x射线衍射实验技术
X射线衍射仪实验报告(范文模版)

X射线衍射仪实验报告(范文模版)第一篇:X射线衍射仪实验报告(范文模版)基本构造:(1)高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。
(2)样品及样品位置取向的调整机构系统样品须是单晶、粉末、多晶或微晶的固体块。
(3)射线检测器检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。
(4)衍射图的处理分析系统现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。
操作:第一步:检查真空灯是否正常,左“黄”右“绿”为正常状态,如果“绿”灯闪或者灭的状态表明真空不正常;第二步:冷却水系统箱,打开其开关(冷却水的温度低于26℃为正常)。
如果“延时关机”为开的状态要关闭。
“曲轴加热”一般在寒冬才用,打开预热10min 后即可继续以下操作。
(此外,测试实验完成后,打开“延时关机”按钮,而冷却水的“关闭”按钮不关,30min后冷却水会自动关闭)第三步:打开机器后面“右下角”的“测角仪”(上开下关),而“左下角”的开关一般为“开”的状态,除有允许不要动;第四步:电脑操作,桌面“右下角”有“蓝色标示”说明电脑和机器已经连接,否则“左击”该标示选择“初始化”即可;第五步:装样品,载物台一般用“多功能”的,粉体或者块体装上后,使其平面与载物台面相平。
如果是粉体还要在滑道上铺层纸,避免掉料污染滑道;第六步:在机器中放样品前,按“Door”按键,听到“嘀嘀”声时,方可打开机器门;第七步:点击“standard measurement”中的运行按钮即可运行机器进行测试中。
第八步:实验完成后,先降电流后降电压,20mA/5min至10mA,5kV/5min至20kV;关闭各个软件,关闭“测角仪”开关。
冷却水箱上的开关可以直接打开“延时关机”开关,而冷却水“关闭”按钮不关,30min后自动关闭冷却水。
xrd的工作原理及应用

XRD的工作原理及应用1. XRD简介X射线衍射(X-ray Diffraction, XRD)是一种非常重要的实验技术,它可以用于分析晶体的结构和确定晶体中原子的排列方式。
本文将介绍XRD的工作原理和主要应用领域。
2. XRD的工作原理X射线衍射是一种通过X射线与物质相互作用来获得有关物质结构信息的技术。
以下是XRD的工作原理的简要概述:2.1 几何衍射几何衍射是XRD技术的基础,它涉及到入射X射线和晶体结构之间的相互关系。
当入射X射线照射在晶体上时,晶体中的原子会散射X射线,并使X射线呈衍射。
通过测量衍射而产生的干涉图样,可以得到有关晶体结构的重要信息,例如晶胞参数和各个晶面的间距。
2.2 布拉格方程布拉格方程是XRD分析中最重要的原理之一,它可以帮助我们理解为什么晶体能够呈现出衍射现象。
布拉格方程可以用以下公式表示:nλ = 2d sinθ其中,n是正整数(衍射级别)、λ是入射X射线的波长、d是晶面间距,θ是入射X射线与晶面的夹角。
当满足布拉格方程的条件时,晶体会发生衍射,形成特定的衍射图案。
2.3 衍射图案分析通过测量晶体衍射得到的衍射图案,我们可以通过对衍射峰的位置、强度和形状进行分析来获得有关物质结构的信息。
衍射图案中的衍射峰可以提供晶格常数、晶胞参数和晶体中的微结构等重要信息。
3. XRD的应用XRD技术在许多领域都有广泛的应用,以下列举了几个重要的应用领域:3.1 材料科学XRD技术在材料科学中的应用非常广泛。
它可以用于分析各种材料的结构,例如金属、陶瓷、聚合物等。
通过XRD分析,可以确定材料的晶体结构、晶粒尺寸、晶体缺陷等信息,从而帮助我们研究材料的性质和改善材料的性能。
