牛顿第二定律实验
牛顿第二定律实验

牛顿第二定律实验(一)基本知识一【实验目的】:验证牛顿第二定律,就是验证 (1)物体质量一定时,加速度与合外力成正比; (2)合外力一定时,物体的加速度与质量成反比。
二【实验原理】:控制变量法1、保持研究对象(小车)的质量(M )不变,改变砂桶内砂的质量(m ),即改变牵引力测出小车的对应加速度,用图像法验证加速度是否正比于作用力。
2、保持砂桶内砂的质量(m )不变,改变研究对象的质量(M ),即往小车内加减砝码,测出小车对应的加速度,用图像法验证加速度是否反比于质量。
三【实验器材】附有定滑轮的长木板、薄木垫、小车、细线、小桶及砂、打点计时器、 低压交流电源、导线、天平(带一套砝码)、毫米刻度尺、纸带及复写纸等。
四【实验步骤】1、用天平测出小车和小桶的质量M 0和m 0,并记录数值;2、按照要求安装实验器材,此时不把悬挂小桶用的细绳系在车上,即不给小车加牵引力;3、平衡摩擦力,在长木板不带定滑轮的一端下面垫薄木板,并反复移动其位置,直到打点计时器正常工作后,小车在斜面上的运动可以保持匀速直线运动状态为止。
4、记录小车及车内所加砝码的质量;称好砂子后将砂倒入小桶,把细绳系在小车上并绕过定滑轮悬挂小桶;此时要调整定滑轮的高度使绳与木板平行;接通电源,放开小车,待打点计时器在纸带上打好点后,取下纸带,做好标记。
5、保持小车的总质量不变,改变砂的质量(均要用天平称量),按步骤4中方法打好纸带,做好标记。
五【实验现象和数据】1、在每条纸带上选取一段比较理想的部分,分别计算出加速度值。
2、用纵坐标表示加速度,横坐标表示作用力(即砂和砂桶的总重力mg ),根据实验结果画出相应的点,如果这些点在一条直线上,便证明了质量一定的情况下,加速度与合外力成正比。
3、保持砂和桶的质量不变,在小车上加砝码(需记录好数据),重复上面的实验步骤,求出相应的加速度,用纵坐标表示加速度,横坐标表示小车及砝码的总质量的倒数1M,根据实验结果画出相应的点,如果这些点在一条直线上,就证明了合外力一定的情况下,加速度与质量成反比。
验证牛顿第二定律—实验数据的处理

- 1 -验证牛顿第二定律〖实验目的〗:验证牛顿第二定律。
即①质量一定时,加速度与作用力成正比;②作用力一定时,加速度与质量成反比。
〖实验原理〗:1.保持研究对象的质量不变,改变小桶里砂的质量,即改变牵引力,用打点计时器打出测算小车运动的加速度,用图象法验证加速度是否与作用力成正比。
2.保持小桶及其中砂的质量不变,即保持牵引力不变,改变研究对象的质量,即在小车上加放砝码,用打点计时器打出纸带测算小车运动的加速度,用图象法验证加速是否与质量成反比。
〖注意事项〗:1.平衡摩擦力时不要挂小桶,应连着纸带,且接通电源,判断小车是否作匀速直线运动。
可用直接观察法,也可用打点计时器打出纸带判定(各点间距相等) 2.小车应打点计时器,且接通电源后待打点计时器稳定后才能放手。
3.本实验存在系统误差,为了减小系统误差必须:小车与钩码的总质量远远大于砂与砂桶的总质量,即:(M+m )>>()m M '+'分析:对于砂和砂桶整体分析:a m M F g m M )()('+'=-'+' 对于小车与钩码整体分析:a m M F )(+=联立上面两式求解得:)()()(m M m M gm M a '+'++'+'=拉小车的力F :)()(1)()(m M m M gm M a m M F +'+'+'+'=+=当(M+m )>>()m M '+'时:g m M F )(+=4.画F a --和mM a +--1图象时应使所描的点尽量多地位于直线上,不在直线上的点尽量均匀分布在直线的两侧。
