有机物的分子结构特点和主要化学性质word版本

有机物的分子结构特点和主要化学性质word版本
有机物的分子结构特点和主要化学性质word版本

有机物的分子结构特点和主要化学性质

有机物的分子结构特点和主要化学性质

有机物种类繁多,变化复杂,应用面广。在学习和掌握各类有机物化学性质时,要抓住有机物的结构特点,即决定有机物化学特性的原子或原子团——官能团。学习时以烃类有机物为基础,以烃的衍生物为重点;通过各类有机物的重要代表物的组成、结构、性质、制法和主要用途的学习,达到掌握相关各类有机物的目的。对于其中涉及的各有关反应要认识反应的意义,即每个反应对于反应物来说,它表示着反应物的性质;对于生成物来说,很可能成为生成物的制法。也就是说,一个化学方程式它既是性质反应,又是制法的反应原理。对于各个反应,应尽量从分子结构的角度,了解反应的历程,以便于掌握和运用。

现对各类有机物的分子结构特点和重要化学性质分别阐述如下:

1.烷烃

分子结构特点:C—C单键和C—H单键。

在室温时这两种键不活泼,不易发生化学反应,所以烷烃一般不和强酸、强碱、强氧化剂反应,但在一定条件下(光、热),C—H键的氢可以发生取代反应,C—C键可以断裂,继而发生裂化和氧化反应。如:

(1)取代反应

R-CH3+X2R-CH2X+HX(卤化)

R-CH3+HO-NO2-CH2NO2+H2O(硝化)

(2)裂化反应(在高温和缺氧条件下)

(3)催化裂化C

8H

18

C

4

H

10

+C

4

H

8

C4H10C2H6+C2H4

(3)氧化反应

①燃烧氧化

②催化氧化

2CH3CH2CH2CH3+5O24CH3COOH+2H2O

2.烯烃

分子结构特点:分于中含有键。

烯烃分子内的碳碳双键中有一个键较弱,容易断开而发生化学反应,所以烯烃的化学性质较活泼,主要发生加成、氧化和加聚反应。

(1)氧化反应

①燃烧氧化

②催化氧化

2CH2CH2+O22CH3-CHO

③使高锰酸钾溶液褪色

(2)加成反应

①加H

2、X

2

(X:Cl、Br、I)

CH2CH2+H2CH3-CH3

CH2CH2+Cl2→CH2Cl-CH2Cl

②加H

2

O、HX

CH2CH2+H-OH CH3-CH2OH CH2 CH2+HCl CH3-CH2Cl

(3)加聚反应

nCH2CH2[CH2-CH2]n

3.炔烃

分子结构特点:分子内含有—C≡C—键

炔烃分子内的碳碳三键中有一个较强的键和二个较弱的键,这二个较弱的键在化学反应中容易断开,因而炔烃的化学性质也是活泼的,能够发生和烯烃相似的反应即加成反应、加聚反应、氧化反应,能使酸性高锰酸钾溶液褪色,在空气中易燃烧,如:

(1)氧化反应

①燃烧氧化

②使高锰酸钾溶液褪色

(2)加成反应(H2、X2、H2O、HX)

CH≡CH+HCl CH2==CHCl

(3)加聚反应

4.二烯烃

分子结构特点:分子内含有二个碳碳双键。

二烯烃的重要代表物是1,3-丁二烯 (CH

2==CH—CH==CH

2

)和2-甲基-1.3-

丁二烯( )它们的性质和乙烯相似,能发生加成反应、加聚反应。如:

5.芳香烃(以苯及其同系物为例)

分子结构特点:芳香烃分子结构中含有苯环,苯环是平面正六边形,具有很高的对称性,在常温下苯的化学性质很稳定,不跟酸、碱、氧化剂等反应,但在一定条件下,也可发生加成反应,但不如烯烃那样活泼,因此苯环的反应性能是:难氧化、难加成,主要是苯环上的氢原子发生的取代反应。

(1)取代反应

(2)加成反应

苯的同系物分子结构中有烷基侧链和苯环,由于苯环影响了烷基,使侧链烷基易被氧化,在酸性高锰酸钾等强氧化剂的作用下,烷基被氧化成羧基,又由于烷基影响苯环,使苯环更易发生取代反应。如:

6.醇

醇是链烃分子中的氢原子被羟基取代的衍生物,官能团是羟基(-OH),醇分子里含有C—O键和O—H键,它们都是较强的极性共价键,并且容易断裂,在一定条件下羟基或羟基上的氢原子可被一些原子或原子团取代,还能发生消去反应(分子内脱水)、脱水反应(分子间脱水)、酯化反应,这些性质都表现在羟基上。

乙醇的分子结构与化学性质

要学好醇的化学性质,首先要掌握乙醇的化学性质,而要掌握乙醇的化学性质,必须从乙醇的分子结构入手.乙醇的化学性质是羟基与乙基相互影响的结

果.如图:,不同的反应化学键的断裂发生在不同的部位.

(1)与活泼金属(K、Na、Mg、Al等)反应,断①键放出氢气,可由氢气体积和醇的物质的量推算分子中羟基的数目;(2)与氢卤酸反应,断②键;(3)在浓硫酸作用下发生脱水反应,140℃分子间脱水断①、②键,生成乙醚,170℃分子内脱水断②④健生成乙烯(称消去反应);(4)氧化反应,催化氧化时断①③键,充分燃烧时则生成CO2和水.

醇类的化学性质与乙醇相似,但要注意其特殊性,如CH3OH、等

不能发生消去反应,催化氧化生成酮而不是醛,则不能发生催化氧化反应.

7.酚

羟基跟芳香环上的碳原子直接相连所形成的化合物称为酚,羟基直接连接在苯环上的化合物称为苯酚。苯酚分子内的羟基,由于受苯环的影响,O—H键的极性增强,故苯酚可以电离出H+离子而显弱酸性,苯酚的酸性很弱(不能使指示剂变色),甚至比碳酸还弱,因此强酸、强碱、碳酸都可以以苯酚的钠的溶液中析出苯酚:反过来苯酚分子内的苯环也受羟基的影响,使酚中苯环比苯更容易发生取代反应,如:

苯酚溶液遇Fe3+离子显紫色,故可用FeCl3溶液来检验苯酚。

8.醛

分子内由烃基和醛基(—CHO)相连而构成的化合物称为醛。醛分子

容易发生氧化反应,不但能被强氧化剂(KMnO4、HNO3等)氧化,也能被弱

氧化剂银氨溶液、新制氢氧化铜氧化,羰基的碳氧双键中有一个键比较弱,可以发生加成反应,与氢气加成还原成醇,但不与卤素、卤化氢加成。

(1)加成反应

(2)氧化反应(还原性)

