB '∠=∠时,求AOP ∠的值; (3)当点O 运动到某一时刻时,150A OB '∠=︒,直接写出此时BOP ∠的度数.20.(8分)在某年全军足球甲级A 组的前11场比赛中,某队保持连续不败,共积23分.按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场? 21.(10分)计算或化简: (1); (2);(3).22.(10分)如图,点A 、O 、B 在一条直线上,AOC 80∠=,COE 50∠=,OD 是AOC ∠的平分线.()1求AOE ∠和DOE ∠的度数. ()2OE 是COB ∠的平分线吗?为什么?()3请直接写出COD ∠的余角为______,补角为______.23.(12分)先化简再求值:()()2222221232522x y xy xy x y x y xy ⎛⎫+---- ⎪⎝⎭,其中143x y =-=, 参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、D【分析】此题分点B 在A 、C 之间和点C 在A 、B 之间两种情况讨论得出答案. 【详解】①点B 在A 、C 之间时,AC=AB+BC=6+5=11cm ; ②点C 在A 、B 之间时,AC=AB-BC=6-5=1cm . 故选D . 【点睛】本题考查了两点间的距离,属于基础题,关键是分点B 在A 、C 之间和点C 在A 、B 之间两种情况讨论. 2、A【分析】先分别用代数式表示出甲和乙花的钱数,然后求和即可. 【详解】解:甲花的钱为:(32)m n +元, 乙花的钱为:(43)m n +元,则甲和乙一共花费为:3243(75)m n m n m n +++=+元. 故选:A . 【点睛】本题考查了列代数式的知识,解答本题的关键是求出小红和小明花的钱数. 3、D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,原正方体中与“建”字所在的面相对的面上标的字是城.故选:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4、B【分析】根据相反数的性质、有理数的大小比较法则即可得.【详解】相反数的性质:正数的相反数是负数,负数的相反数是正数,0的相反数是它本身由有理数的大小比较法则可知,正数大于负数因此,负数的相反数大于它本身即这个数是负数故选:B.【点睛】本题考查了相反数的性质、有理数的大小比较法则,掌握相反数的性质是解题关键.5、B【分析】由图中数轴上表示的a,b,c得出a<b<c的结论,再根据已知条件ac<0,b+c<0判断字母a,b,c表示的数的正负性即可.【详解】由图知a<b<c,又∵ac<0,∴a<0,c>0,又∵b+c<0,∴|b|>|c|,故D错误,由|b|>|c|,∴b<0,∴abc>0,故C错误,∵a<b<c,a<0,b<0,c>0,∴a+c<0,故A错误,B正确,故选B.【点睛】本题考查了数轴,有理数的乘法,加法,准确识图,熟练掌握和灵活运用相关知识是解题的关键. 6、A【分析】根据方位角的概念可得∠DAB=45º,再由∠BAC =103°,可得∠DAC=∠BAC-∠DAB=103°-45º=58°. 【详解】解:如图:∵B 地在A 地的东北方向, ∴∠DAB=45º, ∵∠BAC=103°,∴∠DAC=∠BAC-∠DAB=103°-45º=58°. ∴C 地在A 地的北偏西58°方向 . 故选A. 【点睛】此题考查方位角以及角的运算,注意东北方向指的是北偏东45° 7、A【分析】m 的3倍表示为3m ,n 的2倍表示为2n ,m 的3倍与n 的2倍的和则表示为3m+2n. 【详解】解:3232m n m n ⨯+⨯=+ 故选:A. 【点睛】本题主要考查的是代数式中用字母表示数这个知识点,在用这个知识点时需要分析清楚题意避免出现错误. 8、C【分析】根据有理数的运算法则先计算出各个选项的最简数值,然后再根据有理数的大小比较规律求解. 【详解】解:A 、-(-2)=2≠-2,故本项不正确;B 、-|-2|=-2,-(-2)=2,-2≠2,故本项不正确;C 、|-2|=2,故本项正确;D 、|-2|=2≠-2,故本项不正确. 【点睛】题主要考查有理数大小的比较.规律总结:正数大于负数;如果两数都是正数,则绝对值大的大,绝对值小的小;如果两数都是负数,则绝对值大的数反而小. 9、C【分析】①举例说明命题错误;②举例说明命题错误;③根据有理数的概念判断即可;④根据有理数的概念判断即可. 【详解】①当a≤0时,-a≥0,故-a 一定是负数错误; ②当a=2,b=-2时, ||||a b = ,但是a≠b ,故②的说法错误; ③一个有理数不是整数就是分数,此选项正确;④一个有理数不是正数就是负数还有可能是0,故④的说法错误. 