5.在验证a 与(M+m )成反比时,横坐标选用mM +1,而不是(M+m ),原因是a——(M+m )图线是曲线,不便直接观察a 与(M+m )是否存在反比关系。
〖习题选编〗1.在验证牛顿第二定律的实验中,平衡摩擦力是: A 、不能将装砂的小桶通过滑轮系在小车上;B 、小车后的纸带必须连好,但打点计时器可以不打点;C、应使打点计时器打在小车所带纸带上的点迹间的距离相等;D每次改变小车的质量时,必须两再次平衡摩擦力。
专题九 实验验证牛顿第二定律

专题十实验验证牛顿第二定律1、目的:验证牛顿第二定律(a = F m)2、原理:控制变量法。
(1)保证物体质量不变时,改变合外力大小,测出不同合外力的大小和对应加速度大小,得出加速度与合外力成正比关系。
(2)保证物体合外力不变时,改变物体质量大小,测出不同质量和对应加速度大小,得出加速度与质量成反比的关系。
从而验证了加速度与合外力成正比,与质量成反比。
3、器材与装置:器材:带定滑轮的长木板、小车、平台、打点计时器、低压交流电源、纸带、细线、砂桶、天平。
装置如图:4、实验步骤:(1)验证小车质量不变时,加速度与合外力成正比关系。
①(1)用天平测出小车和砝码的总质量.②平衡摩擦:不挂砂桶,垫高长板右端,轻推小车,给小车一个初速,调长板倾角使小车匀速运动(或打出纸带上的点间隔均匀)③按上图所示作好连接,先接通打点计时器电源,让打点计时器稳定打点后,再放开小车,取下纸带编出号码,天平测出砂和桶的总质量m,作好记录。
④改变砂的质量,重复步骤3。
⑤对纸带求加速度a和小车受的合力F(小车受的合力等于砂和桶的重力F=mg)。
⑥以合力F为横坐标,以加速度a为纵坐标,描点画出图象,当图象为过坐标原点的直线,便证明了加速度与合外力成正比。
(2)验证小车合外力不变时,加速度与质量成反比。
⑦保证砂和桶的总质量m不变(合外力不变),改变小车上砝码来改变小车的质量,测出小车的不同质量和对应的加速度,把相应的小车质量和加速度填入表中。
并算出小车质量的倒数1 M。
⑧以1M为横坐标,以加速度a为纵坐标,描点画出图象,当图象为过坐标原点的直线便证明了加速度与质量成正比。
注意:①平衡小车摩擦是为了消除摩擦对小车的合力的影响,使小车的合力等于细线对小车的拉力。
使小车质量远大于砂和桶的总质量,是为了使细线的拉力等于砂和砂桶的总重力,这两措施是为了实验中,使小车的合外力等于砂和砂桶的总重力(F = mg),使得测合外力比较简单。
如果用气垫导轨代替滑板就不用平衡小车摩擦力,如果在拉线与小车间加一个力的传感器,直接读出线对小车拉力就不用满足小车质量远大于砂和桶的总质量的条件。
牛顿第二定律实验

牛顿第二定律实验实验介绍牛顿第二定律是力学中的一个基本定律,它表明一个物体的加速度是与施加在物体上的力成正比的。
通过进行牛顿第二定律的实验,我们可以直观地了解力和加速度之间的关系,并验证牛顿第二定律的准确性。
实验材料•悬挂于天花板的轻量级弹簧•物块•测量重力的秤实验步骤1.将弹簧悬挂于天花板,并调整至平衡状态。
2.选取一个物块,质量为m,将其配备一个轻量级的挂钩以方便将其悬挂在弹簧上。
3.记录物块的质量m,并使用秤测量物块的质量,将其标记为m。
4.微调物块的位置,使其保持在平衡状态,并记录物块的位置。
5.缓慢地向下拉动物块,使其产生加速度,并记录物块的位置。
6.注意到当物块处于平衡状态时,弹簧的长度为L0。
在拉动物块时,弹簧会伸长至长度L。
7.测量L-L0的长度并记录下来。
8.重复以上步骤至少三次,以增加实验结果的准确性。
数据处理通过上述实验步骤,我们得到了一些数据:物块的质量m、弹簧伸长的长度ΔL以及物块的加速度a。
接下来,我们将使用这些数据来验证牛顿第二定律。
