人教版七年级下册《第六章实数》单元检测试卷含答案.doc
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)

人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。
16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。
14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。
第6章 实数 人教版数学七年级下册单元测试(含答案)

第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
人教版七年级数学下册-第六章-实数-单元测试卷(含答案)

第1页 共6页第六章 实数 单元测试学校: 姓名: 班级: 考号:一、选择题(每小题3分,共30分)1. 8的平方根是( )A. 2B. ±2C. 2√2D. ±2√22. 下列各式表示正确的是( )A. √25=±5B. ±√25=5C. ±√25=±5D. ±√(−5)2=5 3. 一个正数的算术平方根是a ,那么比这个正数大2的数的算术平方根是 ( )A. a 2+2B. ±√a 2+2C. √a 2+2D. √a +24. 下列说法正确的是 ( )A. 1的立方根是±1B. √4=±2C. √81的平方根是±3D. 0没有平方根5. 如果x 2=3,那么在如图的数轴上与实数x 对应的点可能是 ( )A. P 1B. P 4C. P 2或P 3D. P 1或P 46. 若√x −2y +9与|x -y -3|互为相反数,则x +y 的值为 ( )A. 3B. 9C. 12D. 277. 下列实数中,属于无理数的是( )A. -3B. 3.14C. 27D. √28. 设边长为3的正方形的对角线长为a .则下列关于a 的四种说法①a 是无理数;②a 可以用数轴上的一个点来表示;③3<a <4;④a 是18的算术平方根中,正确说法的序号是( )A. ①④B. ②③C. ①②④D. ①③④9. 如果m 是(−3)2的平方根,那么√m 3等于( )A. -3B. ±3C. −√33D. ±√3310. 如果正方体A 的体积是正方体B 的体积的27倍,那么正方体A 的棱长是正方体B 的棱长的( )倍.A. 2B. 3C. 4D. 5二、填空题(每小题3分,共24分)11. 如果实数x 满足|x|<√5−1,且x 为整数,则x =____.12. 若a <√13<b ,且a,b 为连续正整数,则b 2−a 2=____.13. √−273等于____,√116的算术平方根是____.14. 如图,M,N,P,Q 是数轴上的四个点,这四个点中最适合表示√7的点是____.15. 若a ,b 满足|a +2|+√b −4=0,则a 2b =____.16. 若无理数a 满足不等式1<a <4,请写出两个符合条件的无理数____、____.17. 交警通常根据刹车时后车轮滑过的距离估计车辆行驶的速度,所用的经验公式v =16√df ,其中v 表示车速(单位:km/h),d 表示刹车后车轮滑过的距离(单位:m),f 表示摩擦系数.在某次交通事故调查中,测得d =24 m,f =1.3,则肇事汽车的车速大约是____km/h(精确到0.1). 18. 观察下列计算过程:∵112=121, ∴√121=11;∵1112=12 321, ∴√12 321=111;由此猜想:√12 345 678 987 654 321=____.三、解答题(8+8+10+10+10=46分)19. 求下列各式中的x .(1)8x 3+125=0; (2)(x +3)3+27=0;(3)√x 3=5; (4)2x 3−6=34.20. 已知2x+1的一个平方根是−5,求5x+4的算术平方根.21. 已知P是满足不等式−√3<x<√6的所有整数x的和,Q是满足不等式x≤√37−2的最大2整数,求P+Q的平方根.πR3,其中V 22. 某塑钢球内装满水后,量得水的体积为3.5m³,已知球体的体积公式为V=43表示球的体积,单位:m³,R表示球的半径,单位:m.如果球体的厚度不计,请你求此塑钢球的半径.(精确到0.01m)第3页共6页23. 已知x是36的平方根,y是-8的立方根,z的算术平方根是3,求x+y+z的值.第5页 共6页参考答案1—10 DCCCD DDCDB11. 【答案】-1,0,1.12. 【答案】713. 【答案】-3;1214. 【答案】P15. 【答案】116. 【答案】√2;√13(答案不唯一)17. 【答案】89.418. 【答案】11…11︸共9个19.(1) 【答案】移项,得8x 3=−125,系数化为1,得x 3=−1258, ∴x =√−12583=−52. (2) 【答案】移项,得(x +3)3=−27,∴x +3=−3,∴x =−6. (3) 【答案】两边立方,得x =53,∴x =125. (4) 【答案】移项,得2x 3=6+34,即2x 3=274,∴x 3=278,∴x =32.20. 【答案】∵−√3<x <√6且x 为整数,∴x 的值可以为-1,0,1,2,∴P =2. ∵6<√37<7,∴2<√37−22<2.5,∴Q =2,∴P +Q =4,∴P +Q 的平方根是±2.21. 【答案】由题意知2x +1=(−5)2,所以x =12,5x +4=64. 因为82=64,所以√5x +4=√64=8, 即5x +4的算术平方根是8.22. 【答案】设此塑钢球的半径为x m ,根据球的体积公式,得3.5=43π⋅x 3,整理,得x 3=3.5×34π,利用计算器,解得x ≈0.94,答:此塑钢球的半径约为0.94m.23. 【答案】因为36的平方根是±6,所以x =±6; 因为-8的立方根是-2,所以y =-2;因为3的平方是9,所以z =9.当x=6时,x+y+z=6-2+9=13;当x=-6时,x+y+z=-6-2+9=1;所以x+y+z=13或1.。
