三极管多谐振荡器
多谐振荡器

第八章 脉冲波形的产生与整形在数字电路或系统中,常常需要各种脉冲波形,例如时钟脉冲、控制过程的定时信号等。
这些脉冲波形的获取,通常采用两种方法:一种是利用脉冲信号产生器直接产生;另一种则是通过对已有信号进行变换,使之满足系统的要求。
本章以中规模集成电路555定时器为典型电路,主要讨论555定时器构成的施密特触发器、单稳态触发器、多谐振荡器以及555定时器的典型应用。
8.1 集成555定时器555定时器是一种多用途的单片中规模集成电路。
该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器。
因而在波形的产生与变换、测量与控制、家用电器和电子玩具等许多领域中都得到了广泛的应用。
目前生产的定时器有双极型和CMOS 两种类型,其型号分别有NE555(或5G555)和C7555等多种。
通常,双极型产品型号最后的三位数码都是555,CMOS 产品型号的最后四位数码都是7555,它们的结构、工作原理以及外部引脚排列基本相同。
一般双极型定时器具有较大的驱动能力,而CMOS 定时电路具有低功耗、输入阻抗高等优点。
555定时器工作的电源电压很宽,并可承受较大的负载电流。
双极型定时器电源电压范围为5~16V ,最大负载电流可达200mA ;CMOS 定时器电源电压变化范围为3~18V ,最大负载电流在4mA 以下。
一. 555定时器的电路结构与工作原理 1.555定时器内部结构:(1)由三个阻值为5k Ω的电阻组成的分压器; (2)两个电压比较器C 1和C 2:v +>v -,v o =1; v +<v -,v o =0。
(3)基本RS 触发器;(4)放电三极管T 及缓冲器G 。
2.工作原理。
当5脚悬空时,比较器C 1和C 2的比较电压分别为cc V 32和cc V 31。
(1)当v I1>cc V 32,v I2>cc V 31时,比较器 C 1输出低电平,C 2输出高电平,基本RS 触发器被置0,放电三极管T 导通,输出端v O 为低电平。
对称式多谐振荡器

戴维南定理等效得:
RE1 R1RF 2 R1 RF 2 RF 2 (VCC VOH VBE ) R1 RF 2
VE1 VOH
§10.4.1 对称式多谐振荡器
(2-2) 暂稳态电路等效(续)
C2放电的等效电路
§10.4.1 对称式多谐振荡器
§10.4.2 非对称式多谐振荡器
由于某种原因使得vI1有微小正跳变时, 发生正反馈
使得vO1低,vO2高,进入第一个暂稳 态,同时C开始放电 随着C的放电,vI1下降,当vI1=VTH,引起
使得vO2低,vO1高,进入第二个暂稳态, 同时C开始充电, 当vI1=VTH电路返回到vO1低, vO2高,又回到第一个暂稳态
放电时间
VOL VTH (VOH VOL ) T2 RC ln VOL VTH
振荡周期(简化后)
2VOH VTH VOH VTH T T1 T2 RC ln( ) VOH VTH VTH
另外,实际上,阈值由于Rs 的存在而偏小一些。
§10.4.3 环形多谐振荡器
脉冲波形的产生和整形
§10.3 多谐振荡器
对称式多谐振荡器 非对称式多谐振荡器 环形多谐振荡器 用施密特触发器构成的多谐振荡器 石英晶体多谐振荡器
Multi-Vibrator
[vai'breitə]
所谓“多谐”
harmonious
§10.4 多谐振荡器
对称式多谐振荡器
§10.4.1 对称式多谐振荡器
vO1 ↓L, vO2 ↑ H;进入第一个暂稳态,同时电容C1开始 充电,C2开始放电
如何观察到所谓的“充”、“放”电? 根据 逻辑门的输入输出的设计(输入阻抗大,输出阻坑小), 所以,从输出级“找电源”。 对于输入级的处理,电流是否可以被忽略?
双稳态多谐振荡器电路及应用

