广西壮族自治区梧州市岑溪市广西2018-2019学年八年级上学期数学期中考试试卷及参考答案

合集下载

2018-2019学年广西梧州市岑溪市八年级(上)期中数学试卷

2018-2019学年广西梧州市岑溪市八年级(上)期中数学试卷

2018-2019学年广西梧州市岑溪市八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)点(4,3)P --所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.(3分)下列函数(1)y x π=,(2)123y x -=-,(3)223y x =-,(4)122y x =-+,(5)1y x=,是一次函数有( )个. A . 1 个 B . 3 个 C . 2 个 D . 1 个3.(3分)在平面直角坐标系中,若将三角形上各点的纵坐标都减去 3 ,横坐标保特不变,则所得图形在原图形基础上( )A .向左平移了 3 个单位B .向下平移了 3 个单位C .向上平移了 3 个单位D .向右平移了 3 个单位 4.(3分)平面直角坐标系内,点(,1)A n n -一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限5.(3分)点(2,3)P --向右平移 2 个单位,再向上平移 4 个单位,则所得到的点的坐标为( )A .(2,0)-B .(0,2)-C .(1,0)D .(0,1)6.(3分)已知点1(4,)y -,2(2,)y 都在直线122y x =-+上,则1y ,2y 大小关系是( )A .12y y >B .12y y =C .12y y <D .不能比较7.(3分)已知关于x 的不等式10(0)ax a +>≠的解集是1x <,则直线1y ax =+与x 轴的交点是( )A .(0,1)B .(1,0)-C .(0,1)-D .(1,0)8.(3分)弹簧的长度()y cm 与所挂物体的质量()x kg 之间的关系式是一次函数关系,图象如图所示,则弹簧本身的长度是( )A.9cm B.10cm C.12.5cm D.20cm9.(3分)函数y ax a=-的大致图象是()A .B .C .D .10.(3分)如图,函数2y x=和4y ax=+的图象相交于点(,3)A m,则不等式24x ax<+的解集为()A.32x<B.3x<C.32x>D.3x>二、填空题(每小题3分,共24分)11.(3分)在国家体育馆“鸟巢”一侧的座位上,6 排3 号记为(6,3),则5 排8 号记为.12.(3分)把直线2y x=向上平移两个单位长度,再向右平移一个单位长度,则得到的直线是.13.(3分)已知函数||5(29)my m x-=-是正比例函数,且图象经过第二,四象限,则m 的值为 .14.(3分)已知点P 在第四象限,该点到x 轴的距离为 3 ,到y 轴的距离为 1 ,则点P 的坐标为 .15.(3分)函数14y x =-中的自变量x 的取值范围 . 16.(3分)一次函数(0)y kx b k =+≠的图象如图所示,当0y >时,则x < .17.(3分)点1(2,1)y ,2(2,)y 是一次函数132y x =--图象上的两点,则1y 2y .(填“>”、“=”或“<”) 18.(3分)一次函数1y kx b =+与2y x a =+的图象如图所示,则下列结论:①0k <;②0a <,0b <;③当3x =时,12y y =;④不等式kx b x a +>+的解集是3x <,其中正确的结论有 .(只填序号)三.解答题(46分)19.(6分)把点(4,3)A --、(3,1)B -、(0,6)C -、(6,5)D 在同一坐标系中描出(每一个方格长度为1),并用线段将各点按ABCD 的顺序依次连接起来.。

最新-广西岑溪市2018学年八年级数学上学期期中考试试

最新-广西岑溪市2018学年八年级数学上学期期中考试试

广西岑溪市波塘中学2018-2018学年八年级上学期期中考试数学试题(无答案) 新人教版时间 120分钟 满分 120分一、选择题(共10小题,每小题3分,共30分)1、在3.140.101001000,5π,227等中,无理数的个数是( ) A 、4 B 、5 C 、6 D 、72、下面有4个汽车标致图案,其中是轴对称图形的是( )A 、②③④B 、①②④C 、①②③D 、①②③④3、下列说法中正确的是 ( )A .4是16的算术平方根B .16的平方根是4C .±3是6的平方根D .—a 没有平方根 4、点P (2,—3)关于y 轴的对称点的坐标是 ( )A 、(2,3 )B 、(-2,—3)C 、(—2,3)D 、(—3,2)5、若4,则估计m 的值所在的范围是 ( )A 、1<m <2B 、2<m <3C 、3<m <4D 、4<m <56、如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA 于D ,若PC=4,则PD 等于( ).A 、4B 、3C 、2D 、 17、下列说法正确的有( )①无理数包括正无理数,0和负无理数;②无理数都可以用数轴上点表示;③数轴上点表示无理数;④实数与数轴上点是一一对应关系。

A 、1个B 、2个C 、3个D 、4个8、如图,已知∠1=∠2,则不一定...能使△ABD ≌△ACD 的条件是( ) A 、AB =AC B 、BD =CD C 、∠B =∠C D 、∠ BDA =∠CDA9、如图,∠AOB=30°,内有一点P 且OP=6,若M 、N 为边OA 、OB 上两动点,那么△PMN 的周长最小为( )A 、62B 、6C 、621 D 、6,ι2它到三条公路的距离相等,则可供选择的地址共有( )处.BA .1B .4C .6D .7二、 填空题(共6小题,每题3分,共18分)11、π-5的相反数是 。