所以错误的个数是3个. 故答案为C 【点睛】本题考查了有理数的概念,熟练掌握概念是解题的关键. 10、C【分析】原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值. 【详解】∵2a b +=,1ab =-, ∴(2)(2)a b --()24ab a b =-++1224=--⨯+ 1=-,故选:C . 【点睛】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键. 11、D【分析】负数就是小于0的数,依据定义即可求解.【详解】在﹣(+2),﹣(﹣8),﹣5,﹣|﹣3|,+(﹣4)中,负数有﹣(+2),﹣5,﹣|﹣3|,+(﹣4),一共4个. 故选D.【点睛】本题考查了正数和负数,判断一个数是正数还是负数,要化简成最后形式再判断. 12、A【分析】根据一元一次方程的解的定义得到算式,计算即可. 【详解】∵x=1是关于x 的方程302x k+-=的解, ∴1302k+-=, 解得,k=5, 故选:A . 【点睛】本题考查的是一元一次方程的解的定义,掌握使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解是解题的关键.二、填空题(每题4分,满分20分,将答案填在答题纸上) 13、1【分析】由题意可设一共有x ,根据物品价位可得等量关系式,列出一元一次方程求解即可. 【详解】解:设有x 人, 由题意可知:9585x x -=+,解得:10x =, 故答案为:1. 【点睛】本题考查了一元一次方程的应用,由题意找等量关系,注意盈余是比物品价位多,所以要减去5,还差5是不够,所以要加5,列出一元一次方程解出答案是解题的关键. 14、-1【分析】由题意三个互不相等的有理数,既可表示为-1、+a b 、a 的形式,又可表示为0、ba-、b 的形式,可知这两个三数组分别对应相等.从而判断出a 、b 的值.代入计算出结果. 【详解】解:三个互不相等的有理数,既可表示为-1、+a b 、a 的形式,又可表示为0、ba-、b 的形式, ∴这两个三数组分别对应相等.a b ∴+、a 中有一个是0,由于ba有意义,所以0a ≠,则0a b +=,所以a 、b 互为相反数.∴1ba=-, ∴1ba-= ∴1b =-,1a =. ∴()2019202011111-=-=--. 故答案是:-1. 【点睛】本题考查了有理数的概念,分式有意义的条件,有理数的运算等相关知识,理解题意是关键. 15、①②④⑤.【分析】通过叠纸或空间想象能力可知;根据正方体的11种展开图,因为本题是无盖的,要少一个正方形. 【详解】通过叠纸或空间想象能力可知,①②④⑤可以围成一个无盖正方体.另可根据正方体的11种展开图,因为本题是无盖的,要少一个正方形,也可以得到①②④⑤可以围成一个无盖正方体.故答案为①②④⑤ 【点睛】考点:1、立体图形;2、正方体的展开图. 16、1【分析】根据已知条件可得22x x +=6,然后利用整体代入法求值即可. 【详解】解:∵221x x ++=7 ∴22x x +=6 ∴2241x x +- =()2221x x +- =2×6-1 =1故答案为:1. 【点睛】此题考查的是求代数式的值,掌握整体代入法是解决此题的关键. 17、52.6410⨯【分析】根据题意先将批发苹果的数量求出来,然后再进一步将结果用科学计数法表示即可. 【详解】由题意得批发苹果数量为:32000056000264000-=kg , ∵264000=52.6410⨯, 故答为:52.6410⨯. 【点睛】本题主要考查了科学计数法的应用,熟练掌握相关方法是解题关键.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.) 18、94x =-【分析】按照方程两边同乘以一个数去分母、去括号、移项、合并同类项、系数化为1的步骤解方程即可得. 【详解】解:方程两边同时乘以12得:2(x-3)-3(2x-3)=12 去括号得:2x-6-6x+9=12 移项合并同类项得:-4x=9 系数化为1得:x=-94【点睛】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题关键,去分母时注意方程两边都要乘以同一个数. 19、(1)40°;(2)2707︒或18︒(3)105°或135°. 【分析】(1)根据角的平分线定义及角的和差即可求解; (2)当射线OB 在∠A ′OP 内部和外部两种情况进行讨论求解; (3)分两种情况讨论如图4和图5进行推理即可. 【详解】解:(1)设AOP ∠的度数为x . 