数与式测试题知识讲解
中考数学压轴题----《数与式》题型讲解

中考数学压轴题----《数与式》题型讲解【典例1】(2021•广东)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p=,则其面积S=.这个公式也被称为海伦﹣秦九韶公式.若p=5,c =4,则此三角形面积的最大值为()A.B.4C.2D.5【答案】C【解答】解:∵p=,p=5,c=4,∴5=,∴a+b=6,∴a=6﹣b,∴S=======,当b=3时,S有最大值为=2.故选:C.【变式1】(2022•长沙)当今大数据时代,“二维码”具有存储量大、保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中大约80%的小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2200个不同的数据二维码,现有四名网友对2200的理解如下:YYDS(永远的神):2200就是200个2相乘,它是一个非常非常大的数;DDDD(懂的都懂):2200等于2002;JXND(觉醒年代):2200的个位数字是6;QGYW(强国有我):我知道210=1024,103=1000,所以我估计2200比1060大.其中对2200的理解错误的网友是(填写网名字母代号).【答案】DDDD【解答】解:(1)∵2200就是200个2相乘,∴YYDS(永远的神)的说法正确;∵2200就是200个2相乘,2002是2个200相乘,∴2200不等于2002,∴DDDD(懂的都懂)说法不正确;∵21=2,22=4,23=8,24=16,25=32,…,∴2n的尾数2,4,8,6循环,∵200÷4=50,∴2200的个位数字是6,∴JXND(觉醒年代)说法正确;∵210=1024,103=1000,∴2200=(210)20=(1024)20,1060=(103)20=100020,∵1024>1000,∴2200>1060,∴QGYW(强国有我)说法正确;故答案为:DDDD.。
初一数学数与式试题答案及解析

初一数学数与式试题答案及解析1. 4的算术平方根是___,的倒数是.【答案】2,【解析】∵22=4,∴4算术平方根为2.-3的倒数是-.【考点】算术平方根.倒数.点评:此题要求分清算术平方根与平方根的概念和倒数的概念.2.若与互为相反数,求的值.【答案】解:∵与互为相反数∴+=0,∵,∴,∴,=【解析】互为相反数的两个数相加得0,而绝对值和平方值都为非负数。
3.计算:【答案】原式=3+(-1)×1-3+4 =" 3-1-3+4" = 3【解析】利用幂的性质进行化简。
4.下列各式中与a-b-c的值不相等的是()A.a-(b+c)B.a-(b-c)C.(a-b)+(-c)D.(-c)-(b-a)【答案】B【解析】因为,与的值不相等,故选B。
5.已知x是有理数,y是无理数,请先化简下面的式子,再在相应的圆圈内选择你喜欢的数代入求值:.【答案】【解析】略6.用科学记数法表示10300000记作___________.【答案】1.03×107【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:10 300 000=1.03×107.故答案为:1.03×107.7. 0.004007有_____个有效数字A.2B.3C.4D.5【答案】C【解析】【考点】近似数和有效数字.分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.据此作答即可.解答:解:0.004007有4个有效数字,故选C.点评:本题考查了近似数和有效数字,解题的关键是注意有效数字的起止计算方法.8.【1】(1)先化简,再求值2(m2n+mn2)-2(m2n-1)-3(mn2+1),其中m=-2,n=2【答案】(1)化简得-mn2-1 代值得7【2】(2)将下列各数在数轴上表示出来,并用“<”连接:-22, -(-1), 0,-│-2│, -2.5,【答案】(2)画图略-22<-2.5 <-│-2│<0<-(-1)<9.的平方根是________,8的立方根是__ ______.【答案】【解析】1、根据算术平方根的概念先求得=9,再根据平方根的定义即可求出结果.解:2、如果一个数x的立方是a,那么x就是a的立方根。
初三数学数与式试题答案及解析

初三数学数与式试题答案及解析1.(1)计算:。
(2)先化简,再求代数式的值:,其中m=1。
【答案】(1)0(2)【解析】分析:(1)针对二次根式化简,零指数幂,绝对值3个考点分别进行计算,然后根据实数的运算法则求得计算结果。
(2)先把括号里面的分子分解因式,再约分化简,然后再通分计算,再把括号外的除法运算转化成乘法运算,再进行约分化简,最后把m=1代入即可求值。