|3-2|= 。

广西梧州市八年级上学期数学期中考试试卷

广西梧州市八年级上学期数学期中考试试卷

广西梧州市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2017九上·宜城期中) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (1分)(2018·安顺) 如图,直线,直线l与直线a,b分别相交于A、B两点,过点A作直线l的垂线交直线b于点C,若,则的度数为()A .B .C .D .3. (1分) (2018八上·仁寿期中) 根据下列条件,能画出唯一的是()A . ,,B . ,,C . ,,D . ,4. (1分)(2020·宜城模拟) 如图,在△ABC中,∠C=90o ,∠A=30o ,分别以A、B两点为圆心,大于AB为半径画弧,两弧交于M、N两点,直线MN交AC于点D,交AB于点E,若CD=2,则AC的长度为()A . 9B . 6C .D .5. (1分)如图:Rt△ABC≌Rt△DEF,则∠D的度数为()A . 30°B . 45°C . 60°D . 90°6. (1分)在△ABC中,若∠A=∠B= ∠C,则∠C等于()A . 45°B . 60°C . 90°D . 120°7. (1分) (2020九下·江阴期中) 七边形的内角和为()A . 540°B . 720°C . 900°D . 1080°8. (1分) (2019八上·怀集期末) 一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为()A . 75°B . 60°C . 45°D . 40°9. (1分)(2019·大邑模拟) 如图,已知AB=DC,需添加下列()条件后,就一定能判定△ABC≌△DCB.A . AO=BOB . ∠ACB=∠DBCC . AC=DBD . BO=CO10. (1分) (2019八上·自贡期中) 满足下列条件的三角形:①内角比为1:2:1;②内角比为2:2:5;③内角比为1:1:1;④内角比为1:2:3,其中,是等腰三角形的有()A . 4个B . 3个C . 2个D . 1个二、填空题 (共4题;共4分)11. (1分) (2019八上·扬州月考) 如图,等边△AB C中,AD是中线,AD=AE,则∠EDC=________12. (1分) (2019九上·黄石期中) 如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC 于点E,∠AOC=100°,∠OCD=35°,那么∠OED=________.13. (1分) (2019八上·三台期中) 如图,在△ABC中,∠ABC=48°,三角形的外角∠DAC和∠ACF的平分线交于点E ,则∠ABE=________°.14. (1分) (2019八上·马山期中) 如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,若△ABC的面积为9,DE=2,AB=5,则AC长是________.三、解答题 (共10题;共14分)15. (1分) (2018九上·白云期中) 如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点,并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)16. (1分) (2019八上·湛江期中) 已知:如图(没图),A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF17. (1分) (2019八上·江门期中) 如图,已知AB=DC,∠ABD=∠DCA.求证:AC=BD18. (1分) (2018八上·东城期末) 如图,点E , F在线段AB上,且AD=BC ,∠A=∠B , AE=BF.求证:DF=CE.19. (2分)利用网格线作图:(1)如图,在BC上找一点O,使点O到AB和AC的距离相等;(2)在第(1)小题图中的射线AO上找一点P,使PB=PC.20. (2分)(2020·硚口模拟) 请仅用无刻度直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在的正方形网格中,每个小正方形的边长为1,小正方形的顶点叫做格点. 的顶点在格点上,过点画一条直线平分的面积;(2)如图2,点在正方形的内部,且,过点画一条射线平分;(3)如图3,点、、均在上,且,在优弧上画、两点,使 .21. (1分) (2019七下·北京期中) 如图,和的角平分线相交于点H,,,求证:。

广西梧州市八年级上学期期中数学试卷

广西梧州市八年级上学期期中数学试卷

广西梧州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)使分式有意义的x的取值范围是()A . x=2B . x≠2C . x=-2D . x≠-22. (2分)化简的结果()A . x﹣yB . y﹣xC . x+yD . ﹣x﹣y3. (2分)(2017·泸州) 已知抛物线y= x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y= x2+1上一个动点,则△PMF周长的最小值是()A . 3B . 4C . 5D . 64. (2分)(2019·遵义) 下列计算正确的是()A . (a+b)2=a2+b2B . ﹣(2a2)2=4a2C . a2•a3=a6D . a6÷a3=a35. (2分) (2017九下·盐城期中) 下列运算正确的是()A .B .C .D .6. (2分) (2017七下·江都期末) 下列命题:①三角形的一条中线将三角形分成面积相等的两部分;②平行于同一条直线的两条直线互相平行;③若,则;④对于任意,代数式的值总是正数.其中正确命题的个数是()A . 4个B . 3个C . 2个D . 1个7. (2分)对于非零的两个实数a,b,规定a⊕b= ,若2⊕(2x﹣1)=1,则x的值为()A .B .C .D .8. (2分)如图,△ABC中,∠A=36°,AB=AC,BD平分∠ABC,DE∥BC,则图中等腰三角形的个数()A . 1个B . 3个C . 4个D . 5个9. (2分) (2019八上·绍兴月考) 如图,在△ABC中,∠C=90°,AC=BC,AD是△ABC的角平分线,DE⊥AB 于E.若AB=6cm,则△DEB的周长为()A . 5cmB . 6cmC . 7cmD . 8cm10. (2分)在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A . ①②③B . ①②⑤C . ①②④D . ②⑤⑥11. (2分) (2020八上·惠州月考) 如图,∠1=∠2,若添加一个条件后,仍无法判定△ABC≌△ABD的是()A . ∠3=∠4B . ∠C=∠DC . BC=BDD . AC=AD12. (2分) (2020九上·招远期末) 若关于x的分式方程有增根,则m为()A . -1B . 1C . 2D . -1或2二、填空题 (共6题;共7分)13. (1分)下列命题:①全等三角形的面积相等;②平行四边形的对角线互相平分;③同旁内角互补,两直线平行.其中逆命题为真命题的有:________(请填上所有符合题意的序号).14. (1分) (2017八下·临泽期末) 化简的结果为________.15. (1分)(2017·高青模拟) 已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为________千克.16. (1分)如图所示,△ABC为等边三角形,D为AB的中点,高AH=10 cm,P为AH上一动点,则PD+PB的最小值为________cm.17. (1分) (2020八上·高新月考) 如图,AB∥FC,E是DF的中点,若AB=30,CF=17,则BD=________.18. (2分) (2019七上·余杭月考) 如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第一次将点A向左移动3个单位长度到达点A1 ,第2次将点A1向右平移6个单位长度到达点A2 ,第3次将点A2向左移动9个单位长度到达点A3…则第6次移动到点A6时,点A6在数轴上对应的实数是________;按照这种规律移动下去,第2017次移动到点A2017时,A2017在数轴上对应的实数是________.三、解答题 (共8题;共75分)19. (10分) (2015七下·海盐期中) 计算(1)(﹣1)0+()﹣2﹣(﹣1)2016;(2)(﹣a)2•a4÷a3.20. (5分)阅读下列材料:如果我们规定一种运算为=ad﹣bc,例如:=2×5﹣4×3=﹣2,请按照这种运算的规定,解答下列问题:(1)若=﹣2,求x的值;(2)当x满足什么条件时,﹣1<≤4;21. (10分) (2019八下·黄冈月考) 已知在等腰△ABC 中,AB=AC=10,BC=16.(1)若将△ABC 的腰不变,底变为 12,甲同学说,这两个等腰三角形面积相等;乙同学说,腰不变,底变化,这两个三角形面积必不相等,请对甲、乙两种说法做出判断,并说明理由;(2)已知△ABC 底边上高增加 x,腰长增加(x﹣2)时,底却保持不变,请确定 x 的值.22. (10分) (2017八下·卢龙期末) 综合题。

18—19学年上学期八年级期中考试数学试题(附答案)(2)