由题意知:A OP x '∠=,60POB x ∠=︒-; 因为OB 平分A OP '∠,所以2POB A OP '∠=∠; 所以()260x x ︒-=; 解得,40x =︒;(2)①如图-2-1,当射线OB 在A OP '∠内部时:设AOP ∠的度数为y.由题意可知:A OP y '∠=,60POB y ∠=︒-;因为90MOP ∠=︒,所以90AOM y ∠=︒-;因为3AOM A OB '∠=∠,所以()1903A OB y '∠=︒-; 因为A OB POB A OP ''∠+∠=∠; 所以()()190603y y y ︒-+︒-=; 解得,2707y ︒=.②如图-2-2,当射线OB 在'A OP ∠外部时:设AOP ∠的度数为y .由题意可知:A OP y '∠=,60POB y ∠=︒-;因为90MOP ∠=︒,所以90AOM y ∠=︒-;因为3AOM A OB '∠=∠,所以()1903A OB y '∠=︒-; 因为60AOP A OP A OB ''∠+∠+∠=︒;所以()190603y y y ++︒-=︒; 解得,18y =︒.(3)105°或135°.【点睛】本题主要考查角平分线的定义,角的和差倍分问题,解决本题的关键是要熟练掌握角平分的定义和角的和差倍分关系.20、该队共胜了1场.【分析】可设该队共胜了x场,根据“11场比赛保持连续不败”,那么该队平场的场数为11-x,由题意可得出:3x+(11-x)=23,解方程求解.【详解】解:设设该队共胜了x场,根据题意得:3x+(11﹣x)=23,解得x=1.故该队共胜了1场.【点睛】考查了一元一次方程的应用,列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.21、(1)-38;(2)16;(3)【解析】(1)根据有理数减法及绝对值的运算法则计算即可;(2)根据有理数乘除法法则计算即可;(2)根据有理数混合运算法则计算即可.【详解】(1)原式=-55+17=-38.(2)原式=16.(3)原式===【点睛】本题考查有理数的混合运算,熟练掌握运算法则是解题关键.22、(1)AOE 130∠=,DOE 90∠=;(2)OE 是COB ∠的平分线,理由见详解;(3)COE ∠和BOE ∠;BOD ∠.【分析】(1)根据AOE AOC COE ∠∠∠=+ 代入数据进行计算即可得解;根据角平分线的定义可得1COD AOC 2∠∠=,然后根据DOE COD COE ∠∠∠=+代入数据进行计算即可得解;(2)根据邻补角求出BOE ∠的度数,即可进行判断;(3)根据COD ∠的度数确定其余角和补角.【详解】解:()1AOC 80∠=,COE 50∠=,AOE AOC COE 8050130∠∠∠∴=+=+=; OD 是AOC ∠的平分线,11COD AOC 804022∠∠∴==⨯=, DOE COD COE 405090∠∠∠∴=+=+=;(2)OE 是COB ∠的平分线,理由如下:BOE 180AOE 18013050∠∠=-=-=,BOE COE ∠∠∴=,OE ∴是COB ∠的平分线;()3COD ∠的余角为COE ∠和BOE ∠,补角为BOD ∠.故答案为COE ∠和BOE ∠;BOD ∠.【点睛】本题考查余角和补角,角平分线的定义,熟记概念并准确识图,确定出图中各角度之间的关系是解题的关键. 23、3x 2y ,16. 【分析】先把所给代数式去括号合并同类项化简,再把143x y =-=,代入计算即可. 【详解】原式22222223652x y xy xy x y x y xy =+-+-+23x y =,把143x y=-=,代入原式中,得()2134163=⨯-⨯=原式.【点睛】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给多项式化简.本题主要利用去括号合并同类项的知识,注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.。

郑州外国语中学人教版七年级上册数学期末试卷

郑州外国语中学人教版七年级上册数学期末试卷

B.∠1=2∠2
C.∠1=3∠2
D.∠1=4∠2
11.已知∠A=60°,则∠A 的补角是( )
A.30°
B.60°
C.120°
D.180°
12.单项式﹣6ab 的系数与次数分别为( )
A.6,1
B.﹣6,1
C.6,2
D.﹣6,2
13.如图,C,D 是线段 AB 上两点,若 CB=4cm,DB=7cm,且 D 是 AC 的中点,则 AC 的
100101 101102 102 103
2019 2020
22.如果 m﹣n=5,那么﹣3m+3n﹣5 的值是_____.
