五年级奥数-行程问题2
20.五年级奥数思维训练 行程问题(二)

五年级奥数思维训练行程问题(二)
一、尝试练习
1.两辆汽车相距1500米,甲车在乙车前面,甲车每分钟行610米,乙车每分钟660米,乙车追上甲车需几分钟?
2.一个通讯员骑摩托车追赶前面部队乘的汽车。
汽车每小时行48千米,摩托车每小时行60千米。
通讯员出发后2小时追上汽车。
通讯员出发的时候和部队乘的汽车相距多少千米?
二、训练营地
1. 速滑队以每分钟行500米的速度从基地出发进行野外训练。
16分钟后通信员骑摩托车以每分钟900米的速度从基地出发去追速滑队,问多少分钟后通信员可以追上速滑队?
2.老王和老张从甲地到乙地开会,老张骑自行车的速度是15千米/小时,先出发2小时后,老王后出发,老王用了3小时追上老张,求老王骑车速度。
3. 兄妹两人同时离家去上学。
哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。
问他们家离学校多远?
4. 一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?。
五年级奥数竞赛班专题讲义行程问题2速度的变化加答案

行程问题2·速度的变化3.用比来体现速度的变化【例1】A、B两地相距7200米,甲、乙分别从A、B两地同时出发,结果在距B地2400米处相遇.如果乙的速度提高到原来的3倍,那么两人可提前10分钟相遇.甲的速度是每分钟行多少米?【例2】甲、乙二人分别从A、B两地同时出发,相向而行.出发时速度比是3:2,两人相遇后,甲的速度提高20%,乙的速度提高50%.当甲到达B地时,乙离A还有4千米.A、B两地的距离是多少千米?【例3】一辆汽车从甲地开往乙地.如果将车速提高五分之一,可以比原定时间提前半小时到达;如果以原速行驶84千米后再将车速提高三分之一,也比原定时间提前半小时到达,那么甲、乙两地相距多少千米?【例4】在微风的催送下,一艘轮船由甲港到乙港要3小时,今天这艘船照例在微风的催送下从甲地出发,当行驶到全程的13处时,突然风向变化,速度减为原来的25,行驶8千米后,又变顺风,接着以原速的2倍行完剩下的航程,结果到达乙港比往常迟36分钟.求甲港到乙港的距离.【例5】快慢二车分别以各自速度同时从甲地开往乙地,返回时各自速度都减少20%,出发1.5小时后,快车在返回途中与慢车相遇,当慢车到达乙地时,快车离甲地还有甲乙两地之间路程的25,那么快车在甲乙两地往返一次需要多少小时?【例6】一辆大货车与一辆小轿车,分别以各自的速度同时从甲地开往乙地,到乙地后立刻返回,返回时各自的速度都提高20%.出发后1.5小时,小轿车在返回的途中与大货车相遇.当大货车到达乙地时,小轿车离甲地还有甲、乙两地之间路程的15.那么,小轿车在甲、乙两地之间往返一次共用多少小时?【例7】男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B).两人同时从A 点出发.在A、B之间不停地往返奔跑.如果男运动员上坡速度是每秒3米,下坡速度是每秒5米;女运动员上坡速度是每秒2米,下坡速度是每秒3秒.那么两人第二交迎面相遇的地点离A点多少米?【例8】A、B两人同时从700米长的山坡坡底出发向上跑,跑到坡顶立即返回.他们两的上坡速度不同,下坡速度则是两人各自上坡速度的二倍.B首先到达坡顶,立即沿原路返回,并且在离坡顶70米处与A相遇.当B到达坡底(注:起点)时,A落后多少米?计算达标1.213 52x xx +--=-解:2(2)5(1)3010x x x+--=-24553010x x x+-+=-25103045x x x-+=--721x=3x=2.3251 624x xx--+=-解:2(32)12303(1)x x x-+=--6412303x x x-+=-+ 3412303x x x-+=+-1127x=2711x=3.232132 x x--=+解:2(23)63(2)x x-=+-46663x x-=+-43666x x+=++718x=187x=4.121 23x x--+=解:3(1)2(2)6x x-+-=33246x x-+-=32643x x+=++513x=135x=练习1.一辆汽车从甲地开往乙地,如果车速提高20%,可以提前1小时到达.如果按原速行驶一段距离后,再将速度提高30%,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?【答案】5 18【解】车速提高20%,所用时间是原来的10051206=,从甲地到乙地,以原来行驶需51166⎛⎫÷-=⎪⎝⎭(时),车速提高30%后需86(130%)413÷+=(时),应提前1813小时.