HCHO+2[Ag(NH3)2]OH HCOONH4+2Ag↓3NH

3+H

2

O

HCHO+4[Ag(NH3)2]OH CO2↑+4Ag↓+8NH3↑+3H2O

CH3CHO+2[Ag(NH3)2]OH CH3COONH4+2Ag↓+3NH3+H

2

O

醛经催化氧化可生成相应的羧酸,如:

2CH3CHO+O22CH3COOH

(3)缩聚反应

这是工业上制酚醛树脂(俗称电木)的反应。

相同碳原子个数的醛、酮又是一对因官能团不同形成的同分异构体,

化,所以银氨溶液或新制氢氧化铜可用于区别醛和酮。

酮分子中的羰基也可以和H2发生加成反应生成醇,如:

9.羧酸

分子里烃基跟羧基直接相连而构成的有机物叫做羧酸。羧基是由羰

极性加强,能电离出H+离子而显酸性,羧基中的羟基能被醇中的烃氧基(—OR')取代而发生酯化反应。

(1)弱酸性(比碳酸酸性强)

CH 3COOH CH3COO-+H+,具有无机弱酸的通性,如和酸、碱指示剂反应,和位于金属活动顺序表H之前的金属发生置换反应,生成H

2

等。

CH3COOH+NaOH─→CH

3COONa+H

2

O

2CH3COOH+Na2CO3─→2CH3COONa+H2O+CO2↑

(2)酯化反应

10.酯

酸和醇反应生成的一类化合物叫做酯,酯的一般通式是,

酯基可看作是酯的官能团,酯类的主要化学性质是能够发生水解反应(取代反应)。

酯化反应和水解反应都是可逆反应,在碱性溶液中可使酯的水解趋于完全。

饱和羧酸和饱和酯也是一对因官能团异构不同形成的同分异构体。

糖类也称碳水化合物。一般是多羟基醛或多羟基酮,以及能够水解生成它们的有机物,糖类分为:单糖(葡萄糖、果糖)、二糖(蔗糖、麦芽糖)、多糖(淀粉、纤维素)。二糖和多糖的主要化学性质是能发生水解反应。

单糖以葡萄糖为例,由于有多个羟基故有多元醇的性质,能和酸发生酯化反应;由于又具有醛基,故有醛的性质,能和银氨溶液或新制氢氧化铜反应而表现还原性,也能和氢气发生加成反应表现氧化性。如:

CH2OH-(CHOH)4-CHO+2[Ag(NH3)2]+2OH-CH2OH-(CHOH)4-COOH+2Ag↓

+4NH3+H2O

CH2OH-(CHOH)4-CHO+2Cu(OH)2CH

2OH-(CHOH)

4

-COOH+Cu

2

O↓+2H

2

O

CH2OH- (CHOH)4-CHO+H2CH

2OH-(CHOH)

4

-CH

2

OH

12.氨基酸和蛋白质

(1)氨基酸

分子是由氨基和羟基所构成的有机物叫做氨基酸,如 R——COOH,有酸性基团(—COOH)和碱性基团(—NH2),既显酸性又显碱性,是两性化合物,氨基酸还能发生缩聚反应而生成高分子化合物。如:

蛋白质是由氨基酸经缩聚反应形成的高分子化合物。分子中肽键

( )是蛋白质的结构特点。天然蛋白质是α-氨基酸通过肽键构成的高分子化合物;其水解的最终产物也是多种α-氨基酸。

蛋白质的主要性质:

①水解反应。蛋白质在酶的作用发生水解反应时,肽键断裂,得到的产物为氨基酸。如:

人体中蛋白质发生水解的主要产物为尿素[CO(NH

2)

2 ]。

② 盐析作用。蛋白质溶液中加入无机盐的浓溶液,使蛋白质溶解度降低而析出,称为盐析。盐析过程是可逆的,可用来提纯或分离蛋白质。

③变性。蛋白质在较高的温度、重金属盐、酸、碱、紫外光等作用下,发生性质上的改变而凝结,称为蛋白质的变性,变性是不可逆的变化。

④溶于水形成胶体

⑤颜色反应。如分子结构中有苯环的蛋白质跟浓HNO3作用呈黄色。

⑥蛋白质在灼烧时,有烧焦羽毛的气味,这也是鉴别蛋白质的简易方法。

有机物分子式结构式确定讲解

研究有机物的一般步骤和方法 1.有机物的天然提取和人工合成往往得到的是混合物,假设给你一种这样的有机混合物让你研究,一般要采取的几个步骤是() A.确定化学式→确定实验式→确定结构式→分离、提纯 B.分离、提纯→确定化学式→确定实验式→确定结构式 C.分离、提纯→确定结构式→确定实验式→确定化学式 D.分离、提纯→确定实验式→确定分子式→确定结构式 2.能够快速、微量、精确的测定相对分子质量的物理方法是() A.质谱 B.红外光谱 C.紫外光谱 D.核磁共振谱 3.利用红外光谱对有机化合物分子进行测试并记录,可以判断该有机物分子拥有的()A.同分异构体数 B.原子个数 C.基团种类 D.相对分子量 4.下列叙述不正确的是() A.1个丙烯分子有8个σ键,1个π键 B.1、4—二甲苯核磁共振氢谱中有两组峰,且氢原子数之比为3∶2 C.丙氨酸分子属于手性分子C H3CH COOH NH2 D.分子式为C2H6O的红外光谱图上发现有C-H键和C-O键的振动吸收,由此可以初步推测有机物结构简式为C2H5-OH 5.某化合物6.2 g在O2中完全燃烧,只生成8.8 g CO2和5.4 g H2O。下列说法正确的是A.该化合物仅含碳、氢两种元素 B.该化合物中碳、氢原子个数比为1 : 2 C.无法确定该化合物是否含有氧元素 D.该化合物中一定含有氧元素 6.某化合物由C、H两种元素组成,其中含碳的质量分数85.7%,在标准状况下,11.2L 此化合物气体的质量为14g。则此化合物的分子式为() A.C2H4 B.C3H6 C.C6H6 D.CH4 7.某有机物X含C、H、O三种元素,现已知下列条件:①碳的质量分数;②氢的质量分数;③蒸汽的体积(已折算成标准状况下的体积);④X对氢气的相对密度;⑤X的质量; ⑥X的沸点,确定X的分子式所需要的最少条件是() A.①②⑥ B.①③⑤ C.①②④ D.①②③④⑤ 8.在有机物分子中,不同氢原子的核磁共振谱中给出的吸收峰也不同,根据吸收峰可以确定有机物分子中氢原子的种类和数目。例如二乙醚的结构简式为: CH3—CH2—O—CH2—CH3其核磁共振谱中给出的吸收峰有两个,如图1所示:

高中化学分子的结构与性质

分子的结构与性质 【知识动脉】 知识框架 产生原因:共价键的方向性 Sp3 决定因素:杂化轨道方式sp2 分子的空间构型sp 空间构型的判断:VSEPR理论 空间构型决定性质等电子原理 手性分子 配合物 一、杂化轨道理论 1. 杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。 思考:甲烷分子的轨道是如何形成的呢? 形成甲烷分子时,中心原子的2s和2p x,2p y,2p z等四条原子轨道发生杂化,形成一组新的轨道,即四条sp3杂化轨道,这些sp3杂化轨道不同于s轨道,也不同于p轨道。 根据参与杂化的s轨道与p轨道的数目,除了有sp3杂化外,还有sp2杂化和sp杂化,sp2杂化轨道表示由一个s轨道与两个p轨道杂化形成的,sp杂化轨道表示由一个s轨道与一个p轨道杂化形成的。 思考: 应用轨道杂化理论,探究分子的立体结构。

C2H4 BF3 CH2O C2H2 思考:怎样判断有几个轨道参与了杂化? [讨论总结]:三种杂化轨道的轨道形状,SP杂化夹角为°的直线型杂化轨道,SP2杂化轨道为°的平面三角形,SP3杂化轨道为°′的正四面体构型。 小结:HCN中C原子以sp杂化,CH2O中C原子以sp2杂化;HCN中含有2个σ键和2π键;CH2O中含有3σ键和1个π键 【例1】(09江苏卷21 A部分)(12分)生物质能是一种洁净、可再生的能源。生物质气(主要成分为CO、CO2、H2等)与H2混合,催化合成甲醇是生物质能利用的方法之一。甲醛分子中碳原子轨道的杂化类型为。甲醛分子的空间构型是;1mol甲醛分子中σ键的数目为。 解析与评价:甲醛分子中含有碳氧双键,故碳原子轨道的杂化类型为sp2杂化;分子的空间构型为平面型;1mol甲醛分子中含有2mol碳氢δ键,1mol碳氧δ键,故含有δ键的数目为3N A 答案:sp2平面型3N A 【变式训练1】(09宁夏卷38)[化学—选修物质结构与性质](15分) 已知X、Y和Z三种元素的原子序数之和等于42。X元素原子的4p轨道上有3个未成对电子,Y元素原子的最外层2p轨道上有2个未成对电子。X跟Y可形成化合物X2Y3,Z元素可以形成负一价离子。请回答下列问题: (1)X与Z可形成化合物XZ3,该化合物的空间构型为____________; 2、价层电子对互斥模型 把分子分成两大类:一类是中心原子上的价电子都用于形成共价键。如CO2、CH2O、CH4等分子中的C 原子。它们的立体结构可用中心原子周围的原子数来预测,概括如下: ABn 立体结构范例 n=2 直线型CO2 n=3 平面三角形CH2O n=4 正四面体型CH4 另一类是中心原子上有孤对电子 ............)的分子。如 ....(未用于形成共价键的电子对 H2O和NH3中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥。因而H2O分子呈V型,NH3分子呈三角锥型。 练习2、应用VSEPR理论判断下表中分子或离子的构型。进一步认识多原子分子的立体结构。 化学式中心原子含有孤对电子对数中心原子结合的原子数空间构型 H2S

有机物的分子结构特点和主要化学性质

有机物的分子结构特点和主要化学性质 有机物种类繁多,变化复杂,应用面广。在学习和掌握各类有机物化学性质时,要抓住有机物的结构特点,即决定有机物化学特性的原子或原子团——官能团。学习时以烃类有机物为基础,以烃的衍生物为重点;通过各类有机物的重要代表物的组成、结构、性质、制法和主要用途的学习,达到掌握相关各类有机物的目的。对于其中涉及的各有关反应要认识反应的意义,即每个反应对于反应物来说,它表示着反应物的性质;对于生成物来说,很可能成为生成物的制法。也就是说,一个化学方程式它既是性质反应,又是制法的反应原理。对于各个反应,应尽量从分子结构的角度,了解反应的历程,以便于掌握和运用。 现对各类有机物的分子结构特点和重要化学性质分别阐述如下: 1.烷烃 分子结构特点:C —C 单键和C —H 单键。 在室温时这两种键不活泼,不易发生化学反应,所以烷烃一般不和强酸、强碱、强氧化剂反应,但在一定条件下(光、热),C —H 键的氢可以发生取代反应,C —C 键可以断裂,继而发生裂化和氧化反应。如: (1)取代反应 R-CH 3+X 2 R-CH 2X+HX(卤化) R-CH 3+HO-NO 2 -CH 2NO 2+H 2O(硝化) (2)裂化反应(在高温和缺氧条件下) (3)催化裂化C 8H 18 C 4H 10+C 4H 8 C 4H 10 C 2H 6+C 2H 4 (3)氧化反应 ①燃烧氧化

②催化氧化 2CH 3CH 2CH 2CH 3+5O 2 4CH 3COOH+2H 2O 2.烯烃 分子结构特点:分于中含有 键。 烯烃分子内的碳碳双键中有一个键较弱,容易断开而发生化学反应,所以烯烃的化学性质较活泼,主要发生加成、氧化和加聚反应。 (1)氧化反应 ①燃烧氧化 ②催化氧化 2CH 2 CH 2+O 2 2CH 3-CHO ③使高锰酸钾溶液褪色 (2)加成反应 ①加H 2、X 2(X :Cl 、Br 、I) CH 2 CH 2+H 2 CH 3-CH 3 CH 2 CH 2+Cl 2→CH 2Cl-CH 2Cl ②加H 2O 、HX CH 2 CH 2+H-OH CH 3-CH 2OH CH 2 CH 2+HCl CH 3-CH 2Cl (3)加聚反应

总复习:有机化合物的性质

专题:有机化学 第四讲有机化合物的性质 北京四中 一、结构 核心是 二、化学性质 1、以代表物为思维载体 2、从头往后梳理 (一)烷烃的化学性质 1、取代反应: 甲烷的氯代反应较难停留在一氯代甲烷阶段 2.氧化在空气中燃烧: 3、热裂 把烷烃的蒸气在没有氯气的条件下,加热到4500C以上时,分子中的键发生断裂,形成较小的分子。这种在高温及没有氧气的条件下发生键断裂的反应称为反应。 (二)单烯烃 乙烯是最简单的单烯烃,分子式为,结构简式为。

(2)氧化反应: ①与酸性KMnO4的作用:使KMnO4溶液 分离甲烷和乙烯不用酸性KMnO4 补充:烯烃与KMnO4的反应 在中性或碱性的高锰酸钾溶液中, 烯烃被氧化成二元醇,高锰酸钾被还原成。在酸性高锰酸钾溶液中,烯烃中碳碳双键完全断裂,CH2=基被氧化成,RCH=基被氧化成,基被氧化成。高锰酸钾被还原成。 (3)加聚反应: 补充:二烯烃化学性质:

乙炔性质 化学键: 独特的大π键:介于单键和双键之间的独特的键(键长、键能) 苯的化学性质 1、易取代 (1)卤代: (2)硝化 (苯分子中的H原子被硝基取代的反应)