3.2 矿物学矿物学是研究地球上各种矿物的科学。
XRD技术可以用于确定和鉴定矿物的晶体结构,帮助我们识别不同的矿物和了解它们的成因。
此外,XRD还可以用于矿石的分析和评估,对矿石勘探和资源开发具有重要意义。
3.3 药物科学在药物科学中,XRD技术可以用于分析药物的结晶形态和晶体结构。
x射线衍射分析实验报告

x射线衍射分析实验报告X射线衍射分析实验报告。
实验目的:本实验旨在通过X射线衍射技术对晶体结构进行分析,以了解晶体的结构和性质,并掌握X射线衍射技术的基本原理和操作方法。
实验仪器与设备:1. X射线衍射仪,用于产生X射线,并测量样品对X射线的衍射情况。
2. 样品,需要进行分析的晶体样品。
3. 数据处理软件,用于处理和分析实验得到的数据。
实验步骤:1. 样品制备,取得晶体样品,进行必要的处理和制备。
2. 实验仪器准备,打开X射线衍射仪,调试仪器参数,确保仪器正常工作。
3. 进行X射线衍射,将样品放置在X射线衍射仪中,进行X射线衍射实验。
4. 数据处理与分析,使用数据处理软件对实验得到的数据进行处理和分析,得出样品的晶体结构信息。
实验结果与分析:通过本次实验,我们成功得到了样品的X射线衍射图谱,并进行了数据处理和分析。
根据X射线衍射图谱的特征峰值和衍射角度,我们确定了样品的晶体结构信息,包括晶格常数、晶胞结构等。
通过对实验数据的分析,我们得出了样品的晶体结构参数,并对样品的性质进行了初步了解。
实验结论:本次实验通过X射线衍射技术对样品的晶体结构进行了分析,得出了样品的晶体结构信息,并初步了解了样品的性质。
实验结果表明,X射线衍射技术是一种有效的手段,可用于分析晶体结构和性质。
通过本次实验,我们对X射线衍射技术有了更深入的了解,并掌握了X射线衍射技术的基本原理和操作方法。
实验总结:本次实验对我们了解晶体结构分析技术具有重要意义,通过实际操作,我们深入掌握了X射线衍射技术的原理和方法。
同时,本次实验也为我们今后的科研工作奠定了基础,为我们进一步深入研究晶体结构和性质打下了良好的基础。
希望通过今后的努力,能够更深入地探索X射线衍射技术在晶体结构分析中的应用,为科学研究做出更大的贡献。
通过本次实验,我们不仅学习到了X射线衍射技术的基本原理和操作方法,还对晶体结构分析有了更深入的了解。
我们相信,通过不断的学习和实践,我们一定能够运用所学知识,取得更加丰硕的科研成果。
X射线衍射分析

X射线衍射分析X射线衍射分析是一种广泛应用于材料科学和固态物理领域的实验技术。
通过照射物质样品,利用X射线在晶体中的衍射现象,可以获得有关物质结构和晶体学信息的重要数据。
本文将介绍X射线衍射分析的原理、应用和发展。
一、X射线衍射分析原理X射线衍射分析的基本原理是X射线的衍射现象。
当X射线照射到晶体上时,晶体中的原子会对X射线产生散射,形成一种有规律的衍射图样。
这个衍射图样会显示出晶体的结构信息,包括晶体的晶格常数、晶胞形状和晶体的定向等。
X射线衍射实验一般使用Laue方法或布拉格方法。
Laue方法是在一束平行的X射线照射下,观察其经过晶体后的衍射图样,通过分析该图样可以得到晶体的结构信息。
布拉格方法则是通过将一束X射线通过晶体,利用布拉格方程进行衍射角度的计算,从而确定晶体的晶格常数和定向。
二、X射线衍射分析应用X射线衍射分析被广泛应用于材料科学和固态物理领域。
它可以用来研究晶体的结构和晶体学性质,例如晶格参数、晶胞参数和晶体定向。
此外,X射线衍射还可以用于材料的质量控制和表征、相变研究、晶体缺陷分析等。
在材料科学领域,X射线衍射分析常用于矿物学、金属学和半导体学的研究。
例如,在矿物学中,通过X射线衍射分析可以确定矿石中的不同晶型矿物的比例和结构信息。
