探索与表达规律
探索与表达规律课件PPT

7×中间数=7×18=126.
规律:“H”形中七数之和=7×中间数.
3.5 探索与表达规律
探究新知
日 一 二
1
6 7 8
13 14 15
20 21 22
27 28 29
三
2
9
16
23
30
四
3
10
17
24
31
五
4
11
18
25
六
5
12
19
26
十字形中五数之和
=7+13+14+15+21
=70
10×9=90,
所以这9个数的和等于正中间的数的9倍.
3.5 探索与表达规律
探究新知
(4)这个关系对其他这样的方框也成立吗?你能用代数
式表示这个关系吗?(提示:设a)
a-8 a-7 a-6
a-1
a a+1
a+6 a+7 a+8
9a
(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8) = ____
我就会慢慢品读,一页读几分钟。班主任杨老师说:“刘峻琳
的每篇作文从选材到立意都很大气,其立足点都不是个人、家
庭,而是从民族、国家等角度去写,这都与他的阅读习惯有关。
3.5 探索与表达规律
刘峻琳同学的阅读习惯非常好,有快读有慢读,
既保证了一定的阅读速度,同时也没有落下重点。
下面我们来介绍另外一种快速阅读法。这种方法
方法点拨:规律探究问题的特点是问题的结论不是直接给出,
3.3 探索与表达规律 课件 (共26张PPT) 北师大版数学七年级上册

27 28 29 30 31
探究2:日历图的套色方框中的 9 个数之和与该方框 正中间的数有什么关系?
套色方框 9 个数之和是 90,是正中间的数 10 的 9 倍。
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
星期日 星期一 星期二 星期三 星期四 星期五 星期六
1
2
3
4
5
6
7
8
9 10 11 12
13 14 15 16 17 18 19 “X”形
20 21 22 23 24 25 26
27 28 29 30 31
归纳总结
探索规律的一般步骤:
具
观
体
察
问
、 比
题
较
猜
表
想
示
规
规
律
律
回头 重新
得 出 结 论 验 证 成立 规 律 不成立
27 28 29 30 31
探究2:这个关系对任何一个月的日历都成立吗? 为什么? 成立
猜想: 绿色方框中九个数之和 = 9×正中间的数
用代数式表示: a-8 a-7 a-6
a-1 a a+1
a+6 a+7 a+8 (a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)
我的结果是27。
你心里想的数 是78。
探索与表达规律