人教版七年级数学下第6章 实数 单元测试(含答案)

第6章 实数 单元测试卷一、单选题1.关于√8的叙述正确的是( )A .在数轴上不存在表示√8的点B .√8=√2+√6C .与√8最接近的整数是2D .√8=2√22.在25-,π-,0,3.14,,0.33333133中,无理数的个数有( )A .1个B .2个C .3个D .4个3.在﹣1.732π,3.14••,,3.212212221……,56,这些数中,有理数的个数为()A .2B .3C .4D .54的值是( )A .2BC .±2D .5.下列说法正确的 ( )A .任何实数aB .任何实数aC .任何实数a 的绝对值是aD .任何实数a 的倒数是1a6.下列实数是无理数的是( )A .-1B .0CD .327.下列各数中最小的数是( )A .π-B .0C .D .18.下列说法正确的是( )A .14是0.5的一个平方根B .()22-的平方根是-2C .正数有两个平方根,且这两个平方根之和等于0D .负数有一个平方根9.如图,在数轴上,点A 与点C 到点B 的距离相等,A ,B 两点所对应的实数分别是1,则点C 对应的实数是( )A .1B .2C .1D .1二、填空题 10.已知2x 3-是81的算术平方根,则x 的值为______.11.数轴上点A ,B -110,则点A 距点B 的距离为_________.12.在数轴上,实数2﹣√5对应的点在原点的_____侧.(填“左”、“右”)13.2(4)-的算术平方根为__________14.已知一个正数的平方根是3a+4和5-6a ,则这个正数是___.15=x y +,则x y -=______.16.比较3(填“<”或“>”)17.已知m ,n 是两个连续整数,且m <n ,则m +n =_____.18.把下列各数的序号填入相应的括号内.①10,①π-,① 3.14-,①0,①113,①1-,①1.3,①1.8080080008…(相邻两个8之间依次多一个0)整数集合_________________________负分数集合_________________________正有理数集合_________________________无理数集合_________________________19.规定a*b=5×a-12×b(其中a,b是自然数),求(1)10*6=_______,(2)6*10=______三、解答题20.(1)的近似值的过程,请你仔细阅读并补充完整:我们知道,面积是2的正方,1,1+x(0<x<1),可画出如图所示的示意图.由各部分面积之和等于总面积.可列方程为:x2++1=2,①0<x<1,①认为x2是个较为接近于0的数,令x2≈0,因此省略x2后,得到方程:,解得,x=,即=1+x≈.(2)请仿照(1) 1.7+y(0<y<1)的近似值(精确到千分位)2122.阅读材料:对于任何数,我们规定一种运算a bad bc c d=-.例如:121423234=⨯-⨯=-.(1)按照这个规定,请你计算10634-的值. (2)请计算当21(2)02x y ++-=时,22232x y -的值.23.用“①”表示一种新的运算,对于正实数 a ,b ,都有 a ①b b , 例如 25①88=13. (1)求 1①5 的值;(2)若 16①(m 3-1)=11,求 m 的值24.(1-2(2)求x 的值:225(2)360x +-=25.计算:(1)()178-++ (2)()222169333÷-⨯--(3)(2332⨯++-26.在一次“智慧课堂”教学比武的课堂上,李老师说:是无理数,无理数就是无限不循环小数,同学们,你能的小数部分全部写出来吗?”大家议论纷纷,张晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用1)-表示它的小数部分.”李老师说:“的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:已知8x y +=+,其中x 是一个整数,且01y <<,请你求出20122)x y +的值.27.求下列各式中的x .(1)2528x -=;(2)()3164x -=-.28.计算:求下列各式的值.(2(3) 31(2)2⎛⎫-- ⎪⎝⎭. (4) ||2|+29.计算:(1)232111(2)83-+-⨯+ ;(2)23346()()a a a a a a --+-g g g参考答案一、选择题1.D 2.B 3.B 4.A 5.B6.C 7.A 8.C 9.B二、填空题10.6 11.11 12.左13.4 14.169. 15.10 16.>17.518.①①① ①① ①①① ①①① 19.47 25三、解答题20.(1)2x,2x+1=2,0.5,1.5;(2)1.732.