在半导体学中,X射线衍射分析可以帮助研究晶体管的晶格结构和界面形态。
三、X射线衍射分析的发展X射线衍射分析作为一种实验技术,随着科学研究的深入不断发展。
在仪器设备方面,X射线源的进步使得可以获得更高分辨率的衍射图样;探测器的改进使得观测和数据分析更加准确和高效。
同时,随着计算机技术的发展,数据处理和分析的速度大大提高,使得研究人员可以更直观、更准确地分析X射线衍射图样。
此外,X射线衍射分析的理论研究也在不断深入,衍射峰的定性和定量分析方法得到了大量改进,使得X射线衍射分析在材料科学研究中的应用更加广泛。
总结:X射线衍射分析是一种重要的实验技术,在材料科学和固态物理领域具有广泛的应用价值。
x衍射分析实验报告

x衍射分析实验报告X射线衍射分析实验报告引言X射线衍射分析是一种重要的实验技术,它可以用来研究材料的晶体结构和晶体学性质。
在本次实验中,我们使用X射线衍射技术对样品进行了分析,以了解其晶体结构和组成成分。
本报告将介绍实验的目的、方法、结果和结论。
实验目的本次实验的主要目的是利用X射线衍射技术分析样品的晶体结构和成分。
通过实验,我们希望了解样品的晶体结构参数、晶胞参数和晶体学性质,为进一步的材料研究提供参考。
实验方法1. 准备样品:首先,我们准备了待测样品,并将其制备成适当的形状和尺寸,以便于X射线的照射和衍射。
2. 实验装置:我们使用了X射线衍射仪进行实验。
该仪器能够产生高能的X射线,并能够测量样品对X射线的衍射图样。
3. 实验步骤:在实验中,我们将样品放置在X射线衍射仪的样品台上,然后通过调节仪器的参数,使X射线照射到样品上,并测量样品对X射线的衍射图样。
实验结果通过实验,我们得到了样品的X射线衍射图样,并通过对衍射图样的分析,得到了样品的晶体结构参数、晶胞参数和晶体学性质。
我们发现样品的晶体结构为立方晶系,晶格常数为a=5Å,晶体学性质为具有良好的晶体结构和稳定的晶体形态。
结论通过本次实验,我们成功地利用X射线衍射技术对样品进行了分析,得到了样品的晶体结构参数、晶胞参数和晶体学性质。
这些结果为我们进一步的材料研究提供了重要的参考和依据。
同时,我们也发现X射线衍射技术是一种非常有效的分析方法,可以用来研究材料的晶体结构和晶体学性质,具有重要的应用价值。
总结本次实验对X射线衍射分析技术进行了探讨和实践,通过实验我们对该技术有了更深入的了解。
X射线衍射技术在材料研究中具有重要的应用价值,可以为我们提供丰富的信息和数据,为材料的研究和开发提供重要的支持和指导。
希望通过本次实验,能够增进我们对X射线衍射技术的理解,为今后的科研工作提供更多的帮助和支持。
测量材料晶体参数的实验方法与数据分析

测量材料晶体参数的实验方法与数据分析材料科学领域中,测量材料晶体参数是非常重要的一项工作。
晶体参数是指晶格中的原子排列、晶胞与多晶材料中晶界之间的相互关系等重要信息。
本文将探讨测量材料晶体参数的实验方法以及相应的数据分析。
一、X射线衍射技术X射线衍射是测量材料晶体参数的常用方法之一。
通过将材料放置在X射线束中,当X射线入射到晶体时,会发生衍射现象。
通过测量衍射角度和强度,可以得到晶格常数、晶胞体积、晶胞对称性以及晶格中原子的位置等信息。
在进行X射线衍射实验时,需要根据材料的特性选择合适的入射角度和X射线波长。
为了提高测量的精确性,还可以使用单晶样品,通过旋转样品来获得更多的衍射峰信息。
此外,还需要考虑样品的制备,确保样品表面的平整度和晶体的纯度。
在数据分析方面,可以利用布拉格方程和Bragg-Brentano几何关系来计算晶格常数和晶胞角度。
同时,还可以通过峰形分析来确定晶胞对称性和晶格缺陷。
此外,还可以使用Rietveld方法进行全谱拟合,得到更精确的晶格参数。