18—19学年上学期八年级期中考试数学试题(附答案)(2)

2018~2019学年度上学期期中阶段质量检测试题八年级数学2018.11注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分100分,考试时间90分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在答题纸规定的位置.考试结束后,将本试卷和答题纸一并交回. 2.答题注意事项见答题纸,答在本试卷上不得分.第Ⅰ卷(选择题共36分)一、选择题(每小题3分,共12小题;共36分)在每小题所给的四个选项中,只有一项是符合题目要求的,请把正确答案涂在答题卡中.1.在以下回收、绿色食品、节能、中国民生银行四个标志中,是轴对称图形的是A .B .C .D .2.下列各式计算正确的是A .729()a a = B .7214a a a =C .235235a a a +=D .333()ab a b =3.在平面直角坐标系中,点(3,-2)关于y 轴对称的点的坐标是 A .(3,2) B .(3,-2) C .(-3,2) D .(-3,-2) 4.以下列各组长度的三条线段为边,能组成三角形的是 A .1cm ,2cm ,3cm B .8cm ,6cm ,4cm C .12cm ,5cm ,6cm D .2cm , 3cm ,6cm5.能把一个三角形分成面积相等的两部分的是该三角形的 A .角平分线 B .中线C .高D .一边的垂直平分线6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即'A OA ∠)是A .20°B .40°C .60°D .80°7.如图,△ABC 与'''A B C ∆关于直线MN 对称,P 为MN 上任一点(P 不与'AA 共线),下列结论中错误的是A .'AA P ∆是等腰三角形B .MN 垂直平分'AA ,'CC C .△ABC 与'''A B C ∆面积相等D .直线AB ,''A B 的交点不一定在MN 上8.如图,已知太阳光线AC 和DE 是平行的,在同一时刻两根高度相同的木杆竖直插在地面上,在太阳光照射下,其影子一样长.这里判断影长相等利用了全等图形的性质,其中判断ABC DFE ∆≅∆的依据是A .SASB .AASC.HL D.ASA9.如图,以点O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO 长为半径画弧,两弧交于点B,画出射线OB,则∠AOB=A.30°B.45°C.60°D.90°10.如图,在△ABC中,BE,CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=4,AC=3,则△ADF周长为A.6 B.7C.8 D.1011.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于A.18°B.36°C .54°D .64°12.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,则点C 的坐标为A .(1)B .(-1C .1)D .(-1)第Ⅱ卷(非选择题 共64分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在答题纸规定的区域内,在试卷上答题不得分.二、填空题(每小题4分,共6小题;共24分) 13.计算:323()a a =________.14.已知一个多边形的内角和为540°,则这个多边形是________边形.15.如图1是一把园林剪刀,把它抽象为图2,其中OA =OB ,若剪刀张开的角为30°,则∠A =________度.16.如图,已知点A,D,C,F在同一条直线上,AB=DE,∠B=∠E,要使△ABC≌△DEF,还需要添加一个条件是________.17.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是________.18.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则AC=________.三、解答题(共5小题;共40分)19.(本题满分5分)用圆规、直尺作图,不写作法,但要保留作图痕迹.如图所示,某汽车探险队要从A城穿越沙漠到B城,途中需要到河边为汽车加水,则汽车在河边哪一点加水,才能使行驶的总路程最短?请你在图上画出这一点.20.(本题满分7分)如图,点A,F,C,D在同一条直线上,已知AF=DC,∠A=∠D,BC∥EF.求证:AB=DE.21.(本题满分8分)如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若∠B=30°,∠C=50°,求∠DAE的度数.22.(本题满分9分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.23.(本题满分11分)如图,△ABE和△ACD都是等边三角形,BD与CE相交于点O.(1)求证:△AEC≌△ABD;(2)求∠BOC的度数.参考答案一、选择题1.B2.D3.D4.B5.B6.B7.D8.B9.C10.B 11.C 12.A 二、填空题 13.9a 14.五 15.15.7516.BC =EF (答案不唯一) 17.3 18.9 三、解答题19.如下图所示,本题可以进行数学建模,即在直线l 上作一点C ,使它到同侧点A ,B 的距离之和最小.作法:作点A 关于直线l 的对称点A 1,连接A 1B ,则A 1B 与直线l 的交点C 即为所求的点.…………………………………………………………5分20.∵AF =CD ,∴AC =DF ,…………………………………………………………………………1分 ∵BC ∥EF ,∴∠ACB =∠DFE ,……………………………………………………………………3分 在△ABC 和△DEF 中,,,,A D AC DF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA),……………………………………………………………………6分∴AB=DE.……………………………………………………………………………………7分21.∵∠B=30°,∠C=50°,…………………………………………………………1分∴∠BAC=180°-∠B-∠C=100°,……………………………………………………2分∵AE是△ABC的角平分线,∴111005022BAE BAC∠=∠=⨯︒=︒………………………………………………4分∵AD是△ABC的高,∴∠BAD=90°-∠B=90°-30°=60°,………………………………………………6分∴∠DAE=∠BAD-∠BAE=60°-50°=10°.………………………………………………8分22.(1)如图所示:BD即为所求.……………………………………………………………………3分(2)是等腰三角形,理由如下:∵AB=AC,∴∠ABC=∠C,…………………………………………………………4分∵∠A=36°,∴∠ABC=∠ACB=(180°-36°)÷2=72°,…………………………………………5分∵BD平分∠ABC,∴∠ABD=∠DBC=36°,…………………………………………………………6分∴∠BDC=36°+36°=72°,…………………………………………………………7分∴BD=BC,…………………………………………………………………………8分∴△DBC是等腰三角形.…………………………………………………………9分23.(1)∵△ABE和△ACD是等边三角形,∴AE=AB,AD=AC,∠EAB=60°,∠DAC=60°,…………………………1分∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,……………………………………………………………………2分在△AEC和△ABD中,,,,AE AB EAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△ABD .……………………………………………………………………5分 (2)由(1)得△AEC ≌△ABD ,…………………………………………………………6分 ∴∠AEC =∠ABD ,……………………………………………………………………7分 ∵∠AFE =∠BFO (对顶角),在△AEF 中,∠AEF +∠EF A +∠EAF =180°,…………………………8分在△BFO 中,∠FBO +∠BFO +∠FOB =180°,……………………………………9分 ∴∠EAB =∠EOB =60°,…………………………………………………………10分 ∴∠BOC =180°-∠EOB =120°.……………………………………………………11分。

