第5章虚功原理与位移计算习题课

合集下载

结构力学第05章 虚功原理与结构位移计算-3

结构力学第05章 虚功原理与结构位移计算-3

6、把复杂图形分为简单图形 、 使其易于计算面积和判断形心位置) (使其易于计算面积和判断形心位置)

取作面积的图形有时是不规则图形, 取作面积的图形有时是不规则图形,面积 的大小或形心的位置不好确定。 的大小或形心的位置不好确定。可考虑把图形 分解为简单图形(规则图形) 分解为简单图形(规则图形)分别图乘后再叠 加。
FP
⊿CV
l/2 l/2 AP FP l
3、正确的作法 、
AP1=1/2×FP l×l/2=FP l2/4 AP2=1/2×FP l/2×l/2=FP l2/8 AP3=1/2×FP l/2×l/2=FP l2/8 y1=l/3 y2=l/6 FP y3 = 0
⊿CV=∑AP·yC/EI
=(FP l2/4×l/3+ FP l2/8×l/6 × +FP l2/8 ×0) / EI =5FP l3/48EI (↓)
32
32
• θC=2[(1/2·80·5)·(2/3·5/8)+(1/2·80·5)·(2/3·5/8+1/3·1) • -(2/3·32·5)·(1/2·5/8+1/2·1)]/EI • kN·m m kN/m2 • =0.005867 (弧度) • 方向与虚拟力方向一致。
思考题:判断下列图乘是否正确?
由此可见,当满足上述三个条件时, 由此可见,当满足上述三个条件时,积分式 的值⊿就等于M 图的面积A乘其形心所对应 乘其形心所对应M 的值⊿就等于 P图的面积 乘其形心所对应 图上的竖标y 再除以EI。 图上的竖标 C,再除以 。 正负号规定: 正负号规定: A与yC在基线的同一侧时为正,反之为负。 与 在基线的同一侧时为正,反之为负。
第五章
虚功原理与结构位移 计算

龙驭球《结构力学Ⅰ》(第3版)章节题库-虚功原理与结构位移计算(中册)(圣才出品)

龙驭球《结构力学Ⅰ》(第3版)章节题库-虚功原理与结构位移计算(中册)(圣才出品)

8(b)所示,结点 K 处的竖向位移为

4 / 25
圣才电子书

十万种考研考证电子书、题库视频学习平台
图 5-8
【答案】
【解析】此结构为二次超静定,要求结点 K 的位移,可以取其一静定基本结构(图 5-
9(a)),在此基本结构上 K 处虚设一竖向单位力,画出其弯矩图(图 5-9(b)),再与已知
的原结构的弯矩图图乘即可求得 K 点竖向位移.
图 5-9
此题选取的基本结构可以有多种形式,相应的 图也不一样,与 M 图图乘时的计算量 就不同.所以在选择基本结构时应尽量使图乘时的计算量小(弯矩图分布范围小且简单).
4.已知图 5-10(a)所示弯矩图,图 5-10(b)中由 (已知)产生的 C 截面竖向位
MA=0 有
(拉).
要求铰 C 处的竖向位移,需要画出此结构的弯矩图(图 5-13(c));然后在结构上 C 处
虚设一竖向单位力(图 5-13(d)),求出此时 AC 杆弯矩和 EG 杆轴力,然后图乘得 C 点竖
向位移为
7 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台

挠度大

【答案】
图 5-18
10 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台

【解析】(1)结构为静定,图 5-18(a)、(b)两图的唯一区别是在图 5-18(a)中竖 向支座链杆处会有变形,而图 5-18(b)中没有,静定结构的支座移动不会引起内力,所以 两结构的弯矩图完全一样.
移等于

5 / 25
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 5-10 【答案】 【解析】(1)选一基本结构,在 C 处虚设一竖向单位力,作 图(图 5-11).