23.|﹣ 1 |=_____. 2
24.如图,将△ABE 向右平移 3cm 得到△DCF,若 BE=8cm,则 CE=______cm.
25.如果 A、B、C 在同一直线上,线段 AB=6 厘米,BC=2 厘米,则 A、C 两点间的距离 是______.
三、压轴题
31.已知数轴上,点 A 和点 B 分别位于原点 O 两侧,AB=14,点 A 对应的数为 a,点 B 对 应的数为 b. (1) 若 b=-4,则 a 的值为__________. (2) 若 OA=3OB,求 a 的值. (3) 点 C 为数轴上一点,对应的数为 c.若 O 为 AC 的中点,OB=3BC,直接写出所有满足 条件的 c 的值.
1 2 2 23 2 3 3 4 3 4
910 9 10
所以: 1 1 1 1
12 23 34
9 10
1
1 2
1 2
1 3
1 3
1 4
1 9
1 10
1 1 1 1 1 1 1 1 1 1 9

郑州外国语学校七年级上学期 压轴题 期末复习数学试题及答案

郑州外国语学校七年级上学期 压轴题 期末复习数学试题及答案

郑州外国语学校七年级上学期 压轴题 期末复习数学试题及答案一、压轴题1.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.2.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm 到达P 点,再向右移动7cm 到达Q 点,用1个单位长度表示1cm .(1)请你在图②的数轴上表示出P ,Q 两点的位置;(2)若将图②中的点P 向左移动x cm ,点Q 向右移动3x cm ,则移动后点P 、点Q 表示的数分别为多少?并求此时线段PQ 的长.(用含x 的代数式表示);(3)若P 、Q 两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t (秒),当t 为多少时PQ=2cm ?3.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.4.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6a b x-1-2...(1)可求得x =______,第 2021 个格子中的数为______;(2)若前k 个格子中所填数之和为 2019,求k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和.5.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.(1)设a与b分别对应数轴上的点A、点B,请直接写出a=,b=,并在数轴上确定点A、点B的位置;(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t秒:①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?6.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.7.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元. (购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价, 请问: ()1购买一件标价为500元的商品,顾客的实际付款是多少元?()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.8.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇?(2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.9.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数10.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.11.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.12.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.13.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.14.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x xxx x-+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x+与|4|x-的零点值分别为;(2)化简式子324x x-++.15.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21,解得:1t 2=或7t 2=(3)情况一:3t+4t=2,解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.2.(1)见详解;(2)2x --,53x +,47x +;(3)当运动时间为5秒或9秒时,PQ=2cm.【解析】【分析】(1)根据数轴的特点,所以可以求出点P ,Q 的位置;(2)根据向左移动用减法,向右移动用加法,即可得到答案;(3)根据题意,可分为两种情况进行分析:①点P 在点Q 的左边时;②点P 在点Q 的右边时;分别进行列式计算,即可得到答案.【详解】解:(1)如图所示: .(2)由(1)可知,点P 为2-,点Q 为5;∴移动后的点P 为:2x --;移动后的点Q 为:53x +;∴线段PQ 的长为:53(2)47x x x +---=+;(3)根据题意可知,当PQ=2cm 时可分为两种情况:①当点P 在点Q 的左边时,有(21)72t -=-,解得:5t =;②点P 在点Q 的右边时,有(21)72t -=+,解得:9t =;综上所述,当运动时间为5秒或9秒时,PQ=2cm.【点睛】本题要是把方程和数轴结合起来,既要根据条件列出方程,又要把握数轴的特点.解题的关键是熟练掌握数轴上的动点运动问题,注意分类讨论进行解题.3.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.4.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.5.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P在原点左边.