2018-2019学年八年级上期中数学试卷含解析

2018-2019学年八年级上期中数学试卷含解析

2018-2019学年实验学校八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.95.(3分)在△ABC和△DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使△ABC ≌△DEF,则补充的条件是()A.BC=EF B.∠A=∠D C.AC=DF D.∠C=∠F6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°7.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,118.(3分)已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A.70°B.70°或55°C.40°或55°D.70°或40°9.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)10.(3分)已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A.80°B.40°C.120° D.60°二、填空题(每小题4分,共24分)11.(4分)如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI全等.(填“一定”或“不一定”或“一定不”)12.(4分)点P(﹣1,2)关于x轴对称点P1的坐标为.13.(4分)如图,已知△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠DAC=.14.(4分)如图,已知AO=OB,若增加一个条件,则有△AOC≌△BOC.15.(4分)如图,△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且CD=3cm,则ED长为.16.(4分)如图,在△ABC中,AD=DE,AB=BE,∠A=92°,则∠CED=.三、计算题(本大题7小题,共66分)17.(8分)在等腰三角形ABC中,已知它的两边分别为3cm和7cm,试求三角形ABC的周长.18.(8分)一个等腰三角形的周长为18cm.(1)已知腰长是底边长的2倍,求各边长.(2)已知其中一边长为4cm,求另两边长.19.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.20.(10分)如图,AE是∠BAC的平分线,AB=AC.若点D是AE上任意一点,请证明:△ABD≌△ACD.21.(10分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC各内角的度数.22.(10分)如图,AF=DB,BC=EF,AC=DE,求证:BC∥EF.23.(12分)△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.(3)求△ABC的面积.2017-2018学年广东省肇庆市高要市朝阳实验学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.(3分)若等腰三角形底角为72°,则顶角为()A.108°B.72°C.54°D.36°【解答】解:∵等腰三角形底角为72°∴顶角=180°﹣(72°×2)=36°故选:D.3.(3分)对于任意三角形的高,下列说法不正确的是()A.锐角三角形有三条高B.直角三角形只有一条高C.任意三角形都有三条高D.钝角三角形有两条高在三角形的外部【解答】解:A、锐角三角形有三条高,说法正确,故本选项不符合题意;B、直角三角形有三条高,说法错误,故本选项符合题意;C、任意三角形都有三条高,说法正确,故本选项不符合题意;D、钝角三角形有两条高在三角形的外部,说法正确,故本选项不符合题意;故选:B.4.(3分)一个三角形的两边长为3和8,第三边长为奇数,则第三边长为()A.5或7 B.7或9 C.7 D.9【解答】解:根据三角形的三边关系,得第三边大于8﹣3=5,而小于两边之和8+3=11.又第三边应是奇数,则第三边等于7或9.故选:B.5.(3分)在△ABC和△DEF中,AB=DE,∠B=∠E,如果补充一个条件后不一定能使△ABC ≌△DEF,则补充的条件是()A.BC=EF B.∠A=∠D C.AC=DF D.∠C=∠F【解答】解:A、添加BC=EF,可利用SAS判定△ABC≌△DEF,故此选项错误;B、添加∠A=∠D,可利用ASA判定△ABC≌△DEF,故此选项错误;C、添加AC=DF,不能判定△ABC≌△DEF,故此选项正确;D、添加∠C=∠F,可利用AAS判定△ABC≌△DEF,故此选项错误;故选:C.6.(3分)如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.7.(3分)下列各组数可能是一个三角形的边长的是()A.1,2,4 B.4,5,9 C.4,6,8 D.5,5,11【解答】解:A、因为1+2<4,所以本组数不能构成三角形.故本选项错误;B、因为4+5=9,所以本组数不能构成三角形.故本选项错误;C、因为4+6>8,所以本组数可以构成三角形.故本选项正确;D、因为5+5<11,所以本组数不能构成三角形.故本选项错误;故选:C.8.(3分)已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为()A.70°B.70°或55°C.40°或55°D.70°或40°【解答】解:分两种情况:当70°的角是底角时,则顶角度数为40°;当70°的角是顶角时,则顶角为70°.故选:D.9.(3分)点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)【解答】解:点M(3,2)关于y轴对称的点的坐标为(﹣3,2),故选:A.10.(3分)已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A.80°B.40°C.120° D.60°【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°,∵∠E=40°,∴∠F=180°﹣∠D﹣∠E=180°﹣80°﹣40°=60°.故选:D.二、填空题(每小题4分,共24分)11.(4分)如果△ABC和△DEF全等,△DEF和△GHI全等,则△ABC和△GHI一定全等,如果△ABC和△DEF不全等,△DEF和△GHI全等,则△ABC和△GHI一定不全等.(填“一定”或“不一定”或“一定不”)【解答】解:根据全等三角形的传递性,△ABC和△GHI一定全等,三者有一对不重合则△ABC和△GHI一定不重合,则二者不全等.故结果分别为一定,一定不.12.(4分)点P(﹣1,2)关于x轴对称点P1的坐标为(﹣1,﹣2).【解答】解:点P(﹣1,2)关于x轴对称点P1的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2).13.(4分)如图,已知△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠DAC=40°.【解答】解:∵△ABC≌△ADE,∴∠DAE=∠BAC,∵∠CAD=∠BAC﹣∠BAD=∠DAE﹣∠CAE,∴∠BAD=∠CAE=40°,∵∠BAE=120°,∠BAD=40°,∴∠DAC=BAE﹣∠BAD﹣∠CAE=120°﹣40°﹣40°=40°.故答案为40°.14.(4分)如图,已知AO=OB,若增加一个条件∠1=∠2,则有△AOC≌△BOC.【解答】解:∵AO=OB,∠1=∠2,OC=OC,∴△AOC≌△BOC.故答案为:∠1=∠2.15.(4分)如图,△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且CD=3cm,则ED长为3cm.【解答】解:∵AD平分∠CAB,∠C=90°,DE⊥AB于点E,∴DE=CD,∵CD=3cm,∴DE=3cm.故答案为3cm.16.(4分)如图,在△ABC中,AD=DE,AB=BE,∠A=92°,则∠CED=88°.【解答】解:∵在△ABD和△EBD中,∴△ABD≌△EBD(SSS),∴∠BED=∠A=92°,∴∠CED=180°﹣∠DEB=88°,故答案为:88°.三、计算题(本大题7小题,共66分)17.(8分)在等腰三角形ABC中,已知它的两边分别为3cm和7cm,试求三角形ABC的周长.【解答】解:当3cm是腰时,3+3<7cm,不符合三角形三边关系,故舍去;当7cm是腰时,周长=7+7+3=17cm.故该三角形的周长为17cm.18.(8分)一个等腰三角形的周长为18cm.(1)已知腰长是底边长的2倍,求各边长.(2)已知其中一边长为4cm,求另两边长.【解答】解:(1)设底边BC=acm,则AC=AB=2acm,∵三角形的周长是18cm,∴2a+2a+a=18,∴a=,2a=.答:等腰三角形的三边长是cm,cm,cm.(2)当4cm为腰,设底边为xcm,可得:4+4+x=18,解得:x=10,三角形的三边长是4cm,4m,10cm,不符合三角形的三边关系定理,当4cm为底,设腰为xcm,可得:x+4+x=18,解得:x=7,三角形的三边长是7cm,7cm,4cm,符合三角形的三边关系定理,所以另两边长7cm,7cm.19.(8分)已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:(1)△ABC≌△DEF;(2)BE=CF.【解答】证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中,∴△ABC≌△DEF(2)∵△ABC≌△DEF∴BC=EF∴BC﹣EC=EF﹣EC即BE=CF20.(10分)如图,AE是∠BAC的平分线,AB=AC.若点D是AE上任意一点,请证明:△ABD≌△ACD.【解答】证明:∵AE是∠BA C的平分线,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△BAD≌△CAD(SAS)21.(10分)已知:如图,点D在△ABC的边BC上,AB=AC=CD,AD=BD,求△ABC各内角的度数.【解答】解:设∠B=α∵AB=AC,∴∠C=α,∵BD=BA,∴∠BAD=α,∵∠ADC为△ABC外角,∴∠ADC=2α,∵AC=DC,∴∠CAD=2α,∴∠BAC=3α,∴在△ABC中∠B+∠C+∠BAC=5α=180°,∴α=36°,∴∠B=∠C=36°,∴∠CAB=108°.22.(10分)如图,AF=DB,BC=EF,AC=DE,求证:BC∥EF.【解答】证明:∵AF=DB,∴AF+FB=DB+FB,∴AB=DF,在△ACB和△DEF中,,∴△ACB≌△DEF(SSS),∴∠ABC=∠EFD,∴CB∥EF.23.(12分)△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.(3)求△ABC的面积.【解答】解:(1)如图,△A1B1C1即为所求;点C1的坐标(3,﹣2)(2)如图,△A2B2C2即为所求;点C2的坐标(﹣3,2).=2×3﹣×1×2﹣×1×2﹣×1×3=2.5.(3)S△ABC。