5 探索与表达规律1.规律探索规律探索是数学中常见的类型之一,是指从已知的几个数据或几个图形中发现其中的数据变化情况,并用代数式表示出来.规律探索体现了从特殊到一般,再从一般到特殊的数学思想.探索规律的一般方法是:(1)观察:从具体的、实际的问题出发,观察各个数量的特点及相互之间的变化规律;(2)猜想:由此及彼,合理联想,大胆猜想;(3)归纳:善于类比,从不同的事物中发现其相似或相同点;(4)验证:总结规律,作出结论,并取特殊值验证结论的正确性.探索规律问题,要从给出的几个有限的数据着手,认真观察其中的变化规律,尝试猜想、归纳其规律,并取特殊值代入验证.在探索规律的过程中,要善于变换思维方式,这样可收到事半功倍的效果.【例1】观察下列数表:根据数表中所反映的规律,猜想第6行与第6列的交叉点上的数应为__________,第n 行(n为正整数)与第n列的交叉点上的数应为________.解析:通过观察、分析、比较可知,第1行与第1列的交叉点上的数是1,第2行与第2列的交叉点上的数是3,第3行与第3列的交叉点上的数是5,第4行与第4列的交叉点上的数是7,…,所以可猜想第6行与第6列的交叉点上的数是11,第n行(n为正整数)与第n列的交叉点上的数应为2n-1.答案:11 2n-12.探索规律的常见类型及方法(1)数字规律和代数式规律常见的几种数字规律形式:①②(2)新运算的规律 新运算是指用特定的符号表示与加、减、乘、除不相同的一种规定运算. 新运算的实质是有理数的几种混合运算,关键是观察出用到了哪些运算,要特别注意运算的顺序. (3)图形规律探索图形规律的实质是用字母表示数,即列代数式.要从不同的角度分析,可用去括号、合并同类项验证规律.【例2-1】 符号“§”表示一种运算,它对一些数的运算结果如下:(1)§(1)=0,§(2)=1,§(3)=2,§(4)=3,…(2)§⎝⎛⎭⎫12=2,§⎝⎛⎭⎫13=3,§⎝⎛⎭⎫14=4,§⎝⎛⎭⎫15=5,… 利用上面的规律计算:§⎝⎛⎭⎫12 013-§(2 012).分析:从(1)中的运算可以看出,当括号内的数是整数时,运算的结果等于括号内的数减去1,所以§(2 012)=2 011;从(2)中可以看出,当括号内的数是一个分子是1的分数时,运算的结果等于括号内那个数的倒数,所以§⎝⎛⎭⎫12 013=2 013. 解:§⎝⎛⎭⎫12 013-§(2 012)=2 013-2 011=2.【例2-2】 观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( ). A .(2n +1)2 B .(2n -1)2 C .(n +2)2 D .n 2解析:观察图形和下面的式子可以知道,1+8=1+8×1=9=32,1+8+16=1+8×1+8×2=52,1+8+16+24=1+8×1+8×2+8×3=72,…,其规律是:计算的结果是连续奇数的平方,所以1+8+16+24+…+8n =(2n +1)2.故选A.答案:A3.探索规律的应用常见的探索规律的应用:探索日历中的规律和折叠中的规律.(1)探索日历中的规律在日历中一般我们可以从横行、竖列、斜列三个方向去寻找规律,当然也可以从其他角度去探索.①横行:相邻两数相差1.如左下图所示:②竖列:相邻两数相差7.如右上图所示.③斜列:从左上到右下的斜列相邻两数相差8;从右上到左下的斜列相邻两数相差6.④日历中的3×3方框内的规律:在这9个方格中的数的和是中间方框中的数的9倍.若将中间数设为a,则其余8个数可按规律如上图所示,则这9个数的和即为(a-8)+(a-7)+(a-6)+(a-1)+a+(a+1)+(a+6)+(a+7)+(a+8)=9a,正好是中间数a的9倍.(2)折叠中的规律将一张纸折叠,每折叠一次就会得到纸的层数、折痕数,将这些数记录下来,找出规律,就可预测当折叠n次后,相应的层数与折痕数.折叠次数:1,2,3,4,5,…,n.层数:2,4,8,16,32,…,2n.平行对折的折痕数:1,3,7,15,31,…,2n-1.___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________【例3-1】2013年的元宵节是阳历2月24日,根据下面的日历,你知道春节和初夕分别是哪一天吗?请你填在下面的横线上:春节:2月__________日,除夕:2月__________日.解析:根据日历中竖列和横列的规律可以求出.如图,春节与元宵节在同一竖列中,根据竖列中相邻两数相差7,可知春节比元宵节少14,即24-14=10,春节是10日,根据横列中相邻相差1的规律,可知除夕是9日.答案:10 9【例3-2】将连续的偶数2,4,6,8,…排列成如右图所示的数表.(1)“十”字框内5个数的和,与框内中间的数18有什么关系?(2)若将“十”字框上、下、左、右平移,框住另外5个数,这5个数还有这样的规律吗?(3)设中间的数为a,用代数式表示“十”字框内5个数之和.分析:观察对比可以发现:左右相邻两数相差2,上下相邻两数相差12.再换另一组数,同样有这样的规律.解:(1)6+16+18+20+30=90,而90÷18=5,所以框内5个数的和是框内中间的数18的5倍.(2)将框上、下、左、右平移,任意框住5个数,同样有这样的规律.(3)若中间的数为a,则框住的5个数分别为a-12,a-2,a,a+2,a+12,其中a为偶数,故它们的和为(a-12)+(a-2)+a+(a+2)+(a+12)=5a.【例3-3】如果将一张长方形的纸,平行对折7次,展开后,会有__________条平行折痕,折痕会把这张长方形的纸分成__________个小长方形.解析:根据折叠中的规律:对折7次,即当n=7时,平行折痕数为2n-1=27-1=127(条),1条折痕能把长方形分成2个小长方形,2条能分成3个,…,127条折痕则分成128个小长方形.答案:127 128。
探索与表达规律ppt