双稳态多谐振荡器电路及应用
什么叫双稳态多谐振荡器?
双稳态多谐振荡器又称正反器,此种电路具有两个稳定状态,其中任一个三极管ON时,另一个一定OFF,若无任何触发信号输入,此一状态便恒定不变。
若触发信号使原来ON的变成OFF,则原来OFF的必转为ON,此种状态会继续保持至下一触发信号。
双稳态多谐振荡器电路及工作原理
如图一所示,虽然Q1 Q2使用相同编号晶体管,偏压条件相同,但因晶体电流增益β的差异,必定有一三极管会进入饱和状态VCE=0.2V。
另一三极管在无法获得偏压状况下,会被强迫截止。
在此假设Q1 ON、Q2 OFF,C1充电至VCC,C2=0,当输入负脉冲信号至二个三极管基极时,Q1 Q2同时OFF,Q2因为重新获得偏压而导通,Q1因电容电压VC1 =VCC,无法马上获得偏压,所以Q2 ON而迫使Q1 OFF后,C1经RB2放电,C2充电至VCC。
当第二个负脉冲进入时,状况相反使Q1 ON,Q2 OFF,如此周而复始,若无输入信号则电路保持当时状态,所以正反器有记忆作用。
图二为其波形。
图一双稳态震荡器
图二
双稳态多谐振荡器应用
开关电路:
当按下S1时VT1为OFF VD1灭,VT1为ON VD2亮,放开S1后,保持这个状态
当按下S2时VT1为ON VD1亮,VT1为OFF VD2灭,放开S2后,保持这个状态
图3
直流电机正反转电路
下面这个驱动继电器用于控制电机正反转
图4
本文来自: 原文网址:/sch/jcdl/0082121.html。
三极管无稳态多谐振荡器电路_[总结]
![三极管无稳态多谐振荡器电路_[总结]](https://img.taocdn.com/s3/m/b8d808edf71fb7360b4c2e3f5727a5e9856a2766.png)
三极管无稳态多谐振荡器电路此电路之输出并不会固定在某一稳定状态,其输出会在两个稳态(饱和或截止)之间交替变换,因此输出波形似近一方波。
如图2即为无稳态多谐震荡器电路,图中两个三极管Q1、Q2在“Q1饱和/Q2截止”和“Q1截止/Q2饱和”,二种状态周期性的互换,其工作原理如下:图2(1)如图3当VCC接上瞬间,Q1、Q2分别由RB1、RB2获得正向偏压,同时C1、C2亦分别经RC1、RC2充电。
图3 当VCC通电瞬间(2)由于Q1、Q2的特性无法百分之百相同,假设某一三极管Q1之电流增益比另一个三极管Q2高,则Q1会比Q2先进入饱和(ON)状态,而当Q1饱和时,C2由Q1 CE极经VCC、RB2放电,在Q2 BE极形成一逆向偏压,促使Q2截止Q1导通,由于c、e极之间此时是通的,所以c极处电位接近于负极(我们的图中是接地,就是接近于0V),由于电容C2的耦合作用,Q2基极电压接近于负极→不会产生基极电流,即Ib=0A→则Q1 e、c 之间断开(开关作用)同时C1经Rc2及Q1的BE极于短时间内完成充电至VCC,如图4所示。
图4 C2放电,C1充电回路(3)Q1 ON、Q2 OFF的情形并不是稳定的,当C2放电完后(T2=0.7 RB2 C。
C2由VCC经RB2、Q1C-E极反向充电,当充到0.7V时,此时Q2获得偏压而进入饱和(ON),C1由Q2 CE极,Vcc、RB1放电,同样地,造成Q1 BE极逆偏压。
Q1截止(OFF),C2经RC1及Q2B-E极于短时间充至图5 C1放电,C2充电回路(4)同理,C1放完电后(T=0.7 RB2 C1秒),Q1经RB1获得偏压而导通,Q2 OFF如此反覆循环下去。
如图6所示波形。
周期 T=T1+T2=0.7 RB1 C1+0.7 RB2 C2若 RB1= RB2=RB 、 C2=C1=C则 T=1.4RBC f=图6如果将RC1、RC2换成两个发光二极管,发光二极管一亮一暗,不断交替。
数电知识点汇总