【解析】【分析】(1)解方程即可得到结论;(2)解方程即可得到结论.【详解】(1)由面积公式,可得x2+2x+1=2.略去x2,得方程2x+1=2.解得x=0.5;故答案为:2x,2x+1=2,0.5,1.5;(2)由面积公式,可得x2+2×1.7x+1.72=3.略去x2,得方程2×1.7x+1.72=2.解得x=0.32≈1.732;【点睛】本题考查了估算无理数的大小,正确的解方程是解题的关键.21.4.【解析】【分析】分别根据算术平方根和立方根的意义进行求解,然后再进行加减运算即可.【详解】,=4-3+3=4.【点睛】本题主要考查了实数的混合运算,熟练掌握算术平方根和立方根的意义是解此题的关键.22.(1)58;(2)-13.【解析】【分析】(1)根据题目的意思,掌握新运算的实际运算方法,按照新运算的方法进行计算即可(2)利用非负性,得出x 、y 的值,然后按照新运算的顺序进行代入计算即可【详解】解:(1)1061046(3)34=⨯-⨯--,4018=+,58=.(2)由21(2)02x y ++-=得:1 2.2x y =-=, 222222(2)332x y x y =---, 2214()322=-⨯--⨯,112=--, .13=-.【点睛】本题主要考查了新运算的实际运用,读懂题中所给的新运算是关键23.(1)6;(2)m=2.【解析】【分析】(1)根据定义的运算法则进行计算即可;(2)由新定义的运算法则可得关于m 的方程,解方程即可求得答案.【详解】(1)①a ①b b ,+5=1+5=6;(2)①a ①b b ,16①(m 3-1)=11,m 3-1)=11,即4+m 3-1=11,①m 3=8,①m=2.【点睛】本题考查了新定义运算,涉及了算术平方根,利用立方根的概念解方程等,弄清新定义运算的运算法则,熟练掌握相关知识是解题的关键.24.(1)-3;(2)145x =-,2165x =-. 【解析】【分析】(1)原式利用立方根的定义及算术平方根的意义化简,计算即可得到结果;(2)方程整理后,利用平方根定义开方即可求出解.【详解】解:(1)原式2833=-+=-;(2)225(2)360x +-= 方程整理得:236(2)25x +=, 开平方得:625x +=±, 解得:145x =-,2165x =-.【点睛】此题考查了实数的运算,以及平方根,熟练掌握运算法则是解本题的关键.25.(1)2;(2)﹣27;(3)9.【解析】【分析】(1)根据有理数的加减运算法则进计算即可;(2)先算乘方,再算乘除,然后进行加减运算即可;(3)先去括号,再进行加减运算即可.【详解】解:(1)原式=1﹣7+8=2;(2)原式=6×32﹣13×81﹣9=9﹣27﹣9=﹣27;(3)原式=6+﹣【点睛】本题主要考查实数的混合运算解此题的关键在于熟练掌握各个运算法则.26.19.【解析】【分析】x y的值,最后代入求出即可.【详解】①12,①9<810,①8x +y ,其中x 是一个整数,且0<y <1,①x =9,y =8,①2x )2012=2×9+−1)]2012=18+1=19.【点睛】本题考查了估算无理数的大小和实数的混合运算的应用,关键是求出x,y 的值.27.(1)x=;(2)x= -3.【解析】【分析】(1)先变形得到x 2=2,然后根据平方根的定义即可得到x 的值;(2)根据立方根的定义得到x -1=-4,然后解一次方程即可得到x 的值.【详解】解:(1)2528x -=2510x =,22x = ,所以x=;(2)()3164x -=-x -1=-4,所以x= -3.【点睛】本题考查立方根:如果一个数的立方等于a ,那么这个数叫做a28.(1)0.7;(2)53;(3)30;(4)4; 【解析】【分析】(1)根据算术平方根的性质可求解;(2)根据立方根的性质可得答案;(3)根据立方根、算术平方根的性质,可得答案;(4)根据绝对值、算术平方根的性质,可得答案【详解】(1=0.9-0.2,=0.7;(2=53;(3) 31(2)2⎛⎫-- ⎪⎝⎭=184(4)()2-⨯+-⨯-,=-32+2=-30.(4) ||2|+22=4.【点睛】本题考查了实数的运算,熟记法则并根据法则计算是解决此题的关键.29.(1)-1;(2)5a【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据幂的运算公式即可求解.【详解】(1)232111(2)83-+-⨯-+ =111(8)3283-+-⨯-⨯+ =1112---+=-1;(2)23346()()a a a a a a --+-g g g=577a a a +-=5a【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质及幂的运算法则.。
人教版七年级数学下册第六章 实数 单元检测卷(含解析)