广西梧州市八年级上学期期中数学试卷

广西梧州市八年级上学期期中数学试卷

广西梧州市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、精心选择,一锤定音 (共10题;共20分)1. (2分) (2016九上·罗庄期中) 下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)已知三角形的两边长分别为4和9,则下列长度的四条线段中能作为第三边的是()A . 13B . 6C . 5D . 43. (2分) (2019八上·长春月考) 如图,在中,按以下步骤作图:①分别以点B和C为圆心,适当长度(大于CB长的一半)为半径作圆弧,两弧相交于点M和N;②作直线交AB于点D,连接CD.若,,则的周长是()A .B .C .4. (2分) (2016八上·江津期中) 如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A . ①B . ②C . ③D . ①和②5. (2分)如图所示,在△ABC中,AB=AC,BD⊥AC垂足为D,∠A=40°,∠DBC=()A . 20°B . 30°C . 50°D . 60°6. (2分) (2016八下·周口期中) 等腰三角形的腰长为5,底边长为8,则该三角形的面积等于()A . 6B . 12C . 24D . 407. (2分) (2016八上·吉安开学考) 等腰三角形的周长为30cm,其中一边长12cm,则其腰长为()A . 9cmB . 12cm或9cmC . 10cm或9cmD . 以上都不对8. (2分) (2017八上·涪陵期中) 等腰三角形一边长等于4,一边长等于9,则它的周长等于()A . 17B . 22C . 17或229. (2分)(2018·南通) 正方形的边长,为的中点,为的中点,分别与相交于点,则的长为()A .B .C .D .10. (2分)下列各图形中,具有稳定性的是()A .B .C .D .二、细线填一填,试试自己的身手! (共10题;共11分)11. (1分) (2019八上·渝中期中) 如图,AD是△ABC的角平分线,BE是△ABC的高,∠BAC=40°,则∠AFE 的度数为________.形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA.有如下结论:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④2EA=ED;⑤BP=EQ.其中正确的结论个数为________.13. (1分) (2017八下·如皋期中) 如图,在平面直角坐标系中,正方形ABCD的对称中心与原点重合,顶点A的坐标为(﹣1,1),顶点B在第一象限,若点B在直线y=kx+3上,则k的值为________.14. (2分) (2019八上·阳信开学考) 如果△ABC≌△ADC,AB=AD,∠B=70°,BC=3cm,那么∠D=________,DC=________ cm.15. (1分)(2019·拱墅模拟) 如图,已知△ABC中,∠ABC=50°,P为△ABC内一点,过点P的直线MN分別交AB、BC于点M、N.若M在PA的中垂线上,N在PC的中垂线上,则∠APC的度数为________16. (1分) (2018八上·防城港月考) 如图:小亮从A点出发,沿直线前进10米后向左转30度,再沿直线前进10米,又向左转30度,⋯⋯照这样走下去,他第一次回到出发点A点时,一共走了________米?17. (1分)(2019八下·尚志期中) 如图,在四边形中,,若,则 ________.18. (1分)(2018·柳州) 如图,在中,,,,,则的长为________.19. (1分) (2016八下·江汉期中) 如图,正方形ABCD中,E在BC上,BE=2,CE=1.点P在BD上,则PE 与PC的和的最小值为________.20. (1分) (2019八上·永定月考) 三条直线l1 , l2 , l3相互交叉,交点分别为A,B,C,在平面内找一个点,使它到三条直线的距离相等,则这样的点共有________个.三、用心做一做,显显自己的能力! (共6题;共41分)21. (5分)在△ABC中,AB=AC,AD平分∠BAC,求证:AD⊥BC.22. (2分)在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C.(1)若A点的坐标为(1,2),请你在给出的坐标系中画出△ABC.设AB与y轴的交点为D,则=________;(2)若点A的坐标为(a,b)(ab≠0),则△ABC的形状为________.23. (10分) (2016八上·孝南期中) 如图,在△ABC中,∠C=∠ABC=2∠A.(1)求∠A的度数;(2)若AB的垂直平分线MN交AC于D,连BD,求∠DBC的度数.24. (5分)如图,点E为△ABC边AB上一点,AC=BC=BE,AE=EC,BD⊥AC于D,求∠CBD的度数.25. (10分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)在图中分别作出△ABC关于x、y轴的对称图形△A1B1C1和△A2B2C2 .(2)直接写出这两个三角形各顶点的坐标.26. (9分) (2019八上·荆门期中) 如图,在等腰△ABC中,AB=AC=3cm,∠B=30°,点D在BC边上由C 向B匀速运动(D不与B、C重合),匀速运动速度为1cm/s,连接AD,作∠ADE=30°,DE交线段AC于点E.(1)在此运动过程中,∠BDA逐渐变________(填“大”或“小”);D点运动到图1位置时,∠BDA=75°,则∠BAD=________.(2)点D运动3s后到达图2位置,则CD=________.此时△ABD和△DCE是否全等,请说明理由;________ (3)在点D运动过程中,△ADE的形状也在变化,判断当△ADE是等腰三角形时,∠BDA等于多少度(请直接写出结果)参考答案一、精心选择,一锤定音 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、细线填一填,试试自己的身手! (共10题;共11分) 11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、25-1、25-2、26-1、26-2、26-3、第11 页共11 页。