社会科学中的应用
在社会科学中,规律被用于解释 和预测社会现象,如经济学、政 治学、社会学等。
技术领域中的应用
在技术领域中,规律被用于指导 技术创新和开发,如计算机科学 、人工智能、工程学等。
02
表达规律的关键要素
表达规律的准确性
精确使用词汇
在表达规律时,应选择准确、贴切的词汇,避免使用含糊不清或歧义的词汇。
THANKS
探索规律是表达规律的基础
探索是寻找和发现规律的过程
探索是一种观察、实验和思考的过程,通过它我们可以收集 数据、发现模式和寻找规律。只有通过探索,我们才能理解 事物的本质和运作方式。
探索为表达提供信息和依据
当我们探索一个领域或研究一个主题时,我们会收集到大量 的数据、信息和知识。这些信息为我们的表达提供了依据和 素材,帮助我们更好地理解和解释规律。
总结词
在天文学中,黑洞是一种极其神秘的天体,吸引着科学家们进行深入的探索。通 过对黑洞的观测和研究,科学家们能够更深入地了解宇宙的起源和演化。
详细描述
黑洞是一种由爱因斯坦的广义相对论预言,而现代天文学已经观测到的天体。它 具有极强的引力,连光也无法逃脱其吸引。通过对黑洞的观测和研究,科学家们 能够更深入地了解宇宙的起源和演化,为我们认识宇宙提供更多线索。
案例三:心理学中的认知过程探索
总结词
心理学中的认知过程探索是研究人类思维和行为的重要领域 。通过对认知过程的深入研究,科学家们能够更深入地了解 人类的思维方式和行为特征。
详细描述
认知过程是人类思维和行为的基础,包括知觉、注意、记忆 、语言、思维、意识等方面。通过对认知过程的深入研究, 科学家们能够更深入地了解人类的思维方式和行为特征,为 心理学的发展和应用提供更多可能性。
数学3.3探索与表达规律(18张PPT)

4、十字形框中五个数之和能等于2014吗?2015呢?
探 知 规 律
如图,是用火柴棒拼成的图形。
图案编号
(1)
(2)
(3)
(4)
…
火柴根数
…
(1)填写下面的表格
5
7
9
3
(2)拼成第n个图形需要_______根火柴棒。
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
合 作 探 究
在日历中任意圈出横排相邻3个数,它们的和是24,你能猜出这三个数分别是多少吗?
在日历中任意圈出竖排相邻3个数,它们的和是33,你能猜出这三个数分别是多少吗?
在日历中任意圈出横排相邻3个数,它们的和可以是13吗?
在日历中任意圈出竖排相邻3个数,它们的和可以是75吗?
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
(2) 按照左图的方式继续排列餐桌,完成下表:
桌子张数
1
2
3
4
5
…
n
可坐人数
…
6
8
10
12
14
6
8
2n+4
……
(4+2n)
+2
+2
+2
+2
n张餐桌可坐_______人
2
1、按左图方式摆放餐桌和椅子(1) 1张餐桌可坐___人; 2张餐桌可坐___人.
探索与表达规律