2、难氧化: 不使酸性高锰酸钾溶液褪色 3、加成 (1)取代反应: 三硝基甲苯(TNT) (2)氧化反应 (五)卤代烃 R CH CH 2 H X消除反应 取代反应 δ δ- +

1、被羟基取代(卤代烷的水解) 2.消除反应 卤代烷在KOH或NaOH等强碱的醇溶液中加热,分子中脱去一分子卤化氢生成烯烃的反应叫做消除反应。 (六)乙醇 醇的主要化学性质 1、与金属Na的取代 CH3CH2OH + Na → (乙醇钠)﹢ 功能: 2、乙醇与HX反应: 思考: 两者是否可逆反应? 3、脱水: 分子内脱水:消去反应

分子结构与性质教案

第二章分子结构与性质 第一节共价键 【学习目标】 1、了解共价键的形成过程。 2、知道共价键的主要类型δ键和π键。 3、能用键参数――键能、键长、键角说明简单分子的某些性质 4、知道等电子原理,结合实例说明“等电子原理的应用” 【学习重点】 1、δ键和π键的特征和性质 2、用键能、键长、键角等说明简单分子的某些性质。 【学习难点】 1、δ键和π键的特征; 2、键角 【教学过程】 复习引入: 1.NaCl、HCl的形成过程 2.离子键:阴阳离子间的相互作用。 3.共价键:原子间通过共用电子对形成的相互作用。 4.使离子相结合或原子相结合的作用力通称为化学键。 一、共价键 1、定义:原子间通过共用电子对形成的相互作用。 2、练习:用电子式表示H2、HCl、Cl2的形成过程 H2 HCl Cl2 思考:为什么H2、Cl2 是双原子分子,而稀有气体是单原子分子? 3、形成共价键的条件:两原子都有单电子 讨论(第一组回答):按共价键的共用电子对理论,是否有H3、H2Cl、Cl3的分子存在? 4、共价键的特性:饱和性 对于主族元素而言,内层电子一般都成对,单电子在最外层。 如:H 1s1 、Cl 1s22s22p63s23p5 H、Cl最外层各缺一个电子,于是两原子各拿一电子形成一对 共用电子对共用,由于Cl吸引电子对能力稍强,电子对偏向Cl(并非完全占有),Cl略带部分负电荷,H略带部分正电荷。

讨论(第二组回答):共用电子对中H、Cl的两单电子自旋方向是相同还是相反? 设问:前面学习了电子云和轨道理论,对于HCl中H、Cl原子形成共价键时,电子云如何重叠? 例:H2的形成 1s1 相互靠拢1s1 电子云相互重叠形成H2分子的共价键 (H-H)由此可见,共价键可看成是电子云重叠的结果。电子云重叠程度越大,则形成的共价键越牢固。 H2里的共价键称为δ键。形成δ键的电子称为δ电子。 5、共价键的种类 (1)δ键:(以“头碰头”重叠形式) a、特征:以形成化学键的两原子核的连线为轴作旋转操作,共价键电子云的图形不变,这种特征称为轴对称。 讲:H2分子里的δ键是由两个s电子重叠形成的,可称为S-Sδ键。 下图为HCl、Cl2中电子云重叠: 未成对电子的电子云相互靠拢电子云相互重叠形成的共价单 键的电子云图 像 未成对电子的电子云相互靠拢电子云相互重叠形成的共价 单键的电子 云图像 HCl分子里的δ键是由H的一个s电子和Cl的一个P电子重叠形成的,可称为S-P δ键。 Cl2分子里的δ键是由Cl的两个P电子重叠形成的,可称为P-P δ键。 b、种类:S-S δ键 S-P δ键 P-P δ键

金属的化学性质教学案例

金属的化学性质教学案例 一、教学设计思路 在课题1介绍金属的物理性质的基础上,本课题侧重介绍金属的化学性质,重点介绍金属和氧气的反应,以及金属活动性顺序。 学生在前一阶段的学习中已经做过镁条、铝箔、铁丝等在氧气中反应的实验,基于学生已有的知识基础,教材采用实验事实→归纳的编写方法,重点说明大多数金属都能与氧气反应,但反应的难易和剧烈程度不同,由此也可在一定意义上反应金属的活泼程度;如镁、铝比较活泼,铁、铜次之,金属不活泼。教材的重点放在对金属活动顺序的探究上,采用实验──讨论的探究模式,通过对实验事实的分析,层层诱导,由学生自己归纳得出置换反应的特点,并通过对某些金属活动性的比较,进而引出金属活动性顺序。通过练习,使学生能应用置换反应和金属活动性顺序解释一些与日常生活有关的化学问题。 为加深学生的感性认识,特意让学生补做镁条、铝片、铜片与氧气反应的实验;为节省时间,在做金属与酸的反应时把全班学生分为两部分,一半做

金属与稀盐酸反应,一半做金属与稀硫酸反应。 二、教学目标 1、知识与技能 (1)知道铁、铝、铜等常见金属与氧气的反应。 (2)初步认识常见金属与盐酸、硫酸的置换反应,以及与盐溶液的置换反应,能用置换反应解释一些与日常生活有关的化学问题。 (3)能用金属活动性顺序对有关的置换反应进行简单地判断,并能利用金属活动性顺序解释一些与日常生活有关的化学问题。 2、过程与方法 (1)认识科学探究的基本过程,能进行初步的探究活动。 (2)课堂中,教师组织、引导和点拔,学生通过实验探究和讨论交流,认识金属的化学性质及其活动性顺序。 (3)初步学会运用观察、实验等方法获取信息,并能用图表和化学语言表达有关的信息。 (4)初步学会运用比较、归纳、概括等方法对获取的信息进行加工,使学生逐步形成良好学习习惯和方法。

有机物分子式的确定-规律总结

有机物分子式的确定 一.有机物组成元素的判断 某有机物完全燃烧后若产物只有CO2和H2O,则其组成元素可能为C、H或C、H、O。 欲判定该有机物中是否含氧元素,首先应求出产物CO2中碳元素的质量及H2O中氢元素的质量,然后将碳、氢元素的质量之和与原有机物质量比较,若两者相等,则原有机物的组成中不含氧;否则,原有机物的组成含氧。 二、有机物分子式的确定 1、根据最简式和分子量确定分子式 例1:某有机物中含碳40%、氢6.7%、氧53.3%,且其分子量为90,求其分子式。 例2:某烃中碳和氢的质量比是24∶5,该烃在标准状况下的密度是2.59g/L,写出该烃的分子式。 注意:(1)某些特殊组成的最简式,在不知化合物相对分子质量时,也可根据组成特点确定其分子式。例如最简式为CH3的在机物,其分子式可表示为(CH3)n,仅当n=2时,氢原子已达饱和,故其分子式为C2H6。同理,最简式为CH3O的有机物,当n=2时,其分子式为C2H6O2 (2)部分有机物的最简式中,氢原子已达饱和,则该有机物的最简式即为分子式。例如最简式为CH4、CH3Cl、C2H6O、C4H10O3等有机物,其最简式即为分子式。 2、根据各元素原子个数确定分子式 例1:吗啡分子含C:71.58% H:6.67% N :4.91% , 其余为氧,其分子量不超过300。试确定其分子式。 例2:实验测得某烃A中含碳85.7%,含氢14.3%。在标准状况下11.2L此化合物气体的质量为14g。求此烃的分子式。 3、根据通式确定分子式 烷烃CnH2n+2 烯烃或环烷烃CnH2n 炔烃或二烯烃CnH2n-2 苯及同系物CnH2n-6 用CnH2n-x(-2≤x≤6)和相对分子量可快速确定烃或分子式