梧州市岑溪市2018-2019学年八年级上期中数学试卷含答案解析

梧州市岑溪市2018-2019学年八年级上期中数学试卷含答案解析

2019-2019学年广西梧州市岑溪市八年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列各点中,在第一象限的点是()A.(2,3) B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)2.平面直角坐标系中,若点M(a,b)在第二象限,则点N(﹣b,a)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,手掌盖住的点的坐标可能是()A.(3,4) B.(﹣4,3)C.(﹣4,﹣3)D.(3,﹣4)4.平面直角坐标系中,点M(﹣3,2)到y轴的距离是()A.3 B.2 C.3或2 D.﹣35.下列各图能表示y是x的函数是()A. B.C.D.6.一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4) C.(2,0) D.(﹣2,0)7.下面各点中,在函数y=﹣2x+3的图象上的点是()A.(1,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,1)8.函数y=中,自变量x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥29.已知,一次函数y=kx+b的图象如图,下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<010.将函数y=﹣2x的图象沿y轴向上平移3个单位长度后,所得图象对应的函数表达式为()A.y=x B.y=﹣2x+3 C.y=﹣2x﹣3 D.y=﹣2(x+3)11.已知点(﹣3,y1),(1,y2)都在直线y=﹣x+2上,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定12.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0二、填空题(每小题3分,共18分)13.请你任意写出一个在y轴上的点的坐标.14.如图,若在象棋盘上建立平面直角坐标系,使“炮”位于点(1,1),“馬”位于点(3,﹣1),则“兵”位于点(写出点的坐标).15.一次函数y=﹣3x+1的图象经过点(a,﹣1),则a=.16.将点P(﹣2,3)先向右平移3个单位,再向下平移5个单位后得到点P′,则点P′的坐标为.17.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是米/分钟.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则关于x的不等式kx﹣3>2x+b的解集是.19.写出一个同事具备下列两个条件的一次函数表达式:①y随着x的增大而增大;②图象不经过第二象限(只写一个即可).20.把下面图画函数y=﹣x+2图象的过程补充完整.解:(1)列表为:(2)画出的函数图象为:21.(1)在如图所给的平面直角坐标系中,描出点A(3,4),B(0,2),C(3,﹣2),再顺次连接A、B、C三点;(2)求三角形ABC的面积.22.在一次函数y=kx+b中,当x=1时,y=﹣2,当x=2时,y=1.(1)求k、b的值;(2)当x=﹣2时,y的值是多少?23.如图,在平面直角坐标系中,△ABC的顶点都在网格点上,其中点C坐标为(1,2).(1)写出点A、B的坐标:A;B.(2)若将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,请你画出△A′B′C′.(3)写出△′B′C′的三个顶点坐标:A′;B′;C′.24.我市出租车计费方法如图所示,x(千米)表示行驶里程,y(元)表示车费,请根据图象回答下列问题.(1)我市出租车的起步价是元;(2)当x>3时,求y关于x的函数关系式.(3)小叶有一次乘坐出租车的车费是21元,求他这次乘车的里程.25.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6m3时时,水费按每立方米a元收费,超过6m3时,超过的部分每立方米按c元收费,不超过的部分每立方米仍按a元收费该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)(1)a=,c=;(2)请分别求出用水不超过6m3和超过6m3时,y与x的函数关系式;(3)若该户11月份用水8m3,则该户应交水费多少元?2019-2019学年广西梧州市岑溪市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.下列各点中,在第一象限的点是()A.(2,3) B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:A、在第一象限,故A正确;B、在第四象限,故B错误;C、在第三象限,故C错误;D、在第二象限,故D错误;故选:A.2.平面直角坐标系中,若点M(a,b)在第二象限,则点N(﹣b,a)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据M所在象限确定a和b的符号,然后确定N的横纵坐标的符号,进而确定所在象限.【解答】解:∵点M(a,b)在第二象限,∴a<0,b>0,则﹣b<0,则B(﹣b,a)在第三象限.故选C.3.如图,手掌盖住的点的坐标可能是()A.(3,4) B.(﹣4,3)C.(﹣4,﹣3)D.(3,﹣4)【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:由图形,得点位于第三象限,故选:C.4.平面直角坐标系中,点M(﹣3,2)到y轴的距离是()A.3 B.2 C.3或2 D.﹣3【考点】点的坐标.【分析】根据点到y轴的距离是横坐标的绝对值,可得答案.【解答】解:点M(﹣3,2)到y轴的距离是|﹣3|=3,故选:A.5.下列各图能表示y是x的函数是()A. B.C.D.【考点】函数的概念.【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y 不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.6.一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4) C.(2,0) D.(﹣2,0)【考点】一次函数图象上点的坐标特征.【分析】在解析式中令x=0,即可求得与y轴的交点的纵坐标.【解答】解:令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选:B.7.下面各点中,在函数y=﹣2x+3的图象上的点是()A.(1,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,1)【考点】一次函数图象上点的坐标特征.【分析】分别将各个点的值代入函数中满足的即在图象上.【解答】解:当x=1时,y=1,(1,﹣1)不在函数y=﹣2x+3的图象上,(1,1))在函数y=﹣2x+3的图象上;当x=﹣2时,y=7,(﹣2,1)和(﹣2,﹣1)不在函数y=﹣2x+3的图象上;故选D.8.