根据牛顿第二定律的公式,F = ma,我们可以将实验数据代入该公式,得到实验中施加在物块上的力F。
我们可以通过以下步骤来计算施加在物块上的力F:1.首先,我们需要计算弹簧的弹性系数k。
弹簧的弹性系数可以通过施加一个已知质量并测量伸长的长度ΔL 来计算。
根据胡克定律,k = (m * g) / ΔL,其中m为已知质量(g),g为重力加速度。
可以通过重力加速度的常量来替代g。
2.接下来,我们将弹性系数k代入弹簧伸长的公式,ΔL = (F / k)。
因此,我们可以计算施加在物块上的力F。
3.最后,我们可以将施加在物块上的力F代入F = ma的公式,来计算物块的加速度a。
结果和讨论通过计算得到物块的加速度a,并与实验时记录的加速度进行比较。
如果计算得到的加速度和实验记录的加速度相近,那么实验结果可以验证牛顿第二定律的准确性。
然而,在实际的实验中,可能会存在一些误差。
牛顿第二定律实验操作指南

牛顿第二定律实验操作指南1.实验目的通过实验验证牛顿第二定律,即力等于质量乘以加速度(F=ma),帮助学生理解物体在受力作用下的运动规律。
2.实验原理牛顿第二定律表达式为F=ma,其中F表示作用在物体上的合力,m表示物体的质量,a表示物体的加速度。
在实验过程中,通过改变作用在物体上的合力,观察物体的加速度变化,验证牛顿第二定律。
3.实验器材与步骤3.1实验器材小车、滑轮组、钩码、细绳、计时器、刻度尺、木板(带摩擦系数)、电子秤。
3.2实验步骤步骤1:组装实验器材将滑轮组固定在小车上,用细绳连接滑轮组和钩码,使钩码能够通过细绳拉动小车。
将小车放在水平木板上,用电子秤测量小车的质量,记录在实验表格中。
步骤2:测量加速度将计时器设置为开始计时,拉起钩码,使小车从静止开始运动,记录小车在不同拉力下的加速度。
每次实验结束后,用刻度尺测量小车运动的距离,计算出加速度,并记录在实验表格中。
步骤3:改变拉力通过增加或减少钩码的质量,改变作用在小车上的拉力。
重复步骤2,记录不同拉力下的加速度,直至实验数据稳定。
步骤4:分析实验数据将实验数据整理成图表,观察加速度与拉力之间的关系。
验证牛顿第二定律的正确性。
4.实验注意事项4.1确保实验过程中小车在水平木板上运动,以减小摩擦力对实验结果的影响。
4.2拉起钩码时,要保证拉力的平稳,避免突然释放导致小车加速度过大。
4.3实验过程中,要密切关注小车的运动情况,防止实验器材损坏或安全事故发生。
4.4测量加速度时,要准确记录小车运动的距离和时间,确保实验数据的准确性。
5.实验结果与讨论通过实验数据的分析,我们可以发现,当作用在小车上的拉力增大时,小车的加速度也相应增大;当作用在小车上的拉力减小时,小车的加速度也相应减小。
这充分验证了牛顿第二定律的正确性。
我们还观察到,在实验过程中,小车的质量对加速度有一定的影响。
当小车的质量增大时,相同的拉力作用下,小车的加速度减小;当小车的质量减小时,相同的拉力作用下,小车的加速度增大。
牛顿第二定律的实验

牛顿第二定律的实验引言:牛顿第二定律是经典力学中的重要定律之一,它表明物体的加速度与作用于物体上的力成正比,与物体的质量成反比。
为了验证牛顿第二定律,科学家们进行了许多实验。
本文将介绍其中几个经典的牛顿第二定律实验,并解释实验结果与定律之间的关系。
实验一:斜面实验在斜面实验中,我们将一块小木块放在一个倾斜的平面上。
通过测量木块下滑的加速度和斜面的倾角,可以验证牛顿第二定律。
实验装置:- 斜面:具有一定倾角的平面。
- 小木块:质量为m的物体。
- 测量工具:包括测量斜面倾角的仪器和测量小木块加速度的装置。
实验步骤:1. 调整斜面的倾角,确保斜面保持稳定。
2. 将小木块放在斜面的顶端,并松开。
3. 记录木块下滑的时间t。