实际提前了1小时,所以车速提高30%行驶的路程占全程的181311318÷=,原速行驶了全程的13511818-=.2. 从上海开车去南京,原计划中午11:30到达,但出发后车速提高了17,11点名就到了.第二天返回时,同一时间从南京出发,按原速行驶了120千米后,再将车速提高16,到达上海时恰好11:10.上海、南京两市间的路程是多少千米? 【答案】288【解】从上海到南京,车速提高到原来的87,所用时间是原来的78,所以原计划行车时间为171428⎛⎫÷-= ⎪⎝⎭(时). 从南京回上海,车速提高到原来的76,所用时间是原来的67,因为到达上海提前了13小时,所以提速后行驶的时间相当于原速行驶1671373⎛⎫÷-= ⎪⎝⎭(时).两市之间相距7120442883⎛⎫÷-⨯= ⎪⎝⎭(千米 ).3. 一辆车从甲地开往乙地.如果把车减少10%,那么要比原定时间迟1小时到达.如果对原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少? 【答案】540千米【解】车速减少10%,所用时间就是原定时间的109.原定时间是101199⎛⎫÷-= ⎪⎝⎭(时).如果一开始车速就提高20%,那么应比原定时间少用9[11(220%)] 1.5⨯-÷+=(时).实际少用1小时,所以按原速行驶的路程占全程的1(1.51) 1.53-÷=,全程为11805403÷=(千米).4. 一辆汽车按计划速度行驶1小时,剩下路程用计划速度的35继续行驶到达目的地的时间比计划时间迟了2小时,如果按计划速度行驶的路程再增加60千米,那么到达目的地的时间比计划时间只迟1小时,问计划速度是多少?全程有多远? 【答案】40千米;160千米【解法1】剩下的路程行驶速度与原速度比为3:5,则时间比为5:3.2(53)33÷-⨯=(小时),314+=(小时);同样道理:31(53)32÷-⨯=(小时),36041402⎛⎫÷--= ⎪⎝⎭(千米)(计划速度)404160⨯=(千米)(全程).【解法2】设计划速度为V ,时间为t ,则有:3(1)(12)5t V V t -⨯=-+,4t =;60416014135V V V V -⨯-++=-,40V =,404160⨯=(千米).5. 甲、乙两人分别从A 、B 两地同时出发,相向而行.他们相遇时,甲比乙多跑90米,相遇后乙的速度减少50%,甲到B 后立即调头,追上乙时离A 还有90米,那么,AB 间的路程为 米. 【答案】450【解析1】如图,甲、乙相遇地点D 距离AB 中点C :90245÷=(米),那么45BD BC =-米.乙减速后行45DE =米90AC ÷-米45AC =-米45BC =-米.即乙减速前后行的路程一样.而乙减速前后的速度比为2:1,从而乙减速前后的时间比为1:2.即总时间是相遇前时间的3倍.相遇前甲行45AC +米,整个过程就应该行(45)33135AC AC +⨯=+米米,即135EC =米.所以,22(90135)450BC AC ==⨯+=(米).【解析2】因为90AD =,∴DC BC =,∴相遇到追上这个过程中,甲走了3倍的DC ,而乙走了一倍DC ,此时:3:1v v =甲乙,则原速比为3:2,则:3:2AC BC =.则3290450(m)32AB -⎛⎫=÷= ⎪+⎝⎭.6. 小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地,若车在行过丙地72千米的顶地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚1.5小时.那么,甲、乙两地全程 千米.【解】从丙到乙正常与故障后的速度比为1:(75%)4:3=,则时间比为3:4.那么丙到乙计划用4026034(43)⎛⎫- ⎪⎝⎭⨯=-(时).所以原计划小李从甲地到乙地要走246+=(时). 从丁到乙正常与故障后的速度比为1:(75%)4:3=,则时间比为3:4.那么丁到乙计划用401.56032.5(43)-⨯=-(时),所以甲乙全程为722882 2.5166=--(千米).乙甲90DCBA。
五年级下册奥数题

行程问题(2)例1 甲列车每秒行20米,乙列车每秒行14米,若两列车齐头并进,则甲车行40秒超过乙车,若两列车齐尾并进,则甲车行30秒超过乙,求甲列车和乙,列车各长多少米?例2 在平行的轨道上两列火车齐头并进。
快车长240米,每秒行28米,慢长320米,每秒行16米。
从起头并道到快车完全超过慢车要多少时间?例3 客、货两车同时从甲、乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原速前进。