有机物的化学性质(终极最全版)

《有机化学基础》总结(二)——有机物的化学性质 一、断键部位小结——预测官能团的性质和反应类型 1、双键(C=C,C=O)、三键 2、极性键:极性键极性越强越易断(共价键的极性) 3、不同基团的相互影响(官能团相邻碳上的氢) 二、有机物的化学性质 (一)烷烃 1、取代反应: 注意: ①反应条件:光照(室温下,在暗处不发生反应,但不能用强光直接照射,否则会发生爆炸)。 ②反应物:纯卤素单质气体,如甲烷通入溴水中不反应。 ③反应不会停留在某一步,因此产物是5种物质的混合物。1 mol H被取代,需要1mol Cl2,认为1个Cl2分子能取代2个H原子是一个常见的错误。 2、氧化反应:在空气中燃烧: () n2n+2222 C H+O nCO+n+1H O 3n+1 2 ???→ 点燃 3、裂化反应: 注意:环烷烃的化学性质与烷烃相似。 (二)烯烃 1、加成反应:烯烃可与H 2、X2、HX、H2O等发生加成反应,如: 反应物与烯烃R—CH=CH2反应的方程式 溴水,卤素单质(X2)R—CH=CH2+Br2—→R—CHBr—CH2Br(常温下使溴水褪色) 氢气(H2)R—CH=CH 2+H2? ????→ 催化剂R—CH 2—CH3 水(H2O)R—CH=CH 2+H—OH ?????→ 催化剂 加热,加压 R—CH—CH3或R—CH2—CH2OH 氯化氢(HCl)R—CH=CH 2+HCl? ????→ 催化剂R—CH—CH 3或R—CH2—CH2Cl OH Cl

氰化氢(HCN)R—CH=CH 2+HCN? ????→ 催化剂R—CH—CH 3或R—CH2—CH2CN 2、氧化反应 (1)将烯烃通入酸性高锰酸钾溶液中会使溶液的颜色变浅直至消失。 5CH2=CH2+12KMnO4+18H2SO4→10CO2↑+6K2SO4+12MnSO4+28H2O 注意:分离甲烷和乙烯不用酸性KMnO4。分离甲烷和乙烯不用酸性KMnO4 拓展:烯烃与KMnO4的反应:在中性或碱性的高锰酸钾溶液中, 烯烃被氧化成二元醇,高锰酸钾被还原成MnO2。在酸性高锰酸钾溶液中,烯烃中碳碳双键完全断裂,CH2=基被氧化成CO2,RCH=基被氧化成羧酸,基被氧化成酮。高锰酸钾被还原成Mn2+。 (2)催化氧化:在催化剂作用下,烯烃可直接被氧气氧化。如: 2CH2=CH2+O2????→ 催化剂 △ 2CH3CHO (3)可燃性:烯烃都可燃烧,由于其分子中的含碳量较高,所以在燃烧时火焰明亮,伴有黑烟。 3、加聚反应:单烯烃加聚的通式为 拓展:二烯烃化学性质 1、加成反应 2、加聚反应 (三)炔烃 1、乙炔的氧化反应 (1)使酸性高锰酸钾溶液褪色 (2)乙炔的可燃性:2C2H2+5O2???→ 燃烧4CO 2+2H2O 2、加成反应 乙炔可与H2、HX、X2(卤素单质)、H2O等发生加成反应。如: HC≡CH+2H2????→ 催化剂 △ CH3CH3 HC≡CH+H2O????→ 催化剂 △ CH3CHO 3、加聚反应 (在聚乙炔中掺入某些物质,就有导电性,聚乙炔又叫导电塑料) (四)芳香烃 CN

分子结构与性质完美版

分子结构与性质 知识网络: 一、化学键 相邻的两个或多个原子之间强烈的相互作用,通常叫做化学键。例如:水的结构式为 , H -O 之间存在着强烈的相互作用,而H 、H 之间相互作用非常弱,没有形成化学键。 化学键类型: 1.三种化学键的比较: ※ 配位键:配位键属于共价键,它是由一方提供孤对电子,另一方提供空轨道所形成的共价 键,例如:NH 4+的形成 在NH 4+中,虽然有一个N -H 键形成过程与其它3个N -H 键形成过程不同,但是一旦 形成之后,4个共价键就完全相同。

键长、键能决定共价键的强弱和分子的稳定性:原子半径越小,键长越短,键能越大,分子越稳定。例如HF、HCl、HBr、HI分子中: X原子半径:FHCl>HBr>HI H-X分子稳定性:HF>HCl>HBr>HI 判断共价键的极性可以从形成分子的非金属种类来判断。 例1.下列关于化学键的叙述正确的是: A 化学键存在于原子之间,也存在于分子之间 B 两个原子之间的相互作用叫做化学键 C 离子键是阴、阳离子之间的吸引力 D 化学键通常指的是相邻的两个或多个原子之间强烈的相互作用 解析:理解化学键、离子键等基本概念是解答本题的关键。化学键不存在于分子之间,也不仅是两个原子之间的相互作用,也可能是多个原子之间的相互作用,而且是强烈的相互作用。所以A、B都不正确。C项考查的是离子键的实质,离子键是阴、阳离子间通过静电作用(包括吸引力和排斥力)所形成的化学键,故C项也不正确。正确选项为D。 二、分子间作用力 1、分子间作用力 把分子聚集在一起的作用力叫分子间作用力,又称范德华力。分子间作用力的实质是电性引力,其主要特征有:⑴广泛存在于分子间;⑵只有分子间充分接近时才存在分子间的相互作用力,如固态和液态物质中;⑶分子间作用力远远小于化学键;⑷由分子构成的物质,其熔点、沸点、溶解度等物理性质主要由分子间作用力大小决定。 2、影响分子间作用力大小的因素