4. 根据木块的下滑距离和时间,计算出木块的加速度a。
实验结果:根据实验数据的分析,我们可以得到木块的加速度与斜面倾角成正比。
这与牛顿第二定律的预测相符,即物体的加速度与作用于物体上的力成正比。
实验二:弹簧实验在弹簧实验中,我们将一块质量为m的物体挂在弹簧上,并通过测量弹簧的伸长量和物体的加速度来验证牛顿第二定律。
实验装置:- 弹簧:具有一定的弹性系数。
- 物体:质量为m的物体。
- 测量工具:包括测量弹簧伸长量和物体加速度的装置。
实验步骤:1. 将物体挂在弹簧上,使其达到平衡位置。
2. 施加一个水平方向的力F,使物体开始运动。
3. 记录物体的加速度a和弹簧的伸长量x。
4. 根据弹簧的弹性系数k和伸长量x,计算出物体所受的力F。
实验结果:实验数据的分析显示,物体的加速度与所受的力成正比。
这与牛顿第二定律的预测一致,即物体的加速度与作用于物体上的力成正比。
实验三:自由落体实验在自由落体实验中,我们通过测量物体自由下落的加速度来验证牛顿第二定律。
实验装置:- 物体:质量为m的物体。
- 测量工具:包括计时器和测量下落距离的装置。
实验步骤:1. 将物体从一定高度h自由下落。
2. 记录物体下落的时间t。
牛顿第二定律实验报告

牛顿第二定律实验报告牛顿第二定律实验报告引言:牛顿第二定律是经典力学中的重要定律之一,它描述了物体的加速度与作用力的关系。
为了验证牛顿第二定律的准确性,我们进行了一系列实验。
本实验旨在通过测量物体的质量、加速度和作用力,来验证牛顿第二定律的有效性。
实验步骤:1. 准备工作:在实验开始之前,我们首先准备了一台光滑的水平桌面、一个光滑的滑轮、一段细绳、一个小物块和一个弹簧测力计。
2. 悬挂物块:我们将细绳固定在滑轮上,然后将物块系在细绳的另一端。
3. 测量质量:使用天平测量物块的质量,并记录下来。
4. 测量加速度:将物块轻轻推动,让它在水平桌面上运动,同时使用计时器记录物块从静止到达一定速度所用的时间。
根据物块的位移和时间的关系,可以计算出物块的加速度。
5. 测量作用力:将弹簧测力计连接到细绳上,然后逐渐拉紧细绳,直到物块开始运动。
此时,弹簧测力计的示数即为物块所受的作用力。
实验结果与讨论:在进行实验时,我们对不同质量的物块进行了多次测量,并记录下了相应的数据。
通过计算,我们得到了物块的加速度和作用力的数值。
根据牛顿第二定律的公式 F = m * a,其中 F 为作用力,m 为物体的质量,a 为物体的加速度,我们可以将实验数据代入公式进行验证。
在实验过程中,我们发现物块的加速度与作用力成正比,而与物块的质量无关。
这与牛顿第二定律的预测相符。
实验结果表明,当作用力增大时,物块的加速度也随之增大;而当物块的质量增大时,加速度则减小。
这进一步验证了牛顿第二定律的有效性。
实验误差:在进行实验时,我们必须考虑到实验误差的存在。
实验误差可能来自于测量仪器的精度、实验环境的影响以及实验操作的不准确等因素。
为了尽量减小误差的影响,我们在实验过程中进行了多次测量,并取其平均值作为最终结果。
结论:通过本次实验,我们成功验证了牛顿第二定律的有效性。
实验结果表明,牛顿第二定律的描述与实际物理现象相符合。
物体的加速度与作用力成正比,与物体的质量无关。
牛顿第二定律实验

思考:质量、力与加速度分别如何测量?
质 量 —天平 加速度 —— ? 恒 力 —— ?
方案一:小车、打点计时器、纸带、一端带滑 轮的长木板、细线、砝码、钩码、刻度尺、天 平为器材,研究小车运动。
从打点计时器打出 的纸带计算出小车 的加速度a
砝码的总重力G 当作小车受到的 拉力F
【思考讨论】 1.小车在运动方向上受几个力的作用?细绳对小 车的拉力等于小车所受的合力吗?