第六章实数单元检测卷人教版七年级数学下册一、选择题1.64的平方根是( )A.4B.±4C.8D.±8 2.16的平方根是( )A.4B.2C.±4D.±2 3.下列运算正确的是( )A.9=±3B.|−3|=−3C.−9=−3D.−32=9 4.式子x−2中,x的取值范围是( )A.x≥2B.x>2C.x≥0D.x>0 5.下列各式中正确的是( )A.9=±3B.−4=2C.3−64=−4D.279=5 96.面积为2 的正方形的边长是( )A.2的平方根B.2的算术平方根C.2开平方的结果D.2的立方根7.下列说法错误的是( )A.−1的立方根是−1B.算术平方根等于本身的数是±1,0C.0.09=0.3D.3的平方根是±38.下列各数中的无理数是( )A.4B.πC.0D.−2279.比较2,5,37的大小,正确的是( )A.2< 5< 37B.2< 37< 5C.37<2< 5D.5< 37<2 10.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( )A.2B.3C.2D.3二、填空题11.一个自然数的算术平方根是a ,则相邻的下一个自然数的算术平方根是 .12.在等式[()+5]2=49中,( )内的数等于 .13.依据图中呈现的运算关系,可知m +n = .14.已知 a 、b 为两个连续的整数,且 a <11<b ,则 a +b = .三、计算题15.计算: −12+(−2)3×18−3−27×(−19)16.解方程:(1)(x−1)2−9=0;(2)2(2x−1)3+16=0四、解答题17.已知实数a +9的一个平方根是-5,2b−a 的立方根是-2,求2a +b 的算术平方根.18.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm 2和32dm 2的正方形木板.(1)截出的两块正方形木料的边长分别为 .(2)求剩余木料的面积.(3)如果木工想从剩余的木料中截出长为1.5dm ,宽为1dm 的长方形木条,最多能截出多少块这样的木条.19.如图,依次连结2×2方格四条边的中点A ,B ,C ,D ,得到一个阴影正方形.设每一方格的边长为1个单位,请讨论下面的问题:(1)阴影正方形的面积是多少?(2)阴影正方形的边长是多少?应怎样表示?(3)阴影正方形的边长介于哪两个相邻整数之间?20.已知3a+2的立方根是2,3a+b−1的算术平方根是4,c是8的整数部分.(1)求a、b、c的值;(2)求a+b−c的平方根.21.如果要制作一个立方体,使它的体积是已知立方体体积的27倍,那么它的棱长应是已知立方体的棱长的几倍?22.比较6−5和7−6的大小.23.把下列各有理数:﹣(+4),|﹣3|,0,﹣5,1.5(1)分别在数轴上表示出来:(2)将上述有理数填入图中相应的圈内.24.如图1,这是由8个同样大小的正方体组成的魔方,其体积为64.(1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD,求出阴影部分的边长及其面积;(3)如图2,把正方形ABCD放到数轴上,使点A与﹣1重合,那么点B表示的数为a,请计算(a﹣1)(a+1)﹣|2﹣a|的值.答案解析部分1.【答案】D【解析】【解答】解:∵(±8)2=64,∴64的平方根是±8,故答案为:D.【分析】直接根据平方根的定义即可求解.2.【答案】D【解析】【分析】首先根据平方根的定义求出4的平方根,然后就可以解决问题.【解答】∵16=4∵±2的平方等于4,∴4的平方根是:±2.故选D.【点评】此题主要考查了平方根的定义和性质,根据平方根的定义得出是解决问题的关键.3.【答案】C【解析】【解答】根据算术平方根,平方,绝对值的定义,得:A. 9=3 B. |−3|=3 C. −9 =−3 D. −32=−9.故答案为:C.【分析】根据算术平方根,绝对值的定义及有理数的乘方分别求出结果,然后判断即可.4.【答案】A【解析】【解答】解:根据题意得:x-2≥0,解得x≥2.故答案为:A.【分析】根据算数平方根有意义的条件,被开方数是非负数即可求解.5.【答案】C【解析】【解答】解:A、9=3,故选项A错误;B、负数没有平方根,故选项B错误;C、3−64=−4,故选项C正确;D、279=259=53,故选项D错误.故答案为:C.【分析】正数的正平方根叫做算术平方根,据此可判断A选项;负数没有平方根,据此可判断B选项;如果一个数的立方等于a,那么这个数叫做a的立方根,据此可判断C选项;求一个带分数的算术平方根,需要将这个带分数化为假分数,进而将分子分母分别开方,据此可判断D选项.6.【答案】B【解析】【解答】解:面积为2的正方形的边长是2的算术平方根.故答案为:B .【分析】由于正方形的面积等于边长的平方,且正方形的边长是一个正数,故可以根据算术平方根的定义求解.7.【答案】B【解析】【解答】A、∵−1的立方根是−1,∴A正确,不符合题意;B、∵-1没有算术平方根,∴B不正确,符合题意;C、∵0.09=0.3,∴C正确,不符合题意;D、∵3的平方根是±3,∴D正确,不符合题意;故答案为:B.【分析】利用立方根、平方根的性质及计算方法逐项判断即可.8.【答案】B【解析】【解答】解:A.4=2是有理数,故不符合题意;B.π是无理数,故符合题意;C.0是有理数,故不符合题意;D.−22是有理数,故不符合题意;7故答案为:B.【分析】根据无理数的定义逐项判断即可。
新人教版初中数学七年级下册第六章《实数》检测试题(含答案)