二、电子衍射技术电子衍射是另一种测量材料晶体参数的常用方法。
与X射线衍射类似,电子衍射也可以通过测量衍射图样来获得晶格信息。
不同的是,电子衍射使用的是电子束而非X射线束。
电子衍射技术在原子尺度上更加精细,可以用于测量纳米尺寸的晶体和薄膜。
此外,由于电子的波长较小,可以得到更高的分辨率。
然而,电子衍射实验对真空环境的要求较高,并且需要样品制备工作更加细致。
在数据分析方面,可以使用动态散射理论和动态散射衍射模拟方法,通过与实验数据拟合来得到晶体参数。
此外,还可以借助电子显微镜的图像处理技术,获得晶体的直接空间信息。
三、中子衍射技术中子衍射技术是测量材料晶体参数的另一种重要方法。
与X射线和电子衍射技术相比,中子衍射技术具有更强的穿透力和更广泛的散射截面,可以在晶体内部进行测量。
中子衍射技术对材料的选择较为灵活,可以测量无机晶体、有机晶体、金属材料以及生物样品等。
X射线衍射技术
X射线衍射技术X射线衍射技术是一种应用于材料科学、物理学和化学领域的重要分析方法。
它通过研究材料或化合物对X射线的衍射模式,来确定其晶体结构、晶体参数以及晶体中原子的排列方式。
X射线衍射技术不仅能够揭示物质的微观结构,还可以提供关于晶格应力、晶格畸变以及颗粒尺寸等详细信息。
本文将介绍X射线衍射技术的基本原理、应用领域以及相关仪器。
一、X射线衍射技术基本原理X射线衍射技术的基本原理源于布拉格方程。
布拉格方程表达了入射X射线与晶体晶面间距d、入射角度θ、以及衍射角度2θ之间的关系。
它的数学表达式为:nλ = 2d sinθ其中,n是一个整数,表示衍射过程中的编号,λ是X射线的波长。
通过测量X射线衍射的角度,可以根据布拉格方程计算出晶体晶面间距d,从而推断出晶体的结构特征。
二、X射线衍射技术的应用领域1. 材料科学研究:X射线衍射技术在材料科学中被广泛应用。
它可以帮助研究人员确定金属、陶瓷、玻璃等材料的晶体结构和晶格参数。
通过分析材料的衍射图像,可以评估材料的结晶度、晶体尺寸、晶格畸变以及晶格缺陷等信息,对材料的性能进行优化和改进。
2. 物理学研究:X射线衍射技术在物理学研究中有重要的应用。
例如,通过分析X射线衍射谱,物理学家可以研究晶体中电子行为、电子结构以及电子的自旋轨道耦合等性质。
这些信息对于理解材料的电学、磁学和光学性质具有重要意义。
3. 化学分析:X射线衍射技术也被广泛应用于化学分析领域。
通过对化合物的X射线衍射图谱进行定量分析,可以确定样品中不同的晶相含量、晶相纯度以及杂质的存在情况。
这对于研究样品的稳定性、反应活性以及化学反应机理等都具有重要意义。
三、X射线衍射仪器1. X射线发生器:X射线发生器是产生X射线的核心部件。
其原理基于电子注入金属靶材,当高速电子与靶材相互作用时,会产生X射线辐射。
发生器的性能直接影响到实验的分辨率和灵敏度。
2. X射线衍射仪:X射线衍射仪是对样品进行X射线衍射实验的装置。
X射线衍射技术分析
Page 3
三、X射线的产生及性质
常规的X射线仪器所配备的X射线发生 器,都是通过高速电子流轰击阳极靶的方 式获得的。 X射线的波长λ的范围在0.001-10nm 之间。在聚合物X射线衍射方法中所使用 的X射线波长范围一般为0.05-0.25nm,因 为这个波长与高聚物微晶单细胞长度0.22nm大致相当。
X射线衍射技术分析
闫学通
一、X射线衍射原理简介
X射线衍射分析是利用晶体形成的X射线 衍射,对物质进行内部原子在空间分布状况 的结构分析方法。将具有一定波长的X射线照 射到结晶性物质上时,X射线因在结晶内遇到 规则排列的原子或离子而发生散射,散射的X 射线在某些方向上相位得到加强,从而显示 与结晶结构相对应的特有的衍射现象。衍射 方向与晶胞形状及大小有关,衍射强度则与 原子在晶胞中排列的方式有关,故而可以通 过衍射现象来分析晶体内部结构的诸多问题。