当钩码(或者沙桶)质量比小车质量小得多时,绳子 的拉力近似等于砝码的重力,即小车受到合外力近似 等于砝码的重力。
实验步骤
1.用天平测出小车的质量。 2.摆放好实验装置,平衡摩擦力。 3.把细线系在小车上并绕过滑轮悬挂钩码,将车拉 到打点计时器附近。 4.打开打点计时器电源,再释放小车,得到纸带, 并在纸带上计下钩码重量。 5.改变钩码的重量,重复以上的步骤2-3多次。 6.控制钩码质量不变,改变小车质量,再测几组数 据。 7.设计表格,记录实验数据。
结论: a∝1/m 0
m
1
m
注意事项
1. 平衡摩擦力时,不要将悬挂重物的细线系在小车上,即不要 给小车施加牵引力,并且让小车拖着打点的纸带运动.
2. 平衡摩擦力后,无论如何改变重物或小车和砝码的质量,都 不需要重新平衡摩擦力.但必须保证细绳与长木板平行.
3. 每条纸带必须在满足小车与车上所加砝码的总质量远大于重 物的质量的条件下打出.只有如此,重物的重力才可视为小车 受到的拉力.
D.在小车的后端也分别系上细绳,用一只夹子夹住这两根细绳;
E.在小车的前端分别系上细绳,绳的另一端跨过定滑轮各挂一 个小盘,盘内分别放着数目不等的砝码,使砝码盘和盘内砝码的 总质量远小于小车的质量.分别用天平测出两个砝码盘和盘内砝 码的总质量.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿第二定律实验
1.(8分)某探究学习小组的同学要验证“牛顿第二定律”,他们在实验室组装了一套如图所示的装置:水平轨道上安装两个光电门,小车上固定有力传感器和挡光板,细线一端与力传感器连接另一端跨过定滑轮挂上砝码盘.实验时,调整轨道的倾角正好能平衡小车所受的摩擦力(图中未画出).
(1)实验中小车所受的合力 (填“等
于”、“大于”或“小于”)力传感器的示数,该实验
(填“需要”或“不需要”)满足砝码和砝码盘的总质
量远小于小车的质量。
(2)已知小车、传感器和挡光板的总质量为M,
挡光板的宽度为L,光电门l和2的中心距离为s.在某次实验过程中,力传感器的读数为F,小车通过光电门1和2的挡光时间分别为t1、t2(小车通过光电门2后,砝码盘才落地).则该实验要验证的式子是F= 。
2.“探究加速度与物体质量、物体受力的关系”的实验装置如图甲所示.
(1)保持小车的质量M不变,改变所挂砝码的数量,多次重复测量.在某次实验中根据测得的多组数据可画出a-F关系图线如图乙所示.此图线的AB段明显偏离直线,造成
此误差的主要原因是:
(2)该同学在实验中保持拉力不变,得到了小车加速度随质量变化的多组数据,如下表所示:
请你在图丙所示的方格纸中建立合适坐标并画出能直观反映出加速度与质量关系的图线.
(3)图丁所示为实验中打出的一条纸带,所用电源的频率是50Hz,从比较清晰的点起,每5个点取一个计数点,量出相邻计数点之间的距离如图中所示.由该纸带可求出小车的加速度a= m/s2.(结果保留两位有效数字)
3.某实验小组用如图甲所示的装置测量木块与木板间的动摩擦因数μ,提供的器材有:带定滑轮的长木板,打点计时器,交流电源,木块,纸带,米尺,8个质量均为20g 的钩码以及细线等.实验操行过程如下:
A.长木板置于水平桌面上,带定滑轮的一端伸出桌面,把打点计时器固定在长木板上并与电源连接,纸带穿过打点计时器并与木块相连,细线一端与木块相连,另一端跨过定滑轮挂上钩码,其余钩码都叠放在木块上;
B.使木块靠近打点计时器,接通电源,释放木块,打点计时器在纸带上打下一系列点,记下悬挂钩码的个数n;
C.将木块上的钩码逐个移到悬挂钩码端,更换纸带,重复实验操作步骤B;
D.测出每条纸带对应木块运动的加速度a,实验数据如表乙所示.
(1)实验开始时,必须调节滑轮高度,保证.
(2)根据表乙数据,在图丙中作出a-n图象;由图线得到μ= (取g=10m/s2),还可求的物理量是。
(只需填写物理量名称).。