(1)解:原式=2+1-3=0。
(2)解:原式= 。
当m=1时,原式= 。
2. 2的平方根是()A.4B.C.D.【答案】D【解析】如果一个数x2=a(a≥0),那么x就是a的一个平方根.∵(±)2=2,∴2的平方根是±.3.不使用计算器,计算:【答案】【解析】根据二次根式和负指数幂的运算性质就是4.化简:.【答案】【解析】5.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问孤寡老人,如果给每位老人分5盒牛奶,则剩下38盒牛奶。
如设敬老院有名老人,则这批牛奶共有盒.(用含的代数式表示)【答案】【解析】根据牛奶的总盒数=老人数×每位老人分的盒数+剩下的盒数,即可列出所求的代数式()6.先化简,再求值:,其中.【答案】,【解析】解:原式=当时,原式7.阅读下面一段话,并解决后面的问题:观察下面一列数:1,2,4,8,……我们发现这一列数从第2项起,每一项与它的前一项的比都等于2. 一般地,如果一列数从第二项起,每一项与它的前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数叫做等比数列的公比.(1)等比数列3,-9,27,……的第4项是 .(2)如果一列数,,,,……是等比数列,且公比为q,那么根据上述规定,有,,,……所以,,,……,(用与q的代数式表示).(3)一个等比数列的第2项是10,第3项是20,求它的第1项和第7项.【答案】(1)-81(3分)(2)(3分)(3)第1项是5,第7项是320【解析】(1)由于 =-9, =27,所以可以根据规律得到第四项.乘以公比q的(n-1)次方,这样就可以推出公式了;(2)通过观察发现,第n项是首项a1(3)由于第二项是10,第三项是20,由此可以得到公比,然后就可以得到第1项和第7项.8.用配方法把方程化为,则m= .【答案】【解析】,所以原方程化为,故m=9.计算:=__________.【答案】2【解析】=3-1=2.10.函数中,自变量x的取值范围是.【答案】x≥-3【解析】由题意得,x+3≥0,x≥-3 。
初中自主招生——数与式(含答案)

初中自主招生研讨——数与式(答案)【涉及知识点】1、数列(1)求和:基础、裂项、错位、倒序(2)其他:找规律、累加累乘等2、二重根式直接法、乘2除2法、解方程组、字母变形、平方法3、乘法公式(1)基础公式(7+3)(2)拓展公式4、因式分解(1)多项式的因数定理与余数定理(2)多项式除以多项式(综合除法)(3)一猜(有理根)二添、二拆、二除、二待(3)猜不中(无理根)二待、二凑(4次方凑平方和+平方差)5、代数式恒等变形(重中之重!!!)6、其他(1)简单计数与数论(2)三个非负数、两次有理化、【涉及方法】1、猜、凑2、配方法3、待定系数法4、换元法【涉及思想】1、消元与降次思想2、构造思想3、整体与讨论思想4、定义域与化简优先【题型一】基础题(指数计算、三个非负数等)【题型二】分式(化简、求值、求和)【题型三】二次根式(化简、求值、求和、二重根式)【题型四】整式(多项式、因式分解、乘法公式、化简、求值)【题型五】数列(找规律、简单计数、求和、新定义)【题型一】基础题(指数计算、三个非负数等)1、若()6255252=xxx,则x=________________。
【参考答案】2或-12、已知: 23a =,32b =,则1111a b +=++______________.【参考答案】13、已知()21240x y x y --+++=则32x y -=( )-1A 、 -2B 、 2C 、 1D 、 【参考答案】D4、已知实数a 满足2008a -a ,那么a -22008值是 ( ) (A )2009 (B ) 2008 (C ) 2007 (D ) 2006【参考答案】A【参考答案】-15、()1015323π-⎛⎫-+---= ⎪⎝⎭( ).A .4-B .12C .4D .2【参考答案】C7、有理数a ,b 在数轴上的位置如图所示,则a b +的值是( ).A .0小于B .0大于C .a 小于D .b 大于【参考答案】B8、若,,a b c。
初三数学数与式试题答案及解析

初三数学数与式试题答案及解析1.计算:【答案】2【解析】解:原式=。
针对绝对值,二次根式化简,负整数指数幂,特殊角的三角函数值,零指数幂5个考点分别进行计算,然后根据实数的运算法则求得计算结果。
2.计算:;【答案】【解析】根据绝对值、算术平方根、幂的性质计算。
【考点】本题考查的是实数的运算点评:解答本题的关键是掌握任何非0数的0次方等于1.3.已知0<x<1,那么在x,,,x中最大的是()A.x B.C.D.x【答案】B【解析】解:设,则,,,其中最大,故选B。