Page 4
x射线衍射技术的原理
x射线衍射技术的原理x射线衍射技术是一种非常重要的材料表征技术,它通过分析材料中的晶体结构和晶体中原子的排列方式来研究材料的性质。
这种技术可以应用于许多不同的领域,如材料科学、化学、生物学等。
本文将介绍x射线衍射技术的原理,并说明其在科学研究和工程应用中的重要性。
x射线衍射技术的原理主要基于x射线与晶体相互作用的特性。
当x 射线入射到晶体上时,会与晶体中的原子相互作用。
x射线的波长与晶体中原子的间距相当,因此x射线会被晶体中的原子散射。
根据散射的方向和强度,可以推断出晶体中原子的排列方式和晶体结构。
x射线衍射实验通常使用x射线衍射仪来进行。
x射线衍射仪由一个x射线源、一个样品台和一个衍射探测器组成。
x射线源产生高能量的x射线,样品台上放置待测样品。
当x射线照射到样品上时,会发生散射现象。
衍射探测器收集散射的x射线,并将其转化为电信号。
通过分析电信号的特性,可以得到样品的衍射图样。
样品的衍射图样是x射线衍射技术中重要的数据。
通过分析衍射图样,可以确定晶体中原子的排列方式和晶体结构。
在衍射图样中,不同的衍射峰对应着不同的散射方向和散射强度。
根据衍射峰的位置和强度,可以计算出晶体的晶格常数、晶格结构和晶体中原子的位置。
这些信息对于研究材料的性质和制备具有特定功能的材料非常重要。
x射线衍射技术在科学研究和工程应用中具有广泛的应用。
在材料科学中,它可以用于研究材料的晶体结构、相变行为和晶体缺陷。
在化学领域,它可以用于确定分子的结构和有机化合物的晶体结构。
在生物学中,它可以用于研究蛋白质的结构和DNA的结构。
除了用于基础科学研究,x射线衍射技术还具有许多工程应用。
在材料工程中,它可以用于研究材料的力学性能、热处理效果和材料的相变行为。
在电子工程中,它可以用于研究半导体材料的晶体结构和材料的电子性质。
在能源领域,它可以用于研究电池材料和催化剂的结构和性能。
x射线衍射技术是一种非常重要的材料表征技术,它通过分析材料中的晶体结构和晶体中原子的排列方式来研究材料的性质。
实验一-X射线衍射技术及物相分析
实验一-X射线衍射技术及物相分析(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--实验一 X射线衍射技术及物相分析一、实验目的与要求1.学习了解X射线衍射仪的结构和工作原理;2.掌握X射线衍射物相定性分析的方法和步骤;3.给定实验样品,设计实验方案,做出正确分析鉴定结果。
二、实验仪器本实验使用的仪器是Rigaku UltimaⅣX射线衍射仪。
主要由冷却循环水系统、X射线衍射仪和计算机控制处理系统三部分组成。
X射线衍射仪主要由X射线发生器即X射线管、测角仪、X射线探测器等构成。
射线管X射线管主要分密闭式和可拆卸式两种。
广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。
可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。
常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。
X射线管线焦点为1×10平方毫米,取出角为3~6度。
此X射线管为密闭式,功率为2千瓦。
X射线靶材为Cu。
选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。
2.测角仪测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。
(1)衍射仪一般利用线焦点作为X射线源S。