分别求出点P运动的路程,再除以速度即可.【详解】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;(2)①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=132;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=192.【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.6.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.7.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.8.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.9.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣4834【解析】【分析】(1)根据A 点对应的数为60,B 点在A 点的左侧,AB =30求出B 点对应的数;根据AC =4AB 求出AC 的距离;(2)①当P 点在AB 之间运动时,根据路程=速度×时间求出AP =3t ,根据BP =AB ﹣AP 求解;②分P 点是A 、B 两个点的中点;B 点是A 、P 两个点的中点两种情况讨论即可;③根据P 、Q 两点的运动速度与方向可知Q 点在往返过程中与P 点相遇2次.设Q 点在往返过程中经过x 秒与P 点相遇.第一次相遇是点Q 从A 点出发,向C 点运动的途中.根据AQ ﹣BP =AB 列出方程;第二次相遇是点Q 到达C 点后返回到A 点的途中.根据CQ+BP =BC 列出方程,进而求出P 点在数轴上对应的数.【详解】(1)∵A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.10.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.11.(1)详见解析;(2)①16;②在移动过程中,3AC﹣4AB的值不变【解析】【分析】(1)根据点的移动规律在数轴上作出对应的点即可;(2)①当t=2时,先求出A、B、C点表示的数,然后利用定义求出AB、AC的长即可;②先求出A、B、C点表示的数,然后利用定义求出AB、AC的长,代入3AC-4AB即可得到结论.【详解】(1)A,B,C三点的位置如图所示:.(2)①当t=2时,A点表示的数为-4,B点表示的数为5,C点表示的数为12,∴AB=5-(-4)=9,AC=12-(-4)=16.②3AC-4AB的值不变.当移动时间为t秒时,A点表示的数为-t-2,B点表示的数为2t+1,C点表示的数为3t +6,则:AC=(3t+6)-(-t-2)=4t+8,AB=(2t+1)-(-t-2)=3t+3,∴3AC-4AB=3(4t+8)-4(3t+3)=12t+24-12t-12=12.即3AC﹣4AB的值为定值12,∴在移动过程中,3AC﹣4AB的值不变.【点睛】本题考查了数轴上的动点问题.表示出对应点所表示的数是解答本题的关键.12.(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.【解析】【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B为AC中点,得到AB=BC,列方程,求解即可.【详解】(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得:a=﹣2,c=7.∵b是最小的正整数,∴b=1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A表示的数为:-2-t,点B表示的数为:1+2t,点C表示的数为:7+4t,则AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.故答案为3t+3,5t+9,2t+6.(4)∵点B 为AC 中点,∴AB =BC ,∴3t +3=2t +6,解得:t =3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.13.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点 ∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.14.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.15.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE=∠COD+∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD 、OE 分别平分∠AOC 和∠BOC ,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

郑州外国语学校七年级上学期期末数学试题及答案一、选择题1.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟 D .36011分钟2.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( ) A .10- B .10 C .5- D .5 3.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯4.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 5.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣16.﹣3的相反数是( ) A .13-B .13C .3-D .37.当x=3,y=2时,代数式23x y-的值是( ) A .43B .2C .0D .38.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 9.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513 B .﹣511 C .﹣1023 D .1025 10.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=111.