函数y=中,自变量x的取值范围是()A.x>2 B.x<2 C.x≠2 D.x≥2【考点】函数自变量的取值范围.【分析】根据分母为零无意义,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故选:C.9.已知,一次函数y=kx+b的图象如图,下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:如图所示,一次函数y=kx+b的图象,y随x的增大而增大,所以k >0,直线与y轴负半轴相交,所以b<0.故选B.10.将函数y=﹣2x的图象沿y轴向上平移3个单位长度后,所得图象对应的函数表达式为()A.y=x B.y=﹣2x+3 C.y=﹣2x﹣3 D.y=﹣2(x+3)【考点】一次函数图象与几何变换.【分析】直接利用一次函数平移规律,“上加下减”进而得出即可.【解答】解:∵将函数y=﹣2x的图象沿y轴向上平移3个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣2x+3.故选:B.11.已知点(﹣3,y1),(1,y2)都在直线y=﹣x+2上,则y1、y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定【考点】一次函数图象上点的坐标特征.【分析】根据k=﹣<0可得y将随x的增大而减小,利用x的大小关系和函数的单调性可判断y1>y2.【解答】解:∵k=﹣<0,∴y将随x的增大而减小,∵﹣3<1,∴y1>y2.故选A.12.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0【考点】一次函数的性质.【分析】根据一次函数的性质,依次分析选项可得答案.【解答】解:根据一次函数的性质,依次分析可得,A、x=﹣2时,y=﹣2×﹣2+1=5,故图象必经过(﹣2,5),故错误,B、k<0,则y随x的增大而减小,故错误,C、k=﹣2<0,b=1>0,则图象经过第一、二、四象限,故错误,D、当x>时,y<0,正确;故选D.二、填空题(每小题3分,共18分)13.请你任意写出一个在y轴上的点的坐标(0,1).【考点】点的坐标.【分析】根据y轴上点的横坐标为0写出即可.【解答】解:y轴上的点(0,1),答案不唯一.故答案为:(0,1).14.如图,若在象棋盘上建立平面直角坐标系,使“炮”位于点(1,1),“馬”位于点(3,﹣1),则“兵”位于点(﹣2,2)(写出点的坐标).【考点】坐标确定位置.【分析】根据炮的坐标确定出向左一个单位,向下一个单位为坐标原点,建立平面直角坐标系,然后写出兵的坐标即可.【解答】解:建立平面直角坐标系如图所示,“兵”位于点(﹣2,2).故答案为:(﹣2,2).15.一次函数y=﹣3x+1的图象经过点(a,﹣1),则a=.【考点】一次函数图象上点的坐标特征.【分析】把点(a,﹣1)代入y=﹣3x+1即可求解.【解答】解:把点(a,﹣1)代入y=﹣3x+1,得:﹣3a+1=﹣1.解得a=.故答案为.16.将点P(﹣2,3)先向右平移3个单位,再向下平移5个单位后得到点P′,则点P′的坐标为(1,﹣2).【考点】坐标与图形变化-平移.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点P′的坐标为(﹣2+3,3﹣5),再计算即可.【解答】解:点P(﹣2,3)先向右平移3个单位,再向下平移5个单位后得到点P′,则点P′的坐标为(﹣2+3,3﹣5),即(1,﹣2),故答案为:(1,﹣2).17.小明放学后步行回家,他离家的路程s(米)与步行时间t(分钟)的函数图象如图所示,则他步行回家的平均速度是80米/分钟.【考点】函数的图象.【分析】他步行回家的平均速度=总路程÷总时间,据此解答即可.【解答】解:由图知,他离家的路程为1600米,步行时间为20分钟,则他步行回家的平均速度是:1600÷20=80(米/分钟),故答案为:80.18.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则关于x的不等式kx﹣3>2x+b的解集是x<4.【考点】一次函数与一元一次不等式.【分析】直线y=kx﹣3落在直线y=2x+b上方的部分对应的x的取值范围即为所求.【解答】解:∵函数y=2x+b与函数y=kx﹣3的图象交于点P(4,﹣6),∴不等式kx﹣3>2x+b的解集是x<4.故答案为x<4.19.写出一个同事具备下列两个条件的一次函数表达式:①y随着x的增大而增大;②图象不经过第二象限y=x﹣2(只写一个即可).【考点】待定系数法求一次函数解析式;一次函数的性质.【分析】根据①确定k>0;根据②,判定出b<0.【解答】解:∵一次函数表达式:y随着x的增大而增大;图象不经过第二象限,∴k>0;b<0.∴该一次函数的表达式可为:y=x﹣2(答案不唯一,k>0;b<0.)故答案为:y=x﹣2.20.把下面图画函数y=﹣x+2图象的过程补充完整.解:(1)列表为:(2)画出的函数图象为:【考点】一次函数的图象.【分析】(1)根据解析式分别将x的值代入计算即可;(2)描点,连线,画出图象.【解答】解:(1)列表为:(2)画出的图象为下图:21.(1)在如图所给的平面直角坐标系中,描出点A(3,4),B(0,2),C(3,﹣2),再顺次连接A、B、C三点;(2)求三角形ABC的面积.【考点】坐标与图形性质.【分析】(1)根据点在坐标系中的表示即可求解;(2)利用三角形的面积公式即可求解.【解答】解:(1)=×6×3=9.(2)AC=6,则S△ABC22.在一次函数y=kx+b中,当x=1时,y=﹣2,当x=2时,y=1.(1)求k、b的值;(2)当x=﹣2时,y的值是多少?【考点】待定系数法求一次函数解析式.【分析】(1)将x与y的两对值代入y=kx+b中求出k与b的值,即可确定出一次函数解析式.(2)把x=﹣2代入解析式即可求得.【解答】解:(1)依题意得:,解之得:,(2)由(1)知该一次函数解析式为y=3x﹣5,当x=﹣2时,y=3×(﹣2)﹣5=﹣11.23.如图,在平面直角坐标系中,△ABC的顶点都在网格点上,其中点C坐标为(1,2).(1)写出点A、B的坐标:A(2,﹣1);B(4,3).(2)若将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,请你画出△A′B′C′.(3)写出△′B′C′的三个顶点坐标:A′(0,0);B′(2,4);C′(﹣1,3).【考点】作图-平移变换.【分析】(1)利用坐标的表示方法写出A、B两点的坐标;(2)(3)用点平移的坐标规律写出A′、B′、C′的坐标,然后描点即可得到△A′B′C′.【解答】解:(1)A(2,﹣1),B(4,3);(2)如图,△A′B′C′为所作;(3)A′(0,0),B′(2,4),C′(﹣1,3).故答案为(2,1),(4,3);(0,0),(2,4),(﹣1,3).24.我市出租车计费方法如图所示,x(千米)表示行驶里程,y(元)表示车费,请根据图象回答下列问题.(1)我市出租车的起步价是5元;(2)当x>3时,求y关于x的函数关系式.(3)小叶有一次乘坐出租车的车费是21元,求他这次乘车的里程.【考点】一次函数的应用.