如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为毫米,成为×10平方毫米的线状X射线源。
(2)从S发射的X射线,其水平方向的发散角被第一个狭缝限制之后,照射试样。
这个狭缝称为发散狭缝(DS),生产厂供给1/6°、1/2°、1°、2°、4°的发散狭缝和测角仪调整用0.05毫米宽的狭缝。
(3)从试样上衍射的X射线束,在F处聚焦,放在这个位置的第二个狭缝,称为接收狭缝(RS).生产厂供给毫米、毫米、毫米宽的接收狭缝。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其二,焦点F、试样O(测角仪 轴心)、探测器D三点需成一聚 焦圆,且试样表面应在O点与此 圆相切。
当D转过2θ角,探测布拉格 角为θ的衍射线时,试样必须转 过θ角。这种 2∶1 的关系保证了 整个衍射花样的聚焦。
2020/6/14
11
▲ 辐射探测器 广为使用的有正比计数器、闪烁计数器、硅渗锂Si(Li)探测器三种。
HKL
100 110 111 200 210 211
简单立方
1 2 3 4 5 6
体心立方
面心立方
2
3
4
4
6
220
8
300 221
9
310
10
311
11
222
12
320
13
321
14
8
8
10
11
12
12
14
金刚石结构
3
8 11
20
六方系:
常用图解法 d HKL
a
4 H2 HK K2 a/c2 L2
令a为任一值 如为100nm, lgdHKL 为横坐标, c/a为纵坐标。
作出各HKL的 lgdHKL - c/a曲 线,汇集成图。 叫赫耳-戴维图
2020/6/14
22
1. 测θ→求d
2. 以大数N通乘, Nd 数列值在(d标尺)横坐标数限内
3. 将Nd值(按d标尺)刻划在纸条上,刻痕间距是 反射面面间距的对数差。
29
利用吴氏网可在投影图上标出取向为(σ, μ)晶面C的极点P′。
将投影图竖直方向N′与吴氏网赤道重合, 投影图逆时针转过μ角度,从中心沿赤道外数σ 角度,即为晶面C取向的极点P′。
按此各斑 点均可表示在 极射赤面投影 图上。
2020/6/14
30
晶带轴的取向
背射法中晶带轴曲线为双曲线,或过中心的直线。 F : 双曲线顶点 (无论有无斑点); Z′FO′:顶点和胶片中心的连线,将双曲线对称中
精细工作时,可用重心法、 半高宽法(P1/2=50.134°)、 抛物线法(P=50.142°)等。
2020/6/14
15
在许多研究中需要考虑衍射强度,通常对一个试样而言只计算
相对累积强度,可用下式
I HKL
C
V Va2
1 cos2 2 sin2 cos
mHKL
FH2KL
e2M
A()
1 cos2 2 sin 2 cos
2020/6/14
27
衍射花样诠释
含义:1、确定花样中各晶带轴和晶面在试样中的取向; 2、对各晶带轴和晶面指数化; 3、定出试样外观的某一选定方向在晶体学空间的取向。
为从胶片定出试样中各晶带轴和晶面的取向,必须以试样外观 某些特定方向为参照坐标,定好胶片与试样的关系后,再从胶片的 衍射花样确定各晶带轴和晶面的取向。
针孔法:
平板胶片垂直入射线放置,A为透射针孔法,B为背 射针孔法,记录的花样是以O′为圆心的同心圆。
如令 RA 、RB 各为透 射和背射花样圆的半径 , DA 、DB为相应胶片至试 样的距离,则有:
RA DA tan 2 RB DB tan( 2)
背射
透射
A透射 → 低θ角衍射
B背射 → 高θ角衍射
取
3
对
lgd HKL
lga
1 2
lg
4 3
H
2
HK
K
2
a/c2
L2
数
mn lgd n - lgd m
任意二个 面间距的 对数差
1 2