到达对方站后立即返回,两车再次相遇时客车比货车多行21,6千米。
甲、乙两站间的路程是多少千米?例4 A、B两车分别从东西两城同时相向而行,A车的速度是90千米/时,B车的速度为80千米/时,两车相遇后继续前进,分别到达东西两城后立即返回,两车又距中点60千米处再相遇。
东西两城相距多少千米?例5 甲、乙两人分别在圆周直径两端的A、B两点同时出发。
甲顺时针,乙逆时针,途中两人的速度不变。
第一次相遇地点C距B60米,第二次相遇地点D距B100米。
求这个圆一圈的长度。
[课堂练习]1. 铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。
这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。
求火车的全长。
2.两列在平行轨道上的火车齐尾并进。
快车长280米,每秒行28米,慢车长350米,每秒行21米。
从齐尾并进到快车完全超过慢车要多少时间?3.甲、乙两地相距216千米,客货两车同时从甲、乙两地相向而行。
已知客车每小时行58千米,货车每小时行50千米,到达对方出发点后立即返回两车第二次相遇时,客车比货车多行多少千米?4.海模比赛中,甲乙两船同时从池塘的东西两岸相对开出。
第一次在距东岸15米处相遇。
相遇后维续前进,到达对岸后立即返回,第二次相遇在离西岸8米处。
如果两路在行驶中速度不变,求池塘东西两岸的距离。
1.快车每秒行18米,慢车每秒行10米。
苏教版五年级上册数学奥数第七讲 行程问题(二)

第七讲行程问题(二)【知识概述】我们将要研究的是行程问题中一些综合性较强的题目.为此,我们需要先回顾一下已学过的基本数量关系:路程=速度×时间;总路程=速度和×时间;路程差=速度差×追及时间。
【例题精学】例1 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
画图如下:【分析与解答】结合上图,如果我们设甲、乙在点C相遇时,丙在D点,则因为过15分钟后甲、丙在点E相遇,所以C、D之间的距离就等于(40+60)×15=1500(米)。
又因为乙和丙是同时从点B出发的,在相同的时间内,乙走到C点,丙才走到D点,即在相同的时间内乙比丙多走了1500米,而乙与丙的速度差为50-40=10(米/分),这样就可求出乙从B到C的时间为1500÷10=150(分钟),也就是甲、乙二人分别从A、B出发到C点相遇的时间是150分钟,因此,可求出A、B的距离。
【同步精练】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?例2甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?【分析与解答】在相同的时间内,乙行了(200-20)=180(米),丙行了200-25【同步精练】老王从甲城骑自行车到乙城去办事,每小时骑15千米,回来时改骑摩托车,每小时骑33千米,骑摩托车比骑自行车少用1.8小时,求甲、乙两城间的距离。
例3甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。
五年级奥数:第25讲 行程问题(二)

五年级奥数:第25讲行程问题(二)本讲重点讲相遇问题和追及问题。
在这两个问题中,路程、时间、速度的关系表现为:相遇问题:追击问题:在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
例1甲车每小时行40千米,乙车每小时行60千米。
两车分别从A,B两地同时出发,相向而行,相遇后3时,甲车到达B地。
求A,B两地的距离。
分析与解:先画示意图如下:图中C点为相遇地点。
因为从C点到B点,甲车行3时,所以C,B两地的距离为40×3=120(千米)。
这120千米乙车行了120÷60=2(时),说明相遇时两车已各行驶了2时,所以A,B 两地的距离是(40+60)×2=200(千米)。
例2小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大爷每分钟行40米,他们每天都在同一时刻相遇。
有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?分析与解:因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了(60+40)×9=900(米),所以小明比平时早出门900÷60=15(分)。