人教版七年级数学下册章末质量评估第六章实数人教版七年级数学下册第六章实数单元检测卷一、选择题1.若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±12.下列各式成立的是( C )A. =-1B. =±1C. =-1D. =±13.与最接近的整数是( B )A.0 B.2 C.4 D.54..若x-3是4的平方根,则x的值为( C )A.2 B.±2 C.1或5 D.165.下列说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个 B.2个 C.3个 D.4个B.的平方根是±4A.6.69 B.6.7 C.6.70 D.±6.708.一个底面是正方形的水池,容积是11.52m3,池深2m,则水池底边长是( C )A.9.25m B.13.52m C.2.4m D.4.2m9. 比较2, , 的大小,正确的是(C )A. 2<<B. 2<<C.<2<D.<<210.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有(C) A .0个 B .1个om] C .2个D .3个二、填空题11.3的算术平方根是____3____.12.(1)一个正方体的体积是216cm 3,则这个正方体的棱长是____6________cm ;(2) 表示_______9_____的立方根;13.已知a ,b 为两个连续整数,且a<15<b ,则a +b 的值为 7 . 14.已知一个有理数的平方根和立方根相同,则这个数是______0______.15.实数1-216.写出39到23之间的所有整数:____3,4 15.0________. 三、解答题17.求下列各数的平方根和算术平方根:(1)1.44;解:1.44的平方根是± 1.44=±1.2,算术平方根是 1.44=1.2. (2)169289; 解:169289的平方根是±169289=±1317,算术平方根是169289=1317.(3)(-911)2.解:(-911)2的平方根是±(-911)2=±911,算术平方根是(-911)2=911.[]18.已知一个正数x的两个平方根分别是3-5m和m-7,求这个正数x的立方根.由已知得(3-5m)+(m-7)=0,-4m-4=0,解得:m=-1.所以3-5m=8,m-7=-8.所以x=(±8)2=64.所以x的立方根是4.19.计算:(1)2+3 2-5 2;(2)2(7-1)+7;(3)0.36×4121÷318;(4)|3-2|+|3-2|-|2-1|;(5)1-0.64-3-8+425-|7-3|.解:(1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7=2 7-2+7=3 7-2.(3)原式=0.6×211÷12人教版初中数学七年级下册第六章《实数》检测卷一、选择题(每题3分,共30分)1. 下列各数中,没有平方根的是( )A. |-4|B. -(-4)C. (-4)2D. -422. 1的值应在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间3. 下列说法中,错误的是( )A. ±2B. 是无理数C.是有理数 D. 4. 下列说法中,错误的是 ( )A. -4是16的一个平方根B. 17是(-17)2的算术平方根C.164的算术平方根是18D. 0.9的算术平方根是0.03 5. 下列语句写成式子正确的是 ( )A. 4是16的算术平方根,即±4B. 4是(-4)2 4C. ±4是16的平方根,即 4D. ±4是16±46. 如图,数轴上点 N 表示的数可能是 ( )A. 10B. 5C. 3D. 27. 在实数0,π,227( ) A. 1个 B. 2个 C. 3个 D. 4个 8. a ,b ,c 在数轴上的对应点如图所示,则|a -b |+|b +c |-|a +c |的值为 ( )A. 2b +2cB. b +cC. 0D. a +b +c 9. 下列四个结论中,正确的是 ( )A.32<52 B. 54<32C.32<2<2 D. 1<2<5410. 一个自然数的算术平方根是a ,则下一个自然数的平方根是 ( ) A. a 2+1 B. ±(a 2+1) C. a 2+1 D. ±a 2+1二、填空题(每题3分,共24分)11.的算术平方根为 ,(-3)2的平方根是 .12. -338的立方根是 ,的立方根是 . 13. 在-5,- 3,0,π,6中,最大的一个数是 .14. =9,则x = ;若x 2=9,则x = .15. 若a <b 且a ,b 为连续正整数,则a 2+b 2的平方根为 .16. 5.70618.044= .17. =3,|b |=5,且ab <0,则a +b 的算术平方根为 .18. 请你辨别:下图依次是面积为1,2,3,4,5,6,7,8,9的正方形,其中边长是有理数的正方形有 个,边长是无理数的正方形有 个.三、解答题(共66分)19. (8分)计算下列各题.(1) |3-|2;(2)20. (8分)求下列各式中的x的值.(1)(x+2)3+27=0;(2)2(2x+1)2-12=0.21. (9分)已知3既是x-1的算术平方根,又是x-2y+1的立方根,求x2-y2人教版七年级数学下册第六章实数复习检测试题一、选择题(每小题3分,共30分)1.下列各数中最大的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平方根B.只有正数有算术平方根C.0和正数都有算术平方根D.负数有算术平方根3.下列语句中,正确的是( )A.无理数都是无限小数B.无限小数都是无理数C.带根号的数都是无理数D.不带根号的数都是无理数4.