数电知识点汇总一、数制与编码。
1. 数制。
- 二进制:由0和1组成,逢2进1。
在数字电路中,因为晶体管的导通和截止、电平的高和低等都可以很方便地用0和1表示,所以二进制是数字电路的基础数制。
例如,(1011)₂ = 1×2³+0×2² + 1×2¹+1×2⁰ = 8 + 0+2 + 1=(11)₁₀。
- 十进制:人们日常生活中最常用的数制,由0 - 9组成,逢10进1。
- 十六进制:由0 - 9、A - F组成,逢16进1。
十六进制常用于表示二进制数的简化形式,因为4位二进制数可以用1位十六进制数表示。
例如,(1101 1010)₂=(DA)₁₆。
- 数制转换。
- 二进制转十进制:按位权展开相加。
- 十进制转二进制:整数部分采用除2取余法,小数部分采用乘2取整法。
- 二进制与十六进制转换:4位二进制数对应1位十六进制数。
将二进制数从右向左每4位一组,不足4位的在左边补0,然后将每组二进制数转换为对应的十六进制数;反之,将十六进制数的每一位转换为4位二进制数。
2. 编码。
- BCD码(Binary - Coded Decimal):用4位二进制数来表示1位十进制数。
常见的有8421 BCD码,例如十进制数9的8421 BCD码为(1001)。
- 格雷码(Gray Code):相邻的两个代码之间只有一位不同。
在数字系统中,当数据按照格雷码的顺序变化时,可以减少电路中的瞬态干扰。
例如,3位格雷码的顺序为000、001、011、010、110、111、101、100。
二、逻辑代数基础。
1. 基本逻辑运算。
- 与运算(AND):逻辑表达式为Y = A·B(也可写成Y = AB),当A和B都为1时,Y才为1,否则Y为0。
在电路中可以用串联开关来类比与运算。
- 或运算(OR):逻辑表达式为Y = A + B,当A和B中至少有一个为1时,Y为1,只有A和B都为0时,Y为0。
循环点亮LED灯

三极管多谐振荡器电路原理图
工作原理:
电源接通时,由于元件的差异,总有一只三极管先导通,我们以Q1先导通为例来分析其工作原理。
Q1导通-Q1集电极电压下降-D1通电发光-C1正极电位接近零,因为电容两端的电压不能突变-Q2基极也接近零电位-Q2截止-D2无电不发光;
随着电源通过R2对C1充电-Q2基极电位上升(超过0.6V时)-Q2导通-Q2集电极电压下降-D2通电发光,此时Q2集电极电位的下降通过C1使Q1基极电位下降-Q1截止-D1熄灭。
如此循环,Q1和Q2轮流导通和截止,D1和D2就不停的循环发光。
改变C1和C2的容量就可以改变LED循环的速度。
游戏名称:跳动的LED灯
游戏规则:
(1)根据C1、C2不同容量可改变灯循环点亮的速度原理,本游戏设置了三个循环速度:快、中、慢;
(2)挑战者根据裁判挑选任意两种速度进行连接电路,成功完成LED灯循环点亮即获得胜利,每次只有一次机会;
(3)注意:电源正负极的接法、电解电容C1、C2的正负极接法;(4)参数:
快速循环:10uf的电容两个
中速循环:47uf的电容两个
慢速循环:470uf的电容两个
(5)游戏意义:通过电路的连接,了解三极管的多谐振荡的原理,认识电解电容的,动动手进行实现简单的电路连接,锻炼同学们辨识元件的能力和动手接线能力。
多谐振荡器

①第一暂稳态
接通电源瞬间G3 抢先导通,输出0。
t t t
本页完 继续
vI3
1.4V
多谐振荡器 ①第一暂稳态
二、频率可调的环形 vI3下降 振荡器 ⑴电路形式 vO1vI2 1 vO2 R vI3 RS 1 vO(vO3) ⑵工作过程及波形分 v 1 I1 第一暂稳 G1 G2 G3 析 态波形。 0 0 0 1 1 1 ①第一暂稳态 + +C 设接通电源的瞬间, G1对C充电 v ( v ) O I1 各门电路动作,设G3抢 先导通,输出低电平。 t vO1 (vI2 ) 显然,第一暂稳态维 持至vI3下降到VT时。 t v O2 同时,第一暂稳态的 时 间 T1 的 长 短 由 RC 和 t v I3 G1 、 G2 的 输 出 电 阻 决 定。 1.4V t T1 本页完 继续
vI3
1.4V t t
G3翻转
T1
T2
本页完 继续
多谐振荡器 进入第二周期
二、频率可调的环形 振荡器 ⑴电路形式 ⑵工作过程及波形分 vI1 1 vO1vI2 1 vO2 R vI3 RS 1 此时电流的方 G1 G2 G3 析 1 0 0 1 向再次相反。 ①第一暂稳态 - + ②第一次翻转 -C + vO (vI1) ③第二暂稳态 ④第二次翻转 vO1 (vI2 ) 电路进入第二个周期 的循环。
G2
G3翻转
vI1
0 1
vO (vI1)
G1
1 + +C -
0 0
G3
1
vO(vO3)
0 1
vO1 (vI2 ) vO2
C两端电压不能 突变,所以 vI3 的电 t 势比0还低,为负值。 亦作为“0”。
555多谐振荡器