结构力学课件--5位移计算(1)

结构力学课件--5位移计算(1)

MP
EI
NP
EA
k
QP GA
k--为截面形状系数
1.2
10 9
(3) 荷载作用下的位移计算公式
MM P ds NNP ds kQ QP ds
2021/4/9
EI
EA
GA
二、各类结构的位移计算公式
21
(1)梁与刚架
MM P EI
ds
(2)桁架
NNP ds NNP ds NNPl
We =Wi
2021/4/9
§5-2 结构位移计算的一般公式 ——变形体的位移计算
18
d 1 ds ds d ds
R
d ds
K
t1 t2
c2
1
R1
K
c1
ds
ds R2 ds
M
N
Q
外虚功:We 1 Rk ck 内虚功:Wi M N Q ds
1 (RMkck N MQ N)dsQ Rdksck
9
刚体的虚功原理 刚体系处于平衡的必要和充分条件是:
对于任何可能的虚位移,作用于刚体 系的所有外力所做虚功之和为零。
2021/4/9
10
四、虚功原理的两种应用
1)虚功原理用于虚设的协调位移状态与实际的 平衡力状态之间。
例. 求 A 端的支座反力(Reaction at Support)。 直线
A
EA
EA
EA
(3)拱
MM P EI
ds
NNP EA
ds
2021/4/9
图乘§法5是-4V图er乘es法hag位in于移1计92算5年举提例出的,他当 22
时为莫斯科铁路运输学院的学生。
MiMk

第5章 虚功原理与结构位移计算

第5章 虚功原理与结构位移计算
(2)杆CD的转角 D
cA
A B
C
l
c
2l 3

1
1 1 c cD 0 3
l
3
1 D
A
B
C
1 c cA 3 2 1 1 cA 0 2l
1 cA 2l
1 3
A
2 3
B
C D
1
1 2l
2 l
3 2l
所得正号表明位移方 向与假设的单位力方向 一致。
适用范围与特点: 1) 适于小变形,可用叠加原理。 2) 形式上是虚功方程,实质是几何方程。 关于公式普遍性的讨论: (1)变形类型:轴向变形、剪切变形、弯曲变形。 (2)变形原因:荷载与非荷载。 (3)结构类型:各种杆件结构。 (4)材料种类:各种变形固体材料。
三、位移计算的一般步骤:
t1 t2

设为矩形截面 k=1.2
l kQ QP l dx 3ql2 Q l dx l 1.2 1 q x 2 2 GA 2 GA 20GA l
7 ql4 3ql 2 M Q 384EI 20GA
M
7ql 4 3ql 2 Q 384EI 20GA
2) 将上面各式代入位移公式分段积分计算AV
AC段 0 x

2
N 0 M x Q 1
l 在荷载作用下的内力均为零,故积分也为零。 2
l x l CB段 2

l
l
l 2
l kQ Q MM P P dx l dx 2 EI GA
第5章 虚功原理与结构位移计算
§5-1 应用虚功原理求刚体体系的位移

虚功原理与位移计算习题课

虚功原理与位移计算习题课

(2 Pl(l - x ) Px(l - x )) (l - x ) ( x 2l )
2
DA
2 DH A
M

2 DVA
DH arctan VA arctan0.4 21.8 DA
ql 4 0.673 EI
q ↓↓↓↓↓↓ ↓↓↓↓
A

ql 2 2
l cosa
P=1
a
EI
DA
l
EI MP
M
l
l (cosa sin a )
1 1 ql 2 3 l ql 2 l l cosa (l cosa l (cosa sin a ) ) A EI 3 2 4 2 2 ql 4 (5 cosa 2 sin a ) 8EI dDaA ql 4 (- 5sin a 2 cosa ) 0 da 8EI 4 ql tana 0.4,即:a 21.8时DaA max D A 0.873 EI Da
求A点全位移
q ↓↓↓↓↓↓ ↓↓↓↓ EI

ql 2 2
A P=1
DA
MP
M
l
EI
l
l
l P=1
1 l 2 ql 2 ql 4 EI 2 2 4 EI 2 2 4 1 1 ql 3 ql 5 ql DVA l l l l EI 3 2 4 2 8EI DH A
M M
i
⑦非标准图形乘直线形: a)直线形乘直线形
k
l a
dx
b
d
l( 2ac 2bd ad bc ) 6
b)非标准抛物线成直线形
c
a