的立方根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多一个2),3.14这些数中,无理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点一一对应;②不含根号的数一定是有理数;③负数没有平方根;④是17的平方根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表示数﹣1,1,2,3,则表示2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上二、填空题(每小题3分,共24分)1.按键顺序是“,,则计算器上显示的数是.2.一个数的平方根和它的立方根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平方根为a+3和2a-15,则这个数是.5.比较大小:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.6.(8分)设的整数部分和小数部分分别是x,y,试求x,y的值与x﹣1的算术平方根.参考答案与解析一、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A二、填空题11.4 12.0 13.1 14. 49 15.<>16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.2。
人教版七年级数学下册 第六章 实数 单元测试试题(含解析)

人教版七年级数学下册 第六章 实数 单元测试题(时间:100分钟 满分:120分)一、选择题(共10小题,每小题3分,共30分) 1.(-2)2的算术平方根是( )A . -2B . ±2C . 2D .2.观察一组数据,寻找规律:0、、、、、…,那么第10个数据是( ) A . B . C . 7 D .3.下列说法正确的是( )A . 0.25是0.5的一个平方根B . 正数有两个平方根,且这两个平方根之和等于0C . 72的平方根是7D . 负数有一个平方根4.如果一个正数的平方根为2a +1和3a -11,则a =( )A . ±1B . 1C . 2D . 95.下列说法正确的是( )A . -1的倒数是1B . -1的相反数是-1C . 1的立方根是±1D . 1的算术平方根是16.的平方根为( ) A . ±8 B . ±4 C . ±2 D . 47.在下列实数:2、、、、-1.010 010 001…中,无理数有( ) A . 1个 B . 2个 C . 3个 D . 4个8.介于下列哪两个整数之间( )A . 0与1B . 1与2C . 2与3D . 3与49.实数-1的相反数是( )A . -1-B .+1 C . 1- D .-1 10.计算|2-|+|-3|的结果为( )A . 1B . -1C . 5-2D . 2-5 二、填空题(共8小题,每小题3分,共24分)11.当m ≤________时,有意义. 12.当的值为最小值时,a =________. 13.若a 2=9,则a 3=________.14.若x2-49=0,则x=________.15.一个立方体的体积是9,则它的棱长是________.16.已知第一个正方体纸盒的棱长为6 cm,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm3,则第二个纸盒的棱长是________ cm.17.的整数部分是________.18.数轴上点A,点B分别表示实数,-2,则A、B两点间的距离为________.三、解答题(共8小题,共66分)19.(8分)计算:(1)|-|+|-1|-|3-|;(2)-++.20. (8分)求满足下列等式的x的值:(1)25x2=36;(2)(x-1)2=4.21. (6分)我们知道:是一个无理数,它是无限不循环小数,且1<<2,则我们把1叫做的整数部分,-1叫做的小数部分.如果的整数部分为a,小数部分为b,求代数式a+b 的值.22. (6分)已知一个正数的平方根分别是3x+2和4x-9,求这个数.23. (8分)已知:|a-2|++(c-5)2=0,求:+-的值.24. (8分)已知M=是m+3的算术平方根,N=是n-2的立方根,试求M -N的值.25. (10分)请根据如图所示的对话内容回答下列问题.(1)求该魔方的棱长;(2)求该长方体纸盒的长.26. (12分)我们来看下面的两个例子:()2=9×4,(×)2=()2×()2=9×4,和×都是9×4的算术平方根,而9×4的算术平方根只有一个,所以=×.()2=5×7,(×)2=()2×(7)2=5×7,和×都是5×7的算术平方根,而5×7的算术平方根只有一个,所以__________.(填空)(1)猜想:一般地,当a≥0,b≥0时,与×之间的大小关系是怎样的?(2)运用以上结论,计算:的值.答案解析1.【答案】C【解析】(-2)2=4.4的算术平方根是2.2.【答案】B【解析】0=,=,=, =,=,=,…通过数据找规律可知,第n 个数为,那么第10个数据为:=. 3.【答案】B 【解析】A.0.5是0.25的一个平方根,故A 错误;C .72=49,49的平方根是±7,故C 错误;D .负数没有平方根,故D 错误.4.【答案】C【解析】根据题意得:2a +1+3a -11=0,移项合并得:5a =10,解得:a =2.5.【答案】D【解析】A.