例3小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经过他身旁共用18秒。
已知火车全长342米,求火车的速度。
分析与解:在上图中,A是小刚与火车相遇地点,B是小刚与火车离开地点。
由题意知,18秒小刚从A走到B,火车头从A走到C,因为C到B正好是火车的长度,所以18秒小刚与火车共行了342米,推知小刚与火车的速度和是342÷18=19(米/秒),从而求出火车的速度为19-2=17(米/秒)。
例4 铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。
这时,一列火车以56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。
行程问题2

行程问题(二)1. 货车和客车同时从甲、乙两地相向而行,货车每小时行50千米,客车每小时行45千米,两车在距中点20米处相遇。
求甲、乙两地相距多少千米?2. 甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东西两地相距多少千米?3. 小玲每分钟行100米,小平每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?4. 一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米。
当摩托车行到两地中点处,与汽车相距75千米。
甲乙两地相距多少千米?5.小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。
6.快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车和慢车还相距10千米。
慢车每小时行多少千米?7.兄弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?8.汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?9.兄妹两人同时离家去上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门时,发现忘带课本,立即沿原路回家去取,行到离学校180米处与妹妹相遇。
他们家离学校有多远?10.甲乙两车同时从A地出发去B地,甲到B地后立即返回,在距B地90千米处与乙相遇,已知甲每小时行60千米,乙每小时行40千米。
那么A、B两地相距多少千米?11.兄弟两人同时离家去上学,学校离家700米,哥哥骑车每分钟行200米,弟弟步行每分钟走80米。
哥哥到校后,发现没带课本,立即返回,弟弟经过几分钟与返回的哥哥相遇?12.甲每小时行驶5千米,乙每小时行4千米,如果两人同时同地向同一方向出发,甲行45千米到达目的地,马上从原路返回,在途中与乙相遇,从出发到相遇共经过几小时?行程问题(三)1.甲、乙二人同时从东城区西城,甲每分钟行120米,乙每分钟行80米,甲到达西城后立即返回东城,在离西城700米处与乙相遇,东、西两城相距多少米?2.哥哥和弟弟分别从家和学校相向而行,哥哥每分钟行80米,弟弟每分钟行60米,两人在离中点100米处相遇,问:家到学校有多少米?3.一个水池注满水需要56吨,单开进水管需要7小时将水池注满,单开放水管需要8小时将池中水放完,如果两管齐开,需要多少小时将空池注满?4.小张和小赵两人同时从相距1000米的两地相向而行,小张每分钟行120米,小赵每分钟行80米,如果一只狗与小张同时同向而行,每分钟跑460米,遇到小赵后,立即回头向小张跑去,遇到小张再向小赵跑去,这样不断来回,直到小张和小赵相遇为止,狗共跑了多少米?5.甲、乙两队同时从相距50千米的两地相向而行,甲队每小时行2千米,乙队每小时行3千米,一个人骑车每小时行18千米在两队中间往返联络,问两队相遇时,骑车人行驶了多少千米?6.两船同时从AB两港对开,甲船每小时行28千米,比乙船每小时快3千米。
小学奥数行程问题经典整理2

小学奥数行程问题经典整理2在小学奥数竞赛中,行程问题是一个经典且常见的题型。
在这篇文章中,我将为大家整理一些小学奥数行程问题的经典题目,并给出详细的解析方法。
希望通过这些例子的讲解,能够帮助大家更好地理解和掌握行程问题的解题技巧。
1、问题描述:小明参加一个马拉松比赛,在比赛开始后,他以每分钟的速度5米向前奔跑。
在第10分钟,他突然停下来休息了3分钟,然后以每分钟的速度8米向前奔跑。