初三化学:金属的化学性质

初三化学:金属的化学性质 一、金属的化学性质 ↓金属与氧气的反应 金属+氧气→金属氧化物 金属的活动性:Mg>Al>Fe, Cu>Au。 铝在常温下与氧气反应,表面生成致密的氧化铝薄膜,阻止铝进一步氧化。因此,铝有很好的抗腐蚀性能。 ↓ 总结:镁、锌、铁、铜的金属活动性由强到弱。 金属+酸→化合物+H2↑ ↓置换反应 由一种单质和一种化合物反应,生成另一种单质和另一种化合物的反应叫做置换反应。(一般形式:A+BC →AC+B)。 置换反应的金属活动性要求是:以强换弱。 金属单质化合物溶液(可溶于水) 特例:⑴K+CuSO4≠K2SO4+Cu 2K+2H2O=2KOH+H2↑ 2KOH+CuSO4=Cu(OH)2↓+K2SO4 ⑵F e+2AgNO3=Fe(NO3)2+2Ag Fe+2AgCl(难溶)≠FeCl2+2Ag 总结:Fe>Cu>Ag 二、金属活动性顺序 ↓金属与金属化合物溶液的反应

总结:铝、铜、银的金属活动性由强到弱。 ↓金属活动性顺序 金属活动性顺序的理解: 1.在金属活动性顺序里,金属的位置越靠前,它的活动性越强。 2.在金属活动性顺序里,位于氢前面的金属能置换出盐酸、稀硫酸中的氢。 3.在金属活动性顺序里,位于前面的金属能把位于后面的金属从它们的化合物的溶液里置换出 来。 注意: 1.酸应用非氧化性酸,如盐酸、稀硫酸等。不使用挥发性酸(如浓盐酸)制取氢气,因为挥发性 酸会使制得的气体不纯。 2.金属与酸的反应生成的盐必须溶于水,若生成的盐不溶于水,则生成的盐会附着在金属表面, 阻碍酸与金属继续反应。盐必须为可溶性盐,因为金属与盐的反应必须在溶液中进行。 3.钾、钙、钠等非常活泼的金属不能从它们的盐溶液里置换出来。 金属活动性顺序的使用: 1.在金属活动性顺序里,只有氢前面的金属才能与酸反应生成氢气。 2.在金属活动性顺序里,只有排在前面的金属才能把排在后面的金属从它们的化合物溶液中置 换出来。 3.当溶液中含有多种离子时,活泼的金属总是先置换那些最不活泼的金属离子。 4.当多种金属与溶液反应时,总是更活泼的金属先与溶液发生化学反应。 ■几种金属单质的图片 金属活动性顺序由强逐渐减弱 K Ca N a M g A l Zn Fe Sn Pb (H)Cu H g A g Pt A u

常见有机物结构式

有机结构 一、常见有机物结构式 (1) 1.烷 .................................................................................................................................................................. 1 2.环烷 .............................................................................................................................................................. 2 3.烯 .................................................................................................................................................................. 2 4.炔 .................................................................................................................................................................. 2 5.二烯 .............................................................................................................................................................. 2 6.芳香物 .......................................................................................................................................................... 2 7.醇 .................................................................................................................................................................. 3 8.酚 .................................................................................................................................................................. 3 9.醛 .................................................................................................................................................................. 3 10.酮 ................................................................................................................................................................ 3 11.羧酸 ............................................................................................................................................................ 4 12.酯 ................................................................................................................................................................ 4 13.糖 ................................................................................................................................................................ 4 14.氨基酸 ........................................................................................................................................................ 4 15.其它 ............................................................................................................................................................ 4 二、聚合反应 .. (4) 1.单烯加聚 ...................................................................................................................................................... 4 2.二烯加聚 ...................................................................................................................................................... 5 3.缩聚 .. (5) 一、常见有机物结构式 1.烷 C H H H H C H H H C H H H C H H H C H H H C H C H H H H H C H C H H H H H C H H C H C H H H H H C H H C H H CH 3CHCH 33 C CH 3 CH 2CH 3 CH 3 CH 3CH CH 3CH CH 3 CH C C H H Cl Cl Cl C H H Cl

高中化学 常见有机物的结构与性质 -学生版

第10题常见有机物的结构与性质 题组一常见有机物的性质及应用 [解题指导] 1.掌握两类有机反应类型 (1)加成反应:主要以烯烃和苯为代表,碳碳双键、苯环可以发生加成反应。 (2)取代反应:烷烃、苯、乙醇和乙酸均容易发生取代反应。 2.区分三个易错问题 (1)不能区分常见有机物发生反应的反应类型。如塑料的老化发生的是氧化反应,不是加成反应,单糖不能发生水解反应等。 (2)不能灵活区分有机反应的反应条件。如苯与溴水不反应,只与纯液溴反应。 (3)不能准确地对有机物进行分类。如油脂不是高分子化合物。 3.牢记三种物质的特征反应 (1)葡萄糖:在碱性、加热条件下与银氨溶液反应析出银;在碱性、加热条件下与新制氢氧化铜悬浊液反应产生砖红色沉淀。 (2)淀粉:在常温下遇碘变蓝。 (3)蛋白质:浓硝酸可使蛋白质变黄,发生颜色反应。 4.同分异构体判断时必记的三个基团 丙基(C3H7—)有2种,丁基(C4H9—)有4种,戊基(C5H11—)有8种。 [挑战满分](限时10分钟) 1.下列涉及有机物的性质的说法错误的是() A.乙烯和聚氯乙烯都能发生加成反应 B.将铜丝在酒精灯上加热后,立即伸入无水乙醇中,铜丝恢复成原来的红色 C.黄酒中某些微生物使乙醇氧化为乙酸,于是酒就变酸了 D.HNO3能与苯、甲苯、甘油、纤维素等有机物发生反应,常用浓硫酸作催作剂 2.下列说法中不正确的是() A.有机化合物中每个碳原子最多形成4个共价键 B.油脂、淀粉、蛋白质在一定条件下都能发生水解反应

C.用溴水既可以鉴别甲烷和乙烯,也可以除去甲烷中的乙烯D.乙烯和苯均能发生氧化反应,说明乙烯和苯分子中均有碳碳双键 3.有机化合物与我们的生活息息相关,下列说法正确的是() A.甲苯的硝化、油脂的皂化均可看作取代反应 B.蛋白质水解生成葡萄糖,放出热量,提供生命活动的能量C.石油裂解的目的是为了提高轻质液体燃料的产量和质量 D.棉花和合成纤维的主要成分是纤维素 4.下列说法正确的是() A.糖类、油脂、蛋白质在一定条件下都能发生水解反应 B.植物油的主要成分是高级脂肪酸 C.棉、麻、羊毛完全燃烧都只生成CO2和H2O D.乙烷的二氯取代物有两种同分异构体 5.下列说法正确的是() A.乙烷与氯气在光照条件下发生加成反应 B.将石蜡油(液态烷烃混合物)加强热分解生成的气体都是烷烃C.甲苯能够使溴的四氯化碳溶液和酸性高锰酸钾溶液褪色 D.乙醇能够被酸性的高锰酸钾溶液直接氧化成乙酸 6.下列与有机物的结构、性质有关的叙述正确的是() A.苯、油脂均不能使酸性KMnO4溶液褪色 B.甲烷和Cl2的反应与乙烯和Br2的反应属于同一类型的反应C.葡萄糖、果糖的分子式均为C6H12O6,二者互为同分异构体D.乙醇、乙酸均能与Na反应放出H2,二者分子中官能团相同 7.下列关于苯的叙述正确的是()