探索与表达规律教学目标知识与技能: 会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律。
学会观察已知的数据,探索已知数据之间的数量关系,提高分析问题、解决问题的能力。
提高学生观察图形、探索规律的能力,培养创新意识。
过程与方法: 经历探索数量关系、运用符号表示规律、通过运算验证规律的过程;采用“探究式教学法”+“讨论式教学法”。
情感与态度: 通过学生自己动手操作摸索出解决问题的规律,充分体现学生课堂主人翁精神,以积极热情的态度去面对学习;去热爱生活。
教材分析重点:根据问题的起始情况,总结规律,探索出问题的一般性结论难点:感悟出问题的规律教具:电脑、投影仪教学过程一、创设问题情境,引入新课1、多媒体展示:“传出一婴儿哭声”情景。
2、情境提问:该新生婴儿的生日是几月几号?二、例题讲解:1、教材P111(1)日历图的套色方框中的9个数之和与该方框正中间的数有什么关系?(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?(3)这个关系对任何一个月的日历都成立吗?为什么?(4)你还能发现这样的方框中9个数之间的其他关系吗?试用代数式表示。
三、应用探究1、将一张长方形的纸对折,如图(见屏幕)所示可得到一条折痕。
继续对折,对折时每次折痕与上次的折痕保持平行。
连续对折6次后,可以得到几条折痕?如果对折10次呢?对折n次呢?2、将折后长方形个数与折痕进行比较,以体会数学模型的作用。
二者比较结果见下表:四、能力培养(1)已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,……,根据前面的规律,可猜想:1+3+5+7+……+(2n+1)=_____(n为整数)。
(2)青山水泥厂1980年水泥产量为a吨,以后每年比前一年都增长10%,则1981年产量____吨;1982年产量_____吨;1983年产量_____吨;猜想,2002年产量______吨,1980年后的第n年产量为_______吨。
探索与表达规律教案

(2)一家餐厅有40张这样的长方形桌子,按照上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐多少人?
(3)在(2)中,若改成每8张桌子拼成1张大桌子,则共可坐多少人?
三、课堂小结
板书设计
反馈升华(检测内容设计说明)
反思
重建
审核认定
审核认定
意见:审核人:月日
课题
回顾与思考1
主备人
于金凤
案序
教学目标
(知识能力
德育渗透)
1、理解单项式,多项式,整式及同类项的概念
2、会进行整式的加减计算
教学重点
整式的加减计算
教学难点
整式的化简求值
有效预习(预习内容设计及引导方法)
1.复习回顾什么是单项式及单项式的系数和次数,什么是多项式及整式。
2.复习回顾什么是同类项,怎样合并同类项。
二、题组训练
1、在代数式 中,单项式有____个,多项式有________个。
2、单项式 的系数是,次数是。
3.多 项式a3―a2b―2ab4+b3―1的次数是____.最高次项系数是___,常数项是______。
4、 与 是同类项,则 =____________。
5.化简 的结果是_________________。
3.复习回顾整式的加减计算步骤及注意事项。
展示互动
自主、合作学习及展示交流
精讲点拨
一、自主探究:(课前完成,组内小展示5分钟)
1.在代数式(1) ,(2)4xy,(3) ,(4) ,(5)x2+x+ ,(6)0,(7) ,(8)m,(9)―2.01×105中,单项式有,多项式有,整式有(只填序号)
探索并表达规律

不成立
索 探 新 重 头 回
学以致用:
1、从日历中任意框出3×3九个数之和为153, 请问n是几号?
n
学以致用:
2.从日历中任意框出3×3九个数之和会 为162吗?会为279吗?为什么?
操作探究:
要动手折叠哦? 将一张长方形的纸对 折,如右图所示可得到一 条折痕。继续对折,对折 时每次折痕与上次的折痕 保持平行,连续对折6次 后,可以得到几条折痕? 如果对折10次呢?对折n次 呢?
猜年龄游戏:
用你的年龄乘以50,减去2,减完后再
乘以2,再加上出生月份,把你得到的
数字告诉我我就能知道你的出生年月,
你相信吗?
探索与表达规律
不为失败找借口,只为成功找方法。
学习目标
1、会用代数式表示简单数学问题中的 数量关系。
2、会用字母表示数的方法解决简单的 数字规律问题。
3、经历探索数量关系、运用符号表 示规律、运用验算验证规律的过程, 在过程中体验类比、转化的思维方法。
1 8 15 22 29
2 9 16 23 30
3 10 17 24 31
4 11 18 25
5 12 19 26
在 H 形区域内,七个数之和与中心数
七数之和=7×中间数
(a-8)+(a+8)+(a-1)+(a+1)
+a+(a-6)+(a+6)= 7a
a-8 a-1 a+6
a
a-6 a+1 a+8
在w形区域中,七个数的和等于中心数的7倍.
先将折叠后的结果填入下表, 细胞分裂示意图 再与细胞分裂数作比较:
次 数 1 2 3 折 痕