请问小明跑了多少米?解题思路:我们可以将整个过程分为两段来计算,第一段是小明以每分钟5米的速度奔跑10分钟,共奔跑了10分钟×5米/分钟=50米;第二段是小明以每分钟8米的速度奔跑7分钟,共奔跑了7分钟×8米/分钟=56米。
所以,小明总共跑了50米+56米=106米。
2、问题描述:小华和小明从同一地点出发,他们同时开始向东行走。
小华以每小时5千米的速度向前走,小明以每小时6千米的速度向前走。
已知他们在5小时后相遇,相遇地点距离出发地点80千米。
请问这两个人出发后的行程分别是多少千米?解题思路:我们可以设小华出发后的行程为x千米,则小明出发后的行程为80千米-x千米。
由于小华的速度是小明的5/6倍,所以小明行走的距离是小华行走距离的5/6倍。
根据时间和速度的关系,我们可以列出以下等式:5小时×5千米/小时 = (5小时-1小时)×6千米/小时 + 80千米-x千米。
通过计算得到x=20千米,所以小华行走了20千米,小明行走了60千米。
3、问题描述:小强从A地出发,经过45分钟到达了B地,然后立即返回A地。
小明从A地出发,以每小时10千米的速度行走,他恰好在小强回到A地的时候到达B地。
请问小明行走的速度是多少千米/小时?解题思路:我们可以设从A地到B地的距离为x千米,则小强在45分钟内行走了x千米,小明在同样的时间内行走了10/60×45千米。
根据题意,小明的行走距离等于小强的行走距离的两倍,即10/60×45=2x。
五年级奥数专题-行程问题

五年级奥数专题-行程问题行程问题(一)【专题导引】行程应用题是专门讲物体运动的速度、时间、路程三者关系的应用题。
行程问题的主要数量关系是:路程=速度×时间。
知道三个量中的两个量,就能求出第三个量。
【典型例题】【例1】甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车在距中点32千米处相遇。
东、西两地相距多少千米?【试一试】1、小玲每分行100米,小平每分行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校至少年宫有多少米?2、一辆汽车和一辆摩托车同时从甲、乙两地相对开出,汽车每小时行40千米,摩托车每小时行65千米,当摩托车行到两地中点处时,与汽车还相距75千米,甲、乙两地相距多少千米?【例2】快车和慢车同时从甲、乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米。
慢车每小时行多少千米?【试一试】1、兄、弟二人同时从学校和家中出发,相向而行。
哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。
弟弟每分钟行多少米?2、汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?【例3】甲、乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。
中午12时甲到西村后立即返回东村,在距西村15千米处遇到乙。
求东、西两村相距多少千米?【试一试】1、甲、乙二人同时从A地到B地,甲每分钟走250米,乙每分钟走90米。
甲到达B地后立即返回A地,在离B地3.2千米处与乙相遇。
A、B两地间的距离是多少千米?2、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20米。
30分钟后小平到家,到家后立即原路返回,在离家350米处遇到小红。
小红每分钟走多少千米?【例4】甲、乙两队学生从相距18千米的两地同时出发,相向而行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题(二)
专题简析:
本周的主要问题是“追及问题”。
追及问题一般是指两个物体同方向运动,由于各自的速度不同,后者追上前者的问题。
追及问题的基本数量关系是:
速度差×追及时间=追及路程
解答追及问题,一定要懂得运动快的物体之所以能追上运动慢的物体,是因为两者之间存在着速度差。
抓住“追及的路程必须用速度差来追”这一道理,结合题中运动物体的地点、运动方向等特点进行具体分析,并借助线段图来理解题意,就可以正确解题。
例1.中巴车每小时行60千米,小轿车每小时行84千米。
两车同时从相距60千米的两地同方向开出,且中巴在前。
几小时后小轿车追上中巴车?
变式训练
1.一辆摩托车以每小时80千米的速度去追赶前面30千米处的卡车,卡车行驶的速度是每小时65千米。
摩托车多长时间能够追上?
2.兄弟二人从100米跑道的起点和终点同时出发,沿同一方向跑步,弟弟在前,每分钟跑120米;哥哥在后,每分钟跑140米。
几分钟后哥哥追上弟弟?