4.下列运算正确的是()A.;B.;C.;D..【答案】D【解析】A.,故错误;B.,故错误;C.,故错误;D.,正确;故选D5.计算:.【答案】解:原式 = 2-+-1 = 1【解析】根据绝对值、算术平方根、幂得性质计算。
6.化简:.【答案】【解析】.7.计算的结果是().;.;.;..【答案】A【解析】4的算术平方根是2,故选A8.方程的解是.【答案】x =1【解析】原方程化为解得x =19.在实数,,0.101001,,0,中,无理数的个数是()A.0个B.1个C.2个D.3个【答案】C【解析】无理数有,,故选C。
10.实数在数轴上的位置如图所示,则下列结论正确的是()A.B.C.ab>0D.【答案】A【解析】由数轴可得-1<a<0,b>1,所以,故选A。
11.给出四个数-1,0, 0.5,,其中为无理数的是【】A.-1.B. 0C.0.5D.【答案】D【解析】根据初中无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可作出判断:结合所给的数可得,无理数为。
故选D。
12.当a=2时,代数式3a﹣1的值是▲ .【答案】5【解析】将a=2直接代入代数式得,3a﹣1=3×2﹣1=5。
13.在-3,-1, 0, 2 四个数中,最大的数是A.-1B.0C.2D.-3【答案】C【解析】根据负数小于0和正数,得到最大的数在0和2中,又因为2>0,故选C14.据报道,今年“五·一”期间我市旅游总收入同比增长超过两成,达到563 000 000元,用科学记数法表示为元.【答案】【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中563 000 000有9位整数,n=9-1=8.解答:解:563 000 000元用科学记数法表示为5.63×108元.15.【答案】【解析】略16.大巴山隧道是达陕高速公路中最长的隧道,总长约为6000米,这个数据用科学记数法表示为米.【答案】【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:6 000米=6×103米.17.若实数a.b满足,则a+b的值为.【答案】1【解析】本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解:根据二次根式的性质,被开方数大于等于0可知:a2-1≥0且1-a2≥0,解得a2=1,即a=±1,又0做除数无意义,所以a+1≠0,故a=1,b=0,所以a+b=1.18.(2011广东肇庆,16,6分)计算:【答案】解:原式===【解析】略19.(本题共16分,每小题8分.)【1】(1)(本题满分8分)计算:(-3.14)0×(-1)2010+(-)-2-│-2│+2cos30°【答案】(1)解:原式【2】(2) (本题满分8分)先化简:,再从不等式组的解集中取一个合适的整数值代入,求出原式的值.【答案】(2)解:解,得:。
中考总复习之数与式超全知识点及经典例题

中考总复习之数与式超全知识点及经典例题中考总复之数与式本部分内容是初中代数部分的基石,是数学研究历程中重要的延伸。
在小学的基础上,引入了平方根、立方根,从将数扩充到了实数范围。
认识了整式、分式、根式,将特殊的数字延伸到了能表示一般规律的代数式范围,其中涉及的代数式的计算,为今后高中研究奠定基础,也是中考综合题复杂运算必需的技能。
在中考试卷中,该部分内容独立考题所占分值较小,多以选择、填空、计算题出现。
然而在综合题型中,这部分内容的应用却处处存在。
实数的分类实数可以按照定义和正负两个方面进行分类。
其中,正负数的分类包括正整数、负整数、有限小数或有理数、正分数、分数、负分数、正无理数、负无理数。
有理数是指任何一个可以写成p/q形式的数,其中p、q是互质的整数。
无理数则包括开不尽的方根、特定结构的无限不循环小数以及特定意义的数,如π、e、一些三角函数等。
实数中的几个概念相反数是指只有符号不同的两个数,它们互为相反数。
一个实数a的相反数是-a,而a和b互为相反数当且仅当a+b=0.倒数是指一个数的倒数是1/a,而a和b互为倒数当且仅当ab=1.需要注意的是,0没有倒数。
绝对值是一个非负数,实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
n次方根是指平方根、立方根和其他次方根。
平方根是指设a≥0,称±a叫a的算术平方根,其中正数的平方根有两个,它们互为相反数。
负数没有平方根。
立方根是指3次方根,即3√a,其中一个正数有一个正的立方根,而负数的立方根是负数。
其他次方根的计算方法与此类似。
单项式的乘积仍然是单项式。
②单项式乘多项式:将多项式中的每一项与单项式相乘,然后将结果相加得到最终结果。
③多项式乘多项式:将每一项都与另一个多项式中的每一项相乘,然后将结果相加得到最终结果。
专题-数与式的运算(解析版)