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠112.如图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为( )cm .A .2B .3C .4D .6二、填空题13.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.16.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 17.若方程11222m x x --=++有增根,则m 的值为____. 18.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).19.如果向东走60m 记为60m +,那么向西走80m 应记为______m.20.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.21.如图,已知O 为直线AB 上一点,OC 平分∠AOD ,∠BOD =4∠DOE ,∠COE =α,则∠BOE 的度数为___________.(用含α的式子表示)22.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).23.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、解答题25.(1)化简:3x 2﹣22762x x +; (2)先化简,再求值:2(a 2﹣ab ﹣3.5)﹣(a 2﹣4ab ﹣9),其中a =﹣5,b =32. 26.如图,已知数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,动点P 从点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)数轴上点B 表示的数是 ,当点P 运动到AB 中点时,它所表示的数是 ; (2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若P ,Q 两点同时出发,求点P 与Q 运动多少秒时重合?(3)动点Q 从点B 出发,以每秒2个单拉长度的速度沿数轴向左匀速运动,若P ,Q 两点同时出发,求:①当点P 运动多少秒时,点P 追上点Q ?②当点P 与点Q 之间的距离为8个单位长度时,求此时点P 在数轴上所表示的数.27.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2BC ,设点A ,B ,C 所对应数的和是m .(1)若点C 为原点,BC =1,则点A ,B 所对应的数分别为 , ,m 的值为 ;(2)若点B 为原点,AC =6,求m 的值.(3)若原点O 到点C 的距离为8,且OC =AB ,求m 的值.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线. (1)如图1,当∠AOB 是直角,∠BOC=60°时,∠MON 的度数是多少? (2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON 与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON 与α、β有数量关系吗?如果有,指出结论并说明理由.29.解方程: (1)2235x x -=+ (2)2432142x x +-=- 30.东莞市出租车收费标准如下表所示,根据此收费标准,解决下列问题: 行驶路程 收费标准 不超出2km 的部分 起步价8元 超出2km 的部分2.6元/km(1)若行驶路程为5km ,则打车费用为______元;(2)若行驶路程为()km 6x x >,则打车费用为______元(用含x 的代数式表示); (3)某同学周末放学回家,已知打车费用为34元,则他家离学校多少千米?四、压轴题31.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.32.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数33.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.2.D解析:D 【解析】 【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k 的值. 【详解】解:∵方程2k-3x=4与x-2=0的解相同, ∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5. 故选:D . 【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.3.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 4.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E 作EF ∥AB ,∵AB ∥CD , ∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA , ∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°, ∴∠1=180°﹣∠BAE=180°﹣46°=134°, 故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.5.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项, 则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.6.D解析:D 【解析】 【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 【详解】根据相反数的定义可得:-3的相反数是3.故选D. 【点睛】本题考查相反数,题目简单,熟记定义是关键.7.A解析:A 【解析】【分析】当x=3,y=2时,直接代入代数式即可得到结果. 【详解】23x y -=2323⨯-=43, 故选A 【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.8.D解析:D 【解析】 【分析】设应从乙处调x 人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x 的一元一次方程,此题得解. 