3.甲骑自行车从A地到B地,每小时行16千米。
1小时后,乙也骑自行车从A地到B地,每小时行20千米,结果两人同时到达B地。
A、B两地相距多少千米?
例2.一辆汽车从甲地开往乙地,要行360千米。
开始按计划以每小时45千米的速度行驶,途中因汽车故障修车2小时。
因为要按时到达乙地,修好车后必须每小时多行30千米。
汽车是在离甲地多远处修车的?
变式训练
1.小王家离工厂3千米,他每天骑车以每分钟200米的速度上班,正好准时到工厂。
有一天,他出发几分钟后,因遇熟人停车2分钟,为了准时到厂,后面的路必须每分钟多行100米。
小王是在离工厂多远处遇到熟人的?
2.一辆汽车从甲地开往乙地,若每小时行36千米,8小时能到达。
这辆汽车以每小时36千米的速度行驶一段时间后,因排队加油用去了15分钟。
为了能在8小时内到达乙地,加油后每小时必须多行7.2千米。
加油站离乙地多少千米?
3.汽车以每小时30千米的速度从甲地出发,6小时后能到达乙地。
汽车出发1小时后原路返回甲地取东西,然后立即从甲地出发。
为了能在原来时间内到达乙地,汽车必须以每小时多少千米的速度驶向乙地?
例3.甲、乙两人以每分钟60米的速度同时、同地、同向步行出发。
走15分钟后甲返回原地取东西,而乙继续前进。
甲取东西用去5分钟的时间,然后改骑自行车以每分钟360米的速度追乙。
甲骑车多少分钟才能追上乙?
变式训练
1.兄弟二人同时从家出发去学校,哥哥每分钟走80米,弟弟每分钟走60米。
出发10分钟钟后,哥哥返回家中取文具,然后立即骑车以每分钟310米的速度去追弟弟。
哥哥骑车几分钟追上弟弟?
2.快车每小时行60千米,慢车每小时行40千米,两车同时从甲地开往乙地。
出发0.5小时后,快车因故停下修车1.5小时。
修好车后,快车仍用原速前进,经过几小时才能追上慢车?
3.甲、乙二人加工同样多的零件,甲每小时加工20个,乙每小时加工15个。
一天,乙比甲早工作2小时,到下午二人同时完成了加工任务。
他俩一共加工了多少个零件?
例4.甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环形公路同方向进行晨练。
出发后10分钟,甲便从乙身后追上了乙。
已知二人的速度和是每分钟700米,求甲、乙二人的速度各是多少?
变式训练
1.爸爸和小明同时从同一地点出发,沿相同方向在环形跑道上跑步。
爸爸每分钟跑150米,小明每分钟跑120米,如果跑道全长900米,问:至少经营几分钟爸爸从小明身后追上小明?
2.在300米长的环形跑道上,甲、乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑4.4米。
两人起跑后的第一次相遇点在起跑线前多少米?
3.环湖一周共400米,甲、乙二人同时从同一地点同方向出发,甲过10分钟第一次从乙身后追上乙。
若二人同时从同一地点反向而行,只要2分钟二人就相遇。
求甲、乙的速度。
例5.甲、乙、丙三人步行的速度分别是每分钟100米、90米、75米。
甲在公路上A处,乙、丙在公路上B处,三人同时出发,甲与乙、丙相向而行。
甲和乙相遇3分钟后,甲和丙又相遇了。
求A、B之间的距离。
变式训练
2.甲、乙、丙三人行走的速度分别是每分钟60米、80米、100米。
甲、乙二人在B地,丙在A 地与甲、乙二人同时相向而行,丙和乙相遇后,又过2分钟和甲相遇。
求A、B两地的路程。
3.甲、乙、丙三人行走的速度分别是每分钟60米、80米、100米。
甲、乙二人从B地同时同向出发,丙从A地同时同向去追甲和乙。
丙追上甲后又经过10分钟才追上乙。
求A、B两地的路程。
3.A、B两地相距1800米,甲、乙二人从A地出发,丙同时从B地出发与甲、乙二人相向而行。
已知甲、乙、丙三人的速度分别是每分钟60米、80米和100米,当乙和丙相遇时,甲落后于乙多少米?。