专题01 数与式的运算知识梳理在初中,我们已经学习了实数,知道字母可以表示数,用代数式也可以表示数,我们把实数和代数式简称为数与式.代数式中有整式、分式、根式,它们具体细分又会包含单项式、多项式、绝对值、数幂等不同的小的类型,它们都具有实数的属性,可以进行运算.由于在高中学习中我们会经常遇到由代数式组成的各种混合运算,因此也需要较为复杂的公式结构和几何意义来进行辅助,比如:绝对值的几何意义、立方和差公式、杨辉三角公式、三种常见非负数形式等.知识结构模块一绝对值1、绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩2、绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.3、两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.【例1】解不等式:13x x -+->4.【难度】★★【答案】0<x 或4>x【解析】解法一:由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->,即24x -+>4,解得x <0,又x <1,∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->,即24x ->4, 解得x >4.又x ≥3,∴x >4.综上所述,原不等式的解为x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间典例剖析的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4.由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4.【例2】(1)当x 取何值时,3-x 有最小值?这个最小值是多少?(2)当x 取何值时,25+-x 有最大值?这个最大值是多少?(3)求54-+-x x 的最小值.(4)求987-+-+-x x x 的最小值.【难度】★★【答案】(1)当x=3时,3-x =0为最小值;(2)当x=-2时,25+-x =5为最大值;(3)当54≤≤x 时取最小,则54-+-x x =1为最小值;(4)当x=8时取最小,则987-+-+-x x x =2为最小值.【例3】(1)阅读下面材料:点A 、B 在数轴上分别表示实数b a ,,A 、B 两点这间的距离表示为AB,当A、B两点中一点在原点时,不妨设点A在原点,如图1,babOBAB-===;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边baababOAOBAB-=-=-=-=;②如图3,点A、B都在原点的左边()baababOAOBAB-=---=-=-=;③如图4,点A、B在原点的两边()bababaOBOAAB-=-+=+=+=.综上,数轴上A、B两点之间的距离baAB-=.(2)回答下列问题:①数轴上表示2和5两点之间的距离是,数轴上表示-2和-5的两点之间的距离是,数轴上表示1和-3的两点之间的距离是;②数轴上表示x和-1的两点A和B之间的距离是,如果2=AB,那么x为;③当代数式21-++xx取最小值时,相应的x的取值范围是;④求1997321-+⋅⋅⋅+-+-+-xxxx的最小值.【难度】★★★【答案】①3,3,4;②|x+1|,1或-3;③21≤≤-x;④找到1~1997的中间数999,当x=999时取得最小值,最小值是998+997+....+2+1+0+1+2+. (998)()299899812⨯+⨯=997002.对点精练1.解绝对值方程:3xx.-x-2=1--【难度】★★【答案】4x=【解析】分类讨论:x<1,1≤x<2,x≥2,根据绝对值的意义,可化简绝对值,根据解方程,可得答案.解:当x<1时,原方程等价于1﹣x﹣(2﹣x)=x﹣3.解得x=2(不符合范围,舍);当1≤x<2时,原方程等价于x﹣1﹣(2﹣x)=x﹣3.解得x=0(不符合范围,舍);当x≥2时,原方程等价于x﹣1﹣(x﹣2)=x﹣3.解得x=4,综上所述:x=4.本题考查了含绝对值符号的一元一次方程,分类讨论是解题关键,此外也可以通过数形结合来解题.