第六章 分子结构及性质

第六章分子结构及性质 思考题解析 1.根据元素在周期表中的位置,试推测哪些元素原子之间易形成离子键。哪些元素原子之间易形成共价键? 解:周期表中的ⅠA、ⅡA族与ⅥA、ⅦA族元素原子之间由于电负性相差巨大,易形成离子键,而处于周期表中间的主族元素原子之间由于电负性相差不大,易形成共价键。 2.下列说法中哪些是不正确的,并说明理由。 (1)键能越大,键越牢固,分子也越稳定。 (2)共价键的键长等于成键原子共价半径之和。 (3)sp2杂化轨道是有某个原子的1s轨道和2p轨道混合形成的。 (4)中心原子中的几个原子轨道杂化时,必形成数目相同的杂化轨道。 (5)在CCl4、CHCl3和CH2Cl2分子中,碳原子都采用sp3杂化,因此这些分子都是正四面体形。 (6)原子在基态时没有未成对电子,就一定不能形成共价键。 (7)杂化轨道的几何构型决定了分子的几何构型。 解:(1)不正确。这只能对双原子分子而言。 (2)不正确。这只能对双原子分子而言。 (3)错。sp2杂化轨道是由某个原子的n s轨道和两个n p轨道混合形成的。 (4)正确。 (5)错。CCl4分子呈正四面体,而CHCl3和CH2Cl2分子呈变形四面体。 (6)错。原子在基态时的成对电子,受激发后有可能拆开参与形成共价键。 (7)错。如某些分子在成键时发生不等性杂化,则杂化轨道的几何构型与分子的几何构型就不一致。 3.试指出下列分子中哪些含有极性键? Br2CO2H2O H2S CH4 解:CO2、H2O、H2S、CH4分子中含有极性键。 4.BF3分子具有平面三角形构型,而NF3分子却是三角锥构型,试用杂化轨道理论进行解释。 解:BF3分子在成键时发生sp2等性杂化,所以呈平面三角形,而NF3分子在成键时发生sp3不等性杂化,所以呈三角锥形。 5.CH4、H2O、NH3分子中键角最大的是哪个分子?键角最小的是哪个分子?为什么?

人教版高中化学必修一第三章《金属及其化学性质》测试

高中化学学习材料 (灿若寒星**整理制作) 必修1第三章《金属及其化学性质》测试 广东省梅州市平远县平远中学 H = 1 C = 12 N = 14 O = 16 Na = 23 Al = 27 Cl = 35.5 K = 39 Ca = 40 Fe = 56 Cu = 64 第一卷(选择题,共57分) 一.选择题:(本题有8个小题,每小题只有一个选项符合题意,每小题3分,共39分。) 1、自然界里常见金属元素存在最多的是Al,其次是铁,接着是铜。然而人类冶炼金属获得成功最早的反而是含量 少的铜,含量最多的铝最迟冶炼出来,究其原因,合理的是()。 A.矿石在地下埋藏,铜矿最浅,容易开发,铝矿埋得深,难开发 B.铜矿颜色较深,易发现,铝矿颜色较浅,不易发现 C.铜矿较易还原,铝矿很难还原 D.以上说法是错误的 2、设N A表示阿伏加德罗常数,下列叙述中正确的是()。 A. 常温常压下,11.2 L氧气所含的原子数为N A B. 标准壮况下,1.12 L氦气所含的原子数为0.1N A C. 1.8 g NH4+离子中含有的电子数为N A D. 15.6 g Na2O2与过量CO2反应时,转移的电子数为0.4N A 3、用于飞机制造的材料应具备强度高、密度小、质地轻的特点。以波音747为例,机身每减轻1 kg,因油耗降低,一年可获利2000美元。下列材料中哪种可用于飞机制造业()。 A.Li-Al合金 B. 黄铜(Cu-Zn合金)C.Na-K合金 D. 生铁(Fe-C合金) 4、钠与水反应的现象和钠的下列性质无关的是()。 A.钠的熔点较低B.钠的密度小于水C.钠的硬度较小D.钠的还原性强 5、下列灭火剂能用于扑灭金属钠着火的是()。 A.干冰灭火剂B.黄沙C.干粉灭火剂D.泡沫灭火剂 6、下列离子在溶液中能大量共存的是()。 A. Na+、CO32-、SO42-、H+ B. K+、AlO2-、H+、Cl- C. Fe2+、K+、H+、NO3- D. Al3+、H+、NO3-、SO42- 7、下列离子方程式正确的是()。

高中化学有机化合物知识点总结

高中化学有机物知识点总结 一、重要的物理性质 1.有机物的溶解性 (1)难溶于水的有:各类烃、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的,下同)醇、醛、羧酸等。 (2)易溶于水的有:低级的[一般指N(C)≤4]醇、醛、羧酸及盐、氨基酸及盐、单糖、二糖。 (3)具有特殊溶解性的: ①乙醇是一种很好的溶剂,既能溶解许多无机物,又能溶解许多有机物。 ②乙酸乙酯在饱和碳酸钠溶液中更加难溶,同时饱和碳酸钠溶液还能通过反应吸收挥发出的乙酸,溶解吸 收挥发出的乙醇,便于闻到乙酸乙酯的香味。 ③有的淀粉、蛋白质可溶于水形成胶体 ..。蛋白质在浓轻金属盐(包括铵盐)溶液中溶解度减小,会析出(即盐析,皂化反应中也有此操作)。 ④线型和部分支链型高聚物可溶于某些有机溶剂,而体型则难溶于有机溶剂。 ⑤氢氧化铜悬浊液可溶于多羟基化合物的溶液中,如甘油、葡萄糖溶液等,形成绛蓝色溶液。 2.有机物的密度 小于水的密度,且与水(溶液)分层的有:各类烃、酯(包括油脂) 3.有机物的状态[常温常压(1个大气压、20℃左右)] (1)气态: ①烃类:一般N(C)≤4的各类烃注意:新戊烷[C(CH3)4]亦为气态 ②衍生物类: 一氯甲烷( ....,沸点为 ...HCHO ....-.21℃ ...). .....CH .....).甲醛( ..3.Cl..,.沸点为 ...-.24.2℃ (2)液态:一般N(C)在5~16的烃及绝大多数低级衍生物。如, 己烷CH3(CH2)4CH3甲醇CH3OH 甲酸HCOOH 乙醛CH3CHO ★特殊: 不饱和程度高的高级脂肪酸甘油酯,如植物油脂等在常温下也为液态 (3)固态:一般N(C)在17或17以上的链烃及高级衍生物。如, 石蜡C12以上的烃 饱和程度高的高级脂肪酸甘油酯,如动物油脂在常温下为固态 4.有机物的颜色 ☆绝大多数有机物为无色气体或无色液体或无色晶体,少数有特殊颜色