静力结构的位移计算——变形体虚功原理及位移计算的一般表达式

静力结构的位移计算——变形体虚功原理及位移计算的一般表达式

FNK cos
A
FP
B
R
ds Rd
BM
FR R3 2EI
()
FP=1
R
A
BQ
kFP R 2GA
()
BN
FP R 2EA
()
例4: 自学167页例5—3。 例 5 :自学171页例5—5。
小结:
位移计算的一般公式:
K (F NK* F QK* M K* )ds RK*R
GA
4GA
对于截面为矩形
CQ 3.2( h )2
CM
L
结论:对于浅梁可忽略剪切变形作用;
对于深梁和短梁,不可忽略剪切变形作用。
例 3:求图示结构B点水平位移,EI、GA、EA为常数
M P FP R sin
FQP FP cos
FNP FP sin
M K R(1 cos)
FQK sin
(b)
线弹性材料在荷载作用下的位移计算公式:
K
(
FNP F NK *
kFQP F NK *
MPM
* K
)ds
EA
GA
EI
(c)
具体结构的简化公式:
*
1、桁架
K
FNP FNK L EA
2、梁和刚架
K
M P M K* ds EI
3、组合结构 4、拱
K 梁
*
M P M K ds
*
F NP FNK L
第五章 静定结构的位移计算
§5-3 变形体虚功原理及位移计算的一般表达式 一、变形体虚功原理
位移协调状态
FP FRCR (M FQ 0 FN )ds
平衡状态 变形体虚功原理只需要满足平衡条件、位移连续条件, 而与材料特性无关。 对于刚体,由于变形等于零,内力在刚体上不做 功 ,所以,刚体虚功原理是变形体虚功原理的特例。

结构力学I-第五章 虚功原理与结构位移计算(荷载位移,图乘法)

结构力学I-第五章 虚功原理与结构位移计算(荷载位移,图乘法)

局部变形时静定结构的位移计算
⑴ 在要求的位移处,施加相应的单位荷载; ⑵ 利用力平衡条件,求出局部变形处对应的 内力M,FN,FQ; ⑶ 由虚力方程解出拟求位移: dΔ = ( Mκ + FNε + FQγ0 ) ds
Page 7
Δ A 1
B M
θ
14:32
LOGO
结构体位移计算的单位荷载法
真实荷载 弯曲 剪切
A
x
虚设荷载
B
b 截面参数 1 bh3 I=— 12 A =bh,k = 1.2
ql 4 1 2 qx dx 1.5 0 x Ebh3 2
l
变形类型
M P 0.5qx2
M x
FQP qx
F Q 1
MM P 1 ⑴ 弯曲变形引起的位移 M ds EI EI
Page 12
14:32
LOGO
荷载作用下的位移计算及举例
k F Q FQP F N FNP MM P ds ds ds EI EA GA
弯曲变形 拉伸变形 剪切变形
各类结构的位移公式
各类结构中三种变形的影响所占比重各不相同,故可简化; 例5-3 试求图示悬臂梁在A端的竖直 位移 Δ ,并比较弯曲变形和剪切变 形对位移的影响。设梁的截面为矩 形,泊松比1/3。 解:应用单位荷载法 A 1 q A x B
单位荷载法
单位荷载法求刚体体系位移
虚力原理
⑴ 虚力方程,实质为几何方程;
⑵ 虚力与实际位移状态无关,故可设 单位广义力 P = 1;单位荷载法 ⑶ 关键是找出找出虚力状态的静力平
衡关系。
Page 6
14:32

结构力学教学 虚功原理与结构位移计算

结构力学教学 虚功原理与结构位移计算

解:虚设力系如图(b)
M 1 (0 x l)
实际荷载作用下的弯矩图虚设力系如图(c)
MP
FPb l
x
(0 x a)
MP
FP a(1
x) l
(a x l)
MM P ds FPab(
EI
2EI
)
§5-5 图乘法
图乘法应用条件:杆件为直杆,有一个弯矩图是直线图, 截面抗弯刚度EI为一常数。
§5-5 图乘法
例5-7 试用图乘法计算图(a)所示简支梁B端转角△B。
解:荷载作用下的MP图如图(a) 虚设单位力偶作用下的 M 如图(b)
虚功方程为 1 M 0
解得
M
§5-2 结构位移计算的一般公式
例5-2 在图中,截面B有相对剪切位移η,试求A点与杆轴成α
角的斜向位移分量△。
解:图(a)的实际位移状态可改用 图(b)来表示。
虚设力系如图(c) FQ sin
虚功方程为 1 FQ 0
解得 FQ
§5-2 结构位移计算的一般公式
AB的圆心角为α,半径为R。试求B点的竖向位移△。
解:虚设荷载如图(b)
图(a)中
MP
1 2
qx2
FNP qx sin
FQP qx cos
图(b)中
M x
FN sin FQ cos
M
AMPM B EI
ds qR4 ( 2 cos 1 cos3 )
2EI 3
3
N
A FNPFN ds qR2 ( 2 cos 1 cos3 )
M
MM P ds ql4
EI
8EI
Q k
FQ FQP ds 0.6 ql 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档