555多谐振荡器555定时器是一种模拟电路和数字电路相结合的中规模集成器件,它性能优良,适用范围很广,外部加接少量的阻容元件可以很方便地组成单稳态触发器和多谐振荡器,以及不需外接元件就可组成施密特触发器。
因此集成555定时被广泛应用于脉冲波形的产生与变换、测量与控制等方面。
泛应用于脉冲波形的产生与变换、测量与控制等方面。
本实验根据555定时器的功能强以及其适用范围广的特点,设计实验研究它的内部特性和简单应用。
的内部特性和简单应用。
一、原理1、555定时器内部结构555定时器是一种模拟电路和数字电路相结合的中规模集成电路定时器是一种模拟电路和数字电路相结合的中规模集成电路,,其内部结构如图(构如图(A A )及管脚排列如图(及管脚排列如图(B B )所示。
)所示。
A∞A∞它由分压器、比较器、基本R--S 触发器和放电三极管等部分组成。
分压器由三个5K W 的等值电阻串联而成。
的等值电阻串联而成。
分压器为比较器分压器为比较器1A 、2A 提供参考电压,提供参考电压,比较器比较器1A 的参考电压为23cc V ,加在同相输入端,比较器2A 的参考电压为13cc V ,加在反相输入端。
比较器由两个结构相同的集成运放1A 、2A 组成。
高电平触发信号加在1A 的反相输入端,与同相输入端的参考电压比较后,其结果作为基本R--S 触发器_D R 端的输入信号;低电平触发信号加在2A 的同相输入端,与反相输入端的参考电压比较后,其结果作为基本R —S 触发器_D S 端的输入信号。
基本R--S 触发器的输出状态受比较器1A 、2A 的输出端控制。
的输出端控制。
2、 多谐振荡器工作原理由555定时器组成的多谐振荡器如图定时器组成的多谐振荡器如图(C)(C)(C)所示,所示,其中R 1、R 2和电容C 为外接元件。
其工作波如图件。
其工作波如图(D)(D)(D)所示。
所示。
所示。
设电容的初始电压c U =0,=0,t t =0时接通电源,由于电容电压不能突变,所以高、低触发端TH V =TL V =0=0<<13VCC,比较器A1输出为高电平,A2输出为低电平,即_1D R =,_0D S =(1表示高电位,表示高电位,00表示低电位),R S -触发器置1,定时器输出01u =此时_0Q =,定时器内部放电三极管截止,电源cc V 经1R ,2R 向电容C充电,c u 逐渐升高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三极管多谐振荡器
图1(来自LTspice IV 的例子)
图1是个多谐振荡器电路。
电容C1和C2的充电电流和放电电流方向如图2,图3。
图2 C1充放电电流
图3 C2充放电电流
图4中有4个波形,分别如下:
I(C1):是流过C1的电流,参考方向与C1的充电方向相同;
I(C2):是流过C2的电流,参考方向与C2的放电方向相同;
V(n003):Q1集电极的电压波形;
V(n002):Q2集电极的电压波形。
电路的工作过程(从Q1开始向截止转变说起):
1.C1充电,C2放电:
Q1开始向截止转变时,C1开始充电,充电的速度非常快,在图4中可以看到I(C1)出现了一个向上的尖峰。
因为这个充电电流,Q2很快饱和。
同时C2也在放电,这个短暂的时间,C2放电电流很大。
因为电容C2两端电压不能突变,使Q1基极电压变成-5V,这样Q1就截止。
2.C2放电:
Q1截止,Q2饱和后,C2继续放电,放电电流从Q1集电极经R4,再由C2流向Q2的集电极,因为R4存在,所以这个电流非常小,C2放电也就非常慢。
可能这时候会有个疑问。
为啥Q1基极电压是负的,而Q2集电极电压为正,C2的放电电流还会从负电压流向正电压呢?也许可以吧R4和C2看做个简单的RC 电路,只不过此时C2有个初值为-5V的电压。
3.C2充电,C1放电:
当C2放完电,Q1电压也变成正的,Q1离开截止区,C2开始充电,C1开始放电,Q2开向截止区去,Q1开始向饱和区去。
这和“1.C1充电,C2放电”的情况一样了。
4.C1放电:
过程同C2放电。
图4 相关的电压电流波形。