【详解】设应从乙处调x 人到甲处,依题意,得: 30+x =2(24﹣x ). 故选:D . 【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.9.D解析:D 【解析】 【分析】观察数据,找到规律:第n 个数为(﹣2)n +1,根据规律求出第10个数即可. 【详解】解:观察数据,找到规律:第n 个数为(﹣2)n +1, 第10个数是(﹣2)10+1=1024+1=1025 故选:D . 【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.10.A解析:A 【解析】解:A ,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A ; B ,同号相加,取相同的符号,并把绝对值相加,-1-1=-2; C ,底数为-1,一个负数的偶次方应为正数(-1)2=1;D ,底数为1,1的平方的相反数应为-1;即-12=-1,故选A .11.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6,移项,合并得,x=31a,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+mx(31)4=23,解得:m=﹣83.故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.14.伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.15.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC 的中点求出AD的长度,由BD=AD﹣AB即可得出结论.解:∵AB=4,BC=2AB,∴B解析:【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD 的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴BC=8.∴AC=AB+BC=12.∵D是AC的中点,∴AD=12AC=6.∴BD=AD﹣AB=6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.16.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键17.2【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x的值代入整式方程即可求出m的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键18.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】32=x(x+2y)(x-2y).x xy4当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入19.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x 袋,根据题意,得:2(x ﹣1)﹣1﹣1=x +1解得:x =5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程解析:270°-3α【解析】【分析】设∠DOE=x,根据OC平分∠AOD,∠COE=α,可得∠COD=α-x,由∠BOD=4∠DOE,可得∠BOD=4x,由平角∠AOB=180°列出关于x的一次方程式,求解即可.【详解】设∠DOE=x,根据OC平分∠AOD,∠BOD=4∠DOE,∠COE=α,∴∠BOD=4x,∠AOC=∠COD=α-x,由∠BOD+∠AOD=180°,∴4x+2(α-x )=180°解得x=90°-α,∴∠BOE=3x=3(90°-α)=270°-3α,故答案为:270°-3α.【点睛】本题考查了角平分线的定义,平角的定义,一元一次方程的应用,掌握角平分线的定义是解题的关键.22.(5a+10b).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a+10b).【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.23.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3cm .故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3cm . 故答案为:﹣3cm .【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.24.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.解析:416x +【解析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()1771416x x x x x +++++++=+故答案为416x +.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、解答题25.(1)112x 2;(2)a 2+2ab +2,12. 【解析】【分析】(1)根据合并同类项法则计算;(2)根据去括号法则、合并同类项法则把原式化简,代入计算得到答案.【详解】 解:(1)原式=(3﹣72+6)x 2=112x 2; (2)原式=2a 2﹣2ab ﹣7﹣a 2+4ab +9 =a 2+2ab +2,当a =﹣5,b =32时,原式=(﹣5)2+2×(﹣5)×32+2=12. 【点睛】本题考查的是整式的化简求值,掌握整式的加减混合运算法则是解题的关键.26.(1)-5,0.5;(2)点P 与Q 运动2.2秒时重合;(3)①当点P 运动11秒时,点P 追上点Q ;②当点P 与点Q 之间的距离为8个单位长度时,此时点P 在数轴上所表示的数为﹣3或﹣51.【解析】【分析】(1)由题意得出数轴上点B 表示的数是5-,由点P 运动到AB 中点得出点P 对应的数是1(56)0.52⨯-+=即可; (2)设点P 与Q 运动t 秒时重合,点P 对应的数为63t -,点Q 对应的数为52t -+,得出方程6352t t -=-+,解方程即可;(3)①运动t 秒时,点P 对应的数为63t -,点Q 对应的数为52t --,由题意得出方程6352t t -=--,解方程即可;②由题意得出|63(52)|8t t ----=,解得3t =或19t =,进而得出答案.