模块二乘法公式(1)平方差公式22+-=-;()()a b a b a b(2)完全平方公式222±=±+;a b a ab b()2(3)立方和公式2233+-+=+;()()a b a ab b a b(4)立方差公式2233-++=-;a b a ab b a b()()(5)三数和平方公式2222()2()++=+++++;a b c a b c ab bc ac(6)两数和立方公式33223+=+++;a b a a b ab b()33(7)两数差立方公式33223-=-+-.a b a a b ab b()33引申:n次方差公式;()()()()()()322344223322=-+++-=-++-=-+-=-n n b a b ab b a a b a b a b ab a b a b a b a b a b a 根据以上规律,可以归纳出乘法公式:()()n n n n n n b a b ab b a a b a -=++++-----1221 (n 为非零自然数)将等号左右两边倒一下得:()()1221----++++-=-n n n n n n b ab b a a b a b a (n 为非零自然数) 这个公式称为n 次方差公式;由这个公式易得())(n n b a b a --;定理:若n 为正偶数,则())(n n b a b a --与())(n n b a b a -+同时成立;【例4】计算:(1)22(1)(1)(1)(1)x x x x x x +--+++;(2)22222))(2(y xy x y xy x +-++;(3)22)312(+-x x ;(4)()()()()1111842++++a a a a .【难度】★★【答案】(1)解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦ =242(1)(1)x x x -++=61x -. 解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.(2)原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+63362332)(y y x x y x ++=+=.(3)原式22]31)2([+-+=x x典例剖析222222111()(2)()2(2)22(2)333x x x x x x =+-++-+⨯+⨯⨯-432822122339x x x x =-+-+. (4)1116--=a a 原式.【例5】已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.【难度】★★【答案】2222()2()8a b c a b c ab bc ac ++=++-++=.【例6】分解因式:(1)2222(48)3(48)2x x x x x x ++++++;(2)432673676x x x x +--+.【难度】★★【答案】(1)原式=22[(48)2][(48)]x x x x x x ++++++=22(68)(58)x x x x ++++=2(2)(4)(58)x x x x ++++(2)原式=4226(1)7(1)36x x x x ++--=422226[(21)2]7(1)36x x x x x x -+++--=22226(1)7(1)36x x x x -+--=22[2(1)3][3(1)8]x x x x ---+=22(232)(383)x x x x --+-=(21)(2)(31)(3)x x x x +--+.对点精练1.已知335252-++=x ,求533-+x x 的值.【难度】★★【答案】1-【解析】()()()()()1552525131353333531152,52,52,52332233333333-=-++-=-+++++=-+++++=-+++=-=⇒-=⇒+=-==+=-ab b ab a b a b a ab b a b a b a b a ab ab b a b a 原式即令2.已知96333=-+z y x ,4=xyz ,12222=++-++xz yz xy z y x ,求z y x -+的值.【难度】★★★【答案】9【解析】()()()()[]()()()()9123333310812963222222222233333333=-+∴=-++++-++++-+=-+-++++-+=+---+=+-+=+=+-+z y x xy yz xz z y x xyyz xz z y x z y x z y x xy z y x z y x z y x xyz xy y x z y x xyzz y x xyz z y x 解:3.分解因式:2(1)(2)(2)xy x y x y xy -++-+-.【难度】★★【答案】令a x y =+,b xy =,则原式=2(1)(2)(2)b a a b -+--=221222a b a b ab ++-+-=2(1)a b --=2(1)x y xy +--=2[(1)(1)]x y ---=22(1)(1)x y --1、分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分子的有理化因式,化去分子中的根号的过程.2、二次根式2a 的意义 2a a ==,0,,0.a a a a ≥⎧⎨-<⎩【例7】试比较下列各组数的大小:(1)1211-和1110-; (2)264+和226-. 