【分析】(1)由当x=0时y=5即可得出出租车的起步价为5元;(2)设当x>3时,y与x的函数关系式为y=kx+b(k≠0),在图形中找出点(3,5)、(6,11),利用待定系数法即可得出结论;(3)将y=21代入(2)的结论中求出x值,此题的解.【解答】解:(1)∵当x=0时,y=5,∴我市出租车的起步价是5元.故答案为:5.(2)设当x>3时,y与x的函数关系式为y=kx+b(k≠0),将(3,5)、(6,11)代入y=kx+b中,得:,解得:.∴当x>3时,y关于x的函数关系式为y=2x﹣1.(3)当y=21时,有2x﹣1=21,解得:x=11.答:他这次乘车的里程是11千米.25.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6m3时时,水费按每立方米a元收费,超过6m3时,超过的部分每立方米按c元收费,不超过的部分每立方米仍按a元收费该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元)(1)a= 1.5,c=6;(2)请分别求出用水不超过6m3和超过6m3时,y与x的函数关系式;(3)若该户11月份用水8m3,则该户应交水费多少元?【考点】一次函数的应用.【分析】(1)根据9月份的收费列式计算即可得到a,再根据10月份的收费分两个部分列式计算即可得解;(2)根据a、c的值分别写出y与x的关系式即可;(3)把x=8代入函数关系式计算即可得解.【解答】解:(1)由表可知,a=7.5÷5=1.5,6×1.5+(9﹣6)c=27,解得c=6;故答案为:1.5;6;(2)当0<x≤6时,y=ax,将a=1.5代入得y=1.5x,当x>6时,y=6a+c(x﹣6)=9+6(x﹣6)=6x﹣27,所以用水不超过6m3得y=1.5x;超过6m3时得y=6x﹣27;(3)依题意把x=8代入解析式y=6x﹣27得:y=6×8﹣27=21.答:该户11月份应交水费21元.2019年1月19日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西壮族自治区梧州市岑溪市广西2018-2019学年八年级上学期数学期中考试
试卷
一、单选题
1. 点
所在的象限是( )
A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
2. 在平面直角坐标系中,若将三角形上各点的纵坐标都减去3,横坐标保持不变,则所得图形在原图形的基础上( )
A . 向左平移了3个单位 B . 向下平移了3个单位 C . 向上平移了3个单位 D . 向右平移了3个单位
10. 在国家体育馆“鸟巢”一侧的座位上,6 排 3 号记为(6,3 ),则 5 排 8 号记为________.
11. 把直线y=2x向上平移两个单位长度,再向右平移一个单位长度,则得到的直线是________.
12. 已知函数 y=(2m﹣9)x|m|﹣5是正比例函数,且图象经过第二,四象限,则m的值为________.
(1) 请在图中作出△A′B′C′; (2) 写出点A′、B′、C′的坐标. 20. 已知直线 l1:y=x+n﹣2 与直线 l2:y=mx+n 相交于点 P(1,2).
(1) 求 m,n 的值; (2) 请结合图象直接写出不等式 mx+n>x+n﹣2 的解集.
21. 随着地球上的水资源日益枯竭,各级政府越来越重视节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均 月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信
息,回答下列问题:
(1) 该市人均月生活用水的收费标准是:不超过5吨,每吨按元收取;超过5吨的部分,每吨按元收取; (2) 当x>5时,求y与x的函数关系式; (3) 若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水? 22. 已知一次函数 y=(m﹣2)x+3﹣m 的图象不经过第三象限,且 m 为正整数.
3. 平面坐标系中,点A(n,1-n)不可能是( )
A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限
4. 点 P(﹣2,﹣3)向右平移 2 个单位,再向上平移 4 个单位,则所得到的点的坐标为( )
A . (﹣2,0) B . (0,﹣2) C . (1,0) D . (0,1)
13. 已知点 P 在第四象限,该点到 x 轴的距离为 3,到 y 轴的距离为 1,则点 P的坐标为________.
14. 函数
中的自变量x的取值范围________。
15. 一次函数 y=kx+b(k≠0)的图象如图所示,当 y>0时,则 x<________.
16. 点( ,y1),(2,y2)是一次函数 y=﹣ x﹣3 图象上的两点,则 y1________y2.(填“>”、“=”或“<”) 17. 一次函数 y1=kx+b 与 y2=x+a 的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当 x=3时,y1=y2;④ 不等式 kx+b>x+a 的解集是 x<3,其中正确的结论有________.(只填序号)
三、解答题 18. 把点 A(﹣4,﹣3)、B(﹣3,1)、C(0,﹣6)、D(6,5)在同一坐标系中描出(每一个方格长度为 1),
并用线段将各点按 ABCD 的顺序依次连接起来.
19. 如图,已知A(-4,-1),B(-5,-4),C(-1,-3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对 应点为P′(x1+6,y1+4)
5. 已知点(﹣4,y1),(2,y2)都在直线y=﹣ x+2上,则y1 , y2大小关系是( )
A . y1>y2 B . y1=y2 C . y1<y2 D . 不能比较 6. 已知关于 x 的不等式 ax+1>0(a≠0)的解集是 x<1,则直线 y=ax+1 与 x轴的交点是( ) A . (0,1) B . (﹣1,0) C . (0,﹣1) D . (1,0) 7. 弹簧的长度 y(cm)与所挂物体的质量 x(kg)之间的关系式是一次函数关系,图象如图所示,则弹簧本身的长度 是( )
关于 的函数表达式;
(2) 请你帮助小明计算并选择哪个出游方案合算。 参考答案
1. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
19.
20. 21.
22.
23.
(1) 求 m 的值. (2) 在给出的平面直角坐标系中画出该一次函数的图象. (3) 当﹣4<y<0 时,根据函数图象,求 x 的取值范围. 23. “五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。
来根据以上信息,解答下列问题:
(1) 设租车时间为 小时,租用甲公司的车所需费用为 元,租用乙公司的车所需费用为 元,分别求出 ,
A . 9cm B . 10cm C . 12.5cm D . 20cm 8. 函数 y=ax﹣a 的大致图象是( )
A.
B.
C.
D.
9. 如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )
A . x< B . x<3 C . x>– D . x>3
二、填空题
相关文档
最新文档