-1的倒数是-1,故错误;B .-1的相反数是1,故错误;C .1的立方根是1,故错误;D .1的算术平方根是1,正确6.【答案】C【解析】因为=4,又因为(±2)2=4,所以的平方根是±2. 7.【答案】C【解析】2、、-1.010 010 001…是无理数. 8.【答案】C 【解析】因为4<5<9,所以2<<3. 9.【答案】C【解析】实数-1的相反数是-(-1)=1-.10.【答案】C【解析】原式=2-+3-=5-2. 11.【答案】3【解析】要使根式有意义,则3-m ≥0,解得m ≤3.12.【答案】2【解析】因为≥0,所以的最小值为0,3a -6=0,解得:a =2. 13.【答案】±27【解析】因为a 2=9,所以a =±3,所以a 3=±27.14.【答案】±7【解析】∵x 2-49=0,∴x 2=49,∴x =±7.15.【答案】【解析】设立方体的棱长为a ,则a 3=9,所以a =. 16.【答案】7【解析】根据题意得:=7,则第二个纸盒的棱长是7 cm. 17.【答案】4【解析】因为16<17<25,所以4<<5,所以的整数部分是4. 18.【答案】2【解析】-(-2)=2.19.【答案】解:(1)原式=-+-1-3+=2-4;(2)原式=-(-2)+5+2=2+5+2=9.【解析】(1)根据绝对值的意义去绝对值得到原式=-+-1-3+,然后合并即可;(2)先进行开方运算得到原式=-(-2)+5+2,然后进行加法运算.20.【答案】解:(1)把系数化为1,得x 2=,开平方得,x =±56; (2)开平方得,x -1=±2,x =±2+1,即x =3或-1.【解析】(1)先把系数化为1,再利用平方根定义解答;(2)把x -1看作整体,再利用平方根定义解答.21.【答案】解:因为27<50<64,所以3<<4, 所以的整数部分a =3,小数部分b =-3. 所以a +b =3+-3=.【解析】先依据立方根的性质估算出的大小,然后可求得a ,b 的值,最后代入计算即可. 22.【答案】解:一个正数的平方根分别是3x +2和4x -9,则3x +2+4x -9=0,解得:x =1,故3x +2=5,即该数为25.【解析】利用平方根的定义直接得出x的值,进而求出这个数.23.【答案】解:因为|a-2|++(c-5)2=0,所以a=2,b=-8,c=5.所以原式=+-=-2+4-5=-3.【解析】首先依据非负数的性质求得a、b、c的值,然后代入求解即可.24.【答案】解:因为M=是m+3的算术平方根,N=是n-2的立方根,所以可得:m-4=2,2m-4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n-2=1,所以可得M=3,N=1,把M=3,N=1代入M-N=3-1=2.【解析】根据算术平方根及立方根的定义,求出M、N的值,代入可得出M-N的值.25.【答案】解:(1)设魔方的棱长为x cm,可得:x3=216,解得:x=6.答:该魔方的棱长6 cm.(2)设该长方体纸盒的长为y cm,6y2=600,y2=100,y=10.答:该长方体纸盒的长为10 cm.【解析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.26.【答案】解:根据题意,有=×;(1)根据题意,有=×;(2)=×=8×15=120.【解析】根据题意,即可得出和×的关系;(1)根据题意,当a≥0,b≥0时,在题目中有=×;(2)由(1)的结论,有=×,计算可得答案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章检测卷 分
一、选择题(每小题3分,共30分)
1.116的平方根是( ) A .±14 B.14
C .-14
D .±4 2.下列各数:1.414,2,-13
,0,其中是无理数的是( ) A .1.414 B. 2
C .-13
D .0 3.在实数-13
,-2,0,3中,最小的实数是( ) A .-2 B .0
C .-13
D. 3 4.估计38的值在( )
A .4和5之间
B .5和6之间
C .6和7之间
D .7和8之间
5.下列说法正确的是( )
A .|-2|=-2
B .0的倒数是0
C .4的平方根是2
D .-3的相反数是3
6.已知一个正方体的表面积为12dm 2,则这个正方体的棱长为( )
A .1dm B.2dm
C.6dm D .3dm
7.下列说法:①-3是81的平方根;②-7是(-7)2的算术平方根;③125的立方根是±5;④-16的平方根是±4;⑤0没有算术平方根.其中,正确的有( )
A .1个
B .2个
C .3个
D .4个
8.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q .若n +q =0,则m ,n ,p ,q 四个实数中,绝对值最大的一个是( )
A .p
B .q
C .m
D .n
9.已知x 是(-9)2的平方根,y 是64的立方根,则x +y 的值为( )
A .3
B .7
C .3或7
D .1或7
10.已知边长为m 的正方形面积为12,则下列关于m 的说法中:①m 是无理数;②m 是方程m 2-12=0的解;③m 是12的算术平方根.错误的有( )
A .0个
B .1个
C .2个
D .3个
二、填空题(每小题3分,共24分)
11.计算:23-4=________.