(完整版)高一化学必修二第三章--有机化合物知识点总结

第三章有机化合物知识点总结 绝大多数含碳的化合物称为有机化合物,简称有机物。像CO、CO2、碳酸、碳酸盐、金属碳化物等少数化合物,它们属于无机化合物。 一、烃 1、烃的定义:仅含碳和氢两种元素的有机物称为碳氢化合物,也称为烃。 2

乙烯 1.氧化反应 I .燃烧 C 2H 4+3O 2??→ ?点燃 2CO 2+2H 2O (火焰明亮,伴有黑烟) II .能被酸性KMnO 4溶液氧化为CO 2,使酸性KMnO 4溶液褪色。 2.加成反应 CH 2=CH 2+Br 2?→?CH 2Br -CH 2Br (能使溴水或溴的四氯化碳溶液褪色) 在一定条件下,乙烯还可以与H 2、Cl 2、HCl 、H 2O 等发生加成反应 CH 2=CH 2+H 2 催化剂 △ CH 3CH 3 CH 2=CH 2+HCl 催化剂 △ CH 3CH 2Cl (氯乙烷:一氯乙烷的简称) CH 2=CH 2+H 2O 高温高压 催化剂 CH 3CH 2OH (工业制乙醇) 3.加聚反应 nCH 2=CH 2 催化剂 △ (聚乙烯) 注意:①乙烯能使酸性KMnO 4溶液、溴水或溴的四氯化碳溶液褪色。常利用该反应鉴 别烷烃和烯烃,如鉴别甲烷和乙烯。②常用溴水或溴的四氯化碳溶液来除去烷烃中的烯烃,但是不能用酸性KMnO 4溶液,因为会有二氧化碳生成引入新的杂质。 苯 难氧化 易取代 难加成 1.不能使酸性高锰酸钾褪色,也不能是溴水发生化学反应褪色,说明苯的化学性质比较稳定。但可以通过萃取作用使溴水颜色变浅,液体分层,上层呈橙红色。 2.氧化反应(燃烧) 2C 6H 6+15O 2??→ ?点燃 12CO 2+6H 2O (现象:火焰明亮,伴有浓烟,说明含碳量高) 3.取代反应 (1)苯的溴代: (溴苯)+ Br 2 FeBr 3 +HBr (只发生单取代反应,取代一个H ) ①反应条件:液溴(纯溴);FeBr 3、FeCl 3或铁单质做催化剂 ②反应物必须是液溴,不能是溴水。(溴水则萃取,不发生化学反应) ③溴苯是一种 无 色 油 状液体,密度比水 大 , 难 溶于水 ④溴苯中溶解了溴时显褐色,用氢氧化钠溶液除去溴,操作方法为分液。 (2)苯的硝化: + HO -NO 2 浓H 2SO 455℃~60℃ -NO 2 + H 2O ①反应条件:加热(水浴加热)、浓硫酸(作用:催化剂、吸水剂) ②浓硫酸和浓硝酸的混合:将浓硫酸沿烧杯内壁慢慢倒入浓硝酸中,边加边搅拌 ③硝基苯是一种 无 色 油 状液体,有 苦杏仁 气味, 有 毒,密度比水 大 ,难 溶于水。 ④硝基苯中溶解了硝酸时显黄色,用氢氧化钠溶液除去硝酸,操作方法为分液。 (3)加成反应(苯具有不饱和性,在一定条件下能和氢气发生加成反应) + 3H 2 Ni (一个苯环,加成消耗3个H 2,生成环己烷) 4概念 同系物 同分异构体 同素异形体 同位素 定义 结构相似,在分子组成 上相差一个或若干个CH 2原子团的物质 分子式相同而结构式不同的化合物的互称 由同种元素组成的不同单质的互称 质子数相同而中子数不同的同一元素的不同原子的互称 分子式 不同 相同 元素符号表示相 ——

高中化学选修三——分子结构与性质

分子结构与性质 一、共价键 1.本质:原子间形成共用电子对 分类{非极性共价键:两个相同的非金属元素的原子间形成的共价键 极性共价键:两个不相同的非金属元素的原子间形成的共价键 、HCl的形成 思考:用电子式表示H 2 共价键特征: ①饱和性:每个原子形成共价键的数目是确定的 ②方向性:原子轨道沿一定方向重叠使成键的原子轨道最大程度地重叠 2.σ键和π键 ①σ键--原子轨道沿着连线方向以“头碰头”方式重叠形成的共价键 特点:以形成化学键的两个原子核的连线为轴旋转,σ键电子云的图形不变 电子云描述氢原子形成氢分子的过程(s-s σ键) ②π键--原子轨道沿着连线方向以“肩并肩”方式重叠形成的共价键 特点:(1)电子云为镜像,即是每个π键的电子云由两块组成,分别位于由两个原子核构成的平面的两侧 (2)不稳定,容易断裂 p-p π键的形成

N 2 分子中的N≡N 思考:分析CH 3CH 3 、CH 2 =CH 2 、CH≡CH、CO 2 分子中键的类别和个数 3.键参数--键能、键长与键角 ①键能:气态基态原子形成1 mol化学键释放的最低能量 键能越大,即形成化学键时放出的能量越多,化学键越稳定 应用--计算化学反应的反应热ΔH=反应物键能总和-生成物键能总和 ②键长:形成共价键的两个原子之间的核间距 键长是衡量共价稳定性的另一个参数 规律:键长越短,一般键能越大,共价键越稳定 一般地,形成的共价键的键能越大,键长越短,共价键越稳定,含有该键的分子越稳定,化学性质越稳定 ③键角:两个共价键之间的夹角 键角是描述分子立体结构的重要参数,分子的许多性质与键角有关 思考:N 2、O 2 、F 2 跟H 2 的反应能力依次增强,从键能的角度如何理解 4.等电子原理 等电子体:原子总数相同、价电子(最外层电子)总数相同的分子如N 2 和CO 是等电子体,但N 2和C 2 H 4 不是等电子体 等电子体原理:原子总数、价电子总数相同的分子具有相似的化学键特征,它们的物理性质是相近的。例如N 2 和CO的熔沸点、溶解性、分子解离能等都非常接近 5.用质谱测定分子的结构 原理:不同质核比的粒子在磁场中运动轨迹不同 eg:1.下列物质中能证明某化合物中一定有离子键的是() A.可溶于水 B.熔点较高 C.水溶液能导电 D.熔融状态能导电 2.下列关于化学键的叙述中,正确的是() A.离子化合物可以含共价键 B.共价化合物可能含离子键 C.离子化合物中只含离子键 D.只有活泼金属与活泼非金属间才能形成离子键

相关文档
最新文档