【难度】★★【答案】见解析【解析】(1)∵1211(1211)(1211)11211112111211--+-===++, 模块三:二次根典例剖析===,>,∴(2)∵===∴6+4>6+22,<【例8】化简:(1(21)<<.x【难度】★★【答案】见解析【解析】(1)原式====.2=2(2)原式1=-,xx∵01<<,x∴11x>>,x所以,原式=1x-.x【例9】化简22)1(111+++n n ,所得的结果为( ) A .1111+++n nB .1111++-n nC .1111+-+n nD .1111+--n n 【难度】★★ 【答案】C【解析】方法一:通过通分,然后整理配平方来解题1111)()1()1(1)(2)1()1()1()1()1(111222222222222222222+-+=+++=+++++=+++++=+++n n n n n n n n n n n n n n n n n n n n 方法二:可利用特值法将A 、B 、D 一一排除。
第一章数与式知识点精讲及答案第一章数与式试卷初中数学

第一章数与式知识点精讲及答案第一章数与式试卷初中数学一、知识要点 1、实数的定义:有理数和无理数统称为实数.即:⎩⎨⎧无理数有理数实数 或 ⎪⎩⎪⎨⎧负实数零正实数实数 或 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎭⎬⎫⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数负整数负有理数零正分数正整数正有理数有理数实数 2、有关公式b a b a •=• )0,0(≥≥b a ;baba =)0,0(>≥b a 3、平方根的定义及性质定义:假如一个数x 的平方等于a ,即a x =2,那么x 叫做a 的平方根. 记作:)0(≥±=a a x ;0的平方根是0.性质:一个正数有两个平方根,它们互为相反数. 0的平方根是0. 负数没有平方根. 4、算术平方根的定义及性质定义:一个正数x 的平方等于a ,那么 x 叫a 的算术平方根. 记作: )0(≥=a a x0的算术平方根是0.因为a 表示a 的算术平方根,因此 )0(0≥≥a a5、立方根的定义及性质定义:一个数x 的立方等于a ,即a x =3,那么x 叫a 的立方根. 记作: 3a x =0的立方根是0. 性质:一个正数有一个正的立方根, 一个负数有一个负的立方根. 0的立方根是0.6、实数与数轴上的点一一对应,实数能够比较大小.实数有相反数,倒数,绝对值.有理数的运算法那么和运算律在实数范畴内仍旧适用.【典型例题1】例1. 假如收入200元记作+200元,那么支出150元记作〔 〕 A. +150元 B. –150元 C. +50元 D. –50元例2. 点A 在数轴上表示+2,从点A 沿数轴向左平移3个单位到点B ,那么点B 所表示的实数是〔 〕 A. 3 B. –1 C. 5 D. –1或3 例3. |-3|的相反数是〔 〕 A. –3 B. 3 C. 31D.31-例4. 以下运算正确的选项是〔 〕A. 416±=B. 12223=-C.4624=÷D.2632=⋅例5. 将302)3()2()30sin (--︒--,,这三个实数按从小到大的顺序排列,正确的结果是〔 〕A. 302)3()2()30sin (-<-<︒--B. 032)2()3()30sin (-<-<︒--C. 203)30sin ()2()3(-︒-<-<-D. 230)30sin ()3()2(-︒-<-<- 例6. 据2006年5月27日«沈阳日报»报道,〝五·一〞黄金周期间2006年沈阳〝世园会〞的游客接待量累计1760000人次,用科学记数法表示为〔 〕A. 410176⨯人次B. 3106.17⨯人次C. 61076.1⨯人次D. 710176.0⨯人次 例7. 以下运算错误的为〔 〕A. 22a 4)a 2(=-B. 523a )a (=C. 120=D.8123=-例8. 有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是〔 〕A. 8B. 22C. 32D. 23例9. 如下图,每个正方形点阵均被一直线分成两个三角形点阵,依照图中提供的信息,用含n 的等式表示第n 个正方形点阵中的规律___________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数与式测试题
1 2 3
4
5
6
7 8 9 10 11 12 13 14 15
L L
中考复习第一章《数与式》测试题
一、选择题:(每小题3分)
1.(3分)(2016•黄冈)﹣2的相反数是( ) A .2 B .﹣2 C .
D .