12.化简:-3338
=______,|3-10|+(2-10)=______. 13.在实数5,227,0,π2
,36,-1.414中,无理数有________个. 14.能够说明“x2=x 不成立”的x 的值是________(写出一个即可).
15.若x ,y 为实数,且|x +2|+y -2=0,则⎝⎛⎭⎫x y 2018的值为________.
16.实数28-2的整数部分是________.
17.已知2018≈44.92,201.8≈14.21,则20.18≈________.
18.观察数表:
1 2 第1行
3 2 5 6 第2行
7 8 3 10 11 12 第3行
13 14 15 4 17 18 19 20 第4行
……
根据数表排列的规律,第10行从左向右数第8个数是________.
三、解答题(共66分)
19.(8分)计算: (1)|-2|+3-8-(-1)2017;
(2)9-(-6)2-3-27.
20.(10分)求下列各式中x 的值.
(1)(x-3)2-4=21;
(2)27(x+1)3+8=0.
21.(8分)如图,已知长方体冰箱的体积为1024立方分米,它的长、宽、高的比是1∶1∶2,则它的长、宽、高分别为多少分米?
22.(8分)已知表示实数a,b的两点在数轴上的位置如图所示,化简:|a-b|+
(a+b)2.
23.(8分)若实数b的两个不同平方根是2a-3和3a-7,求5a-b的平方根.
24.(12分)已知|2a+b|与3b+12互为相反数.
(1)求2a-3b的平方根;
(2)解关于x的方程ax2+4b-2=0.
25.(12分)你能找出规律吗?
(1)计算:4×9=________,4×9=________;16×25=________,16×25=________;(2)请按找到的规律计算:
①5×125;②12
3×93
5;
(3)已知a=2,b=10,用含a,b的式子表示40. 参考答案与解析
1.A 2.B 3.A 4.C 5.D
6.B 7.A 8.A 9.D 10.A
11.6 12.-32
-1 13.2 14.-2(答案不唯一,x 为负数均可)
15.1 16.3 17.4.492 18.98 解析:分析每一行的第1个数发现,第n 行(n 为偶数)的第1个数为(n -1)·n +1,故第10行第1个数为9×10+1=91,而每一行的数的被开方数依次递增,故第10行从左向右数第8个数是98.
19.解:(1)原式=2-2+1=1.(4分)
(2)原式=3-6+3=0.(8分)
20.解:(1)移项得(x -3)2=25,∴x -3=5或x -3=-5,∴x =8或-2.(5分)
(2)移项整理得(x +1)3=-827,∴x +1=-23,∴x =-53
.(10分) 21.解:设长方体的长、宽、高分别是x 分米、x 分米、2x 分米,由题意得2x ·x ·x =1024,(5分)解得x =8.(7分)
答:长方体的长、宽、高分别为8分米、8分米、16分米.(8分)
22.解:由图知b <a <0,∴a -b >0,a +b <0.(3分)故|a -b |=a -b ,(a +b )2=-(a +b )=-a -b ,(6分)∴原式=a -b -a -b =-2b .(8分)
23.解:由题意得(2a -3)+(3a -7)=0,(2分)解得a =2.(3分)∴b =(2a -3)2=1,(5分)∴5a -b =9,(6分)∴5a -b 的平方根为±3.(8分)
24.解:由题意得3b +12+|2a +b |=0,∴3b +12=0,2a +b =0,(3分)解得b =-4,a =2.(5分)
(1)2a -3b =2×2-3×(-4)=16,(6分)∴2a -3b 的平方根为±4.(8分)
(2)把b =-4,a =2代入方程,得2x 2+4×(-4)-2=0,即x 2=9,(10分)解得x =±3.(12分)
25.解:(1)6 6 20 20(4分)
(2)①原式=5×125=25.(6分) ②原式=53×485
=4.(8分) (3)40=2×2×10=2×2×10=a 2b .(12分)。