【详解】解:(1)数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,∴数轴上点B 表示的数是6115-=-,点P 运动到AB 中点,∴点P 对应的数是:1(56)0.52⨯-+=,故答案为:5-,0.5;(2)设点P 与Q 运动t 秒时重合,点P 对应的数为:63t -,点Q 对应的数为:52t -+, 6352t t ∴-=-+,解得: 2.2t =,∴点P 与Q 运动2.2秒时重合;(3)①运动t 秒时,点P 对应的数为:63t -,点Q 对应的数为:52t --,点P 追上点Q ,6352t t ∴-=--,解得:11t =,∴当点P 运动11秒时,点P 追上点Q ; ②点P 与点Q 之间的距离为8个单位长度,|63(52)|8t t ∴----=,解得:3t =或19t =,当3t =时,点P 对应的数为:63693t -=-=-,当19t =时,点P 对应的数为:6365751t -=-=-,∴当点P 与点Q 之间的距离为8个单位长度时,此时点P 在数轴上所表示的数为3-或51-.【点睛】此题考查的知识点是一元一次方程的应用与两点间的距离及数轴,根据已知得出各线段之间的等量关系是解题关键.27.(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【解析】【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C 的右边先确定点C 对应的数,进而确定点B 、点A 所表示的数即可求解.【详解】解:(1)∵点C 为原点,BC =1,∴B 所对应的数为﹣1,∵AB =2BC ,∴AB =2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.28.(1)45°;(2)∠MON=12α.(3)∠MON=12α【解析】【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(3)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可.【详解】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=75°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∠MON=12α, 理由是:∵∠AOB=α,∠BOC=60°,∴∠AOC=α+60°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC=12∠AOC=12α+30°,∠NOC=12∠BOC=30° ∴∠MON=∠MOC ﹣∠NOC=(12α+30°)﹣30°=12α. (3)如图3,∠MON=12α,与β的大小无关. 理由:∵∠AO B=α,∠BOC=β,∴∠AOC=α+β.∵OM 是∠AOC 的平分线,ON 是∠BOC 的平分线, ∴∠MOC=12∠AOC=12(α+β), ∠NOC=12∠BOC=12β, ∴∠AON=∠AOC ﹣∠NOC=α+β﹣12β=α+12β. ∴∠MON=∠MOC ﹣∠NOC =12(α+β)﹣12β=12α 即∠MON=12α. 考点:角的计算;角平分线的定义.29.(1)x=-7;(2)x=1【解析】【分析】(1)直接移项合并同类项进而解方程得出答案;(2)直接去分母,再移项合并同类项进而解方程得出答案.【详解】(1) 解:2352x x -=+7x -=7x =-(2) 解:242(32)4x x +--=24644x x +-+=44x -=-1x =【点睛】本题主要考查解一元一次方程,正确掌握解一元一次方程的方法是解题关键.30.(1)15.8;(2)()2.6 2.8x +;(3)他家离学校12千米.【解析】【分析】(1)根据题意,分为不超过2km 的部分和超出2km 的部分,列式计算即可;(2)根据题意,分为不超过2km 的部分和超出2km 的部分,列式即可;(3)由(2)中的代数式列出方程,求解即可.【详解】(1)由题意,得8+2.6×(5-2)=15.8元;故答案为15.8;(2)由题意,得()8 2.628 2.6 5.2 2.6 2.8x x x +⨯-=+-=+故答案为()2.6 2.8x +;(3)设他家离学校x 千米由题意得:2.6 2.834x +=,解得:12x =,答:他家离学校12千米【点睛】此题主要考查一元一次方程的实际应用,解题关键是理解题意,列出等式.四、压轴题31.(1)107秒或10秒;(2)1413或11413. 【解析】【分析】(1)由绝对值的非负性可求出a ,c 的值,设点B 对应的数为b ,结合BC = 2 AB ,求出b 的值,当运动时间为t 秒时,分别表示出点P 、点Q 对应的数,根据“Q 到B 的距离与P 到B 的距离相等”列方程求解即可;(2)当点R 运动了x 秒时,分别表示出点P 、点Q 、点R 对应的数为,得出AQ 的长, 由中点的定义表示出点M 、点N 对应的数,求出MN 的长.根据MN +AQ =25列方程,分三种情况讨论即可.【详解】(1)∵|a -20|+|c +10|=0,∴a -20=0,c +10=0,∴a =20,c =﹣10.设点B 对应的数为b .∵BC =2AB ,∴b ﹣(﹣10)=2(20﹣b ).解得:b =10.当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t .∵Q 到B 的距离与P 到B 的距离相等,∴|﹣10+5t ﹣10|=|20+2t ﹣10|,即5t ﹣20=10+2t 或20﹣5t =10+2t ,解得:t =10或t =107. 答:运动了107秒或10秒时,Q 到B 的距离与P 到B 的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +, 点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25,解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣4834 【解析】【分析】(1)根据A 点对应的数为60,B 点在A 点的左侧,AB =30求出B 点对应的数;根据AC =4AB 求出AC 的距离;(2)①当P 点在AB 之间运动时,根据路程=速度×时间求出AP =3t ,根据BP =AB ﹣AP求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.。

相关文档
最新文档