2.(3分)(2016•黄冈)下列运算结果正确的是( ) A .a 2+a 3=a 5 B .a 2•a 3=a 6 C .a 3÷a 2=a D .(a 2)3=a 5 3、在3.14,7,π和9这四个实数中,无理数是( ) A .3.14和7
B .π和9
C .7和9
D .π和7
4、在函数y=
中,自变量x 的取值范围是( )
A .x >0
B .x≥﹣4
C .x≥﹣4且x≠0
D .x >0且x≠﹣1 5.若x 的相反数是3,│y│=5,则x+y 的值为( ). A .-8 B .2 C .8或-2 D .-8或2
6.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( ) A .ab >0 B .a-b >0 C .a+b >0 D .|a|-|b|>0
7.临近中考,小芳在“百度”搜索引擎中输入“数学中考复习试题”,能搜索到相关结果约7050000
个,7050000这个数用科学记数法表示为( ) A .7.05×105 B .7.05×106 C .0.705×106 D .0.705×107 8.观察下列三角形数阵:则第50行的最后一个数是( ) A .1225
B .1260
C .1270
D .1275
二.填空(每小题3分) 1.-的倒数是 ________ 2.
的算术平方根是 ________
3.点A 在数轴上表示+2,从点A 沿数轴平移3个单位到点B ,则点B 所表示的实数是____ 4.若的值为则2y
-x 2,54,32==y
x
________
5.若
,则ab =________
6.分式29
(1)(3)
x x x ---的值等于0,则x 的值为________
7.5x a+2b y 8 与-4x 2y 3a+4b 是同类项,则a+b=________ 8.已知y=
+
-3,则2xy 的值为________
9.已知a+b=3,ab=2.(a-b)2=________
10.已知 +=3,则代数式的值为________
三.解答题
11.计算(12分) (1)4
241
)4(5854232
÷+⨯-⨯--⨯-
(2)(-3x 2y )2+(2x 2y )3÷(-2x 2y );
(3) 2(743)(743)(351)+--- (4) 2-1+ 3cos30°+|-5|-(π-2011)0.
12.先化简再求值:(1)11
4
12212
2--+-÷+-x x x x x x 其中x=3(6分)
13.分解因式:(6分)
(1)m 2n (m -n )2-4mn (n -m ); (2)(x 2+y 2)2-4x 2y 2;
14.(2016•黄冈8分)已知:如图,MN 为O e 的直径,ME 是O e 的弦,MD 垂直于过点的直线
DE ,垂足为点D ,且ME 平分DMN ∠.求证:(1)DE 是O e 的切线;2)2ME MD MN =g .
1
0 -1 a b
15.(2017•黄冈8分)在黄冈长江大桥的东端一处空地上,有一块矩形的标语牌ABCD (如图所示).已知标语牌的高5AB m =.在地面的点E 处,测得标语牌点A 的仰角为30°,在地面的点F 处,测得标语牌点A 的仰角为75°,且点,,,E F B C 的同一直线上,求点E 与点F 之间的距离.(计算结果精确到0.1米,参考数据:2 1.41,3 1.73≈≈ )
16.(12分)(2016•黄冈)东坡商贸公司购进某种水果的成本为20元/kg ,经过市场调研发现,这种
水果在未来48天的销售单价p (元/kg )与时间t (天)之间的函数关系式为
p=
且其日销售量y (kg )与时间t (天)的关系如表: 时间t (天) 1 3 6 10 20 40 … 日销售量y (kg )
118
114
108
100
80
40
…
(1)已知y 与t 之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少? (2)问哪一天的销售利润最大?最大日销售利润为多少?
(3)在实际销售的前24天中,公司决定每销售1kg 水果就捐赠n 元利润(n <9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t 的增大而增大,求n 的取值范围.
17.(14分)(2016•黄冈)如图,抛物线y=﹣与x 轴交于点A ,点B ,与y 轴交于点
C ,点
D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q . (1)求点A 、点B 、点C 的坐标; (2)求直线BD 的解析式;
(3)当点P 在线段OB 上运动时,直线l 交BD 于点M ,试探究m 为何值时,四边形CQMD 是平行四边形;
(4)在点P 的运动过程中,是否存在点Q ,使△BDQ 是以BD 为直角边的直角三角形?若存在,求
出点Q 的坐标;若不存在,请说明理由.。