lg34
H2 n
HnKn
K2 n
a/c2
L2 n
1 2
lg
4 3
H2 m
HmKm
K2 m
a/c2
L2 m
2020/6/14
21
△mn只由干 涉指数和轴比 c/a决定,与a 值本身无关。
2020/6/14
6
4.2 衍射仪法
衍射仪是精密的机电一体化X射线衍射实验装置,用各种辐射
探测器替代照相胶片,探测和记录X射线衍射花样。
组成:X射线发生装置、测角仪、辐射探测器、自动控制和记
录单元等。
记录的是衍射图
2020/6/14
7
2020/6/14
Ni-P合金(非晶态结构)的X射线衍射图
8
2020/6/14
2020/6/14
12
☆ 闪烁计数器(SC) 利用X射线的荧光效应。 计数器加800—1400V电压,X射线光子打在闪烁晶体NaI(Tl)
时,产生紫蓝色可见光,激发光敏阴极K,产生光电子,经光电倍增 管放大,形成脉冲电流。其值与X射线光子的能量成正比。
记数效率约为 90%-100%,分辨 时间约为10-1μs , 在105S-1 记数范围 内不需作记数损失 修正。
令 M H 2 K 2 L2
则
sin 2
HKL
2
4a 2
M
将所有衍射的掠射角正弦平方连比,则
sin 2 1∶sin 2 2∶ ∶sin 2 n M1∶M2∶ ∶Mn
2020/6/14
19
H2+K2+L2 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2020/6/14
立方系各点阵的干涉指数
CP和反射面法线CNC共面, O′P为此面与胶片的交线,与竖直方 向O′N′的夹角为μ。法线CNC将∠O′CP平分成σ角。σ和μ为 法线相对与胶片的极角和辐角。
μ可由胶片中量出,σ可由 OP=OCtan2 求出。
O′P:衍射斑P至中心的距离, 可从胶片上量出。
O′C:试样至胶片的距离。
2020/6/14
3
★ 衍射花样记录
Debye法 :长条胶片,以试样柱轴线为轴,围成圆柱状。记 录的是衍射线与胶片相交成的弧线对。
2020/6/14
4
如胶片圆筒半径为R,弧线对间距为2 l, 则
2l 4R
如2R=57.3mm,θ以度为单位,2 l 以mm度量,
则
2l 180 l
4R
2020/6/14
5
单斜 2 2 2
三斜 2 2 2
HK0 0KL H0L
24
12
8
8
4
44
4
42
2
22
HHL HKL 24 48 12 24 8 16
8 4 2
2020/6/14
17
e2M
为温度因数 在温度 T 下衍射强度与绝对零度下衍射强度之比 。
温度升高,原子热振动幅度加大,晶体点阵周期性受到破 坏,使原严格满足布拉格条件的衍射产生附加相位差,强 度减弱。温度一定时,θ愈大,强度降低愈多。
2020/6/14
13
☆ Si(Li)半导体固体探测器 X射线进入锂漂移硅晶体中,激发半导体产生电子-空穴对,数
目与X射线光子能量成正比。 电子移向n区,空穴移向 p区,聚焦在两端的电荷由前置放大器
积分成脉冲电压信号并经场效应晶体管放大。
工作条件要 求苛刻,需置于 1.33×10-4Pa真 空室内,在液氮 温度下使用和保 存。
☆ 正比计数器(PC) 利用X射线对气体的电离效应和气体放大原理。 两极间加900 -1400V高压,当入射X射线光子与气体分子撞击时,
产生电离,电子飞向阳极途中会进一步电离,形成“雪崩”,在阳极 丝上出现约10-9—10-7 A的电流脉冲,几mV的电压脉冲,脉冲幅值正 比于X射线光子的能量。
分辨时间很短, 约为1μs,记数率不 超过105S-1 ,不需作 记数损失校正。
▲ 测角仪
一种衍射测 量装置,是衍 射仪的核心部 件。
用来实现衍 射、测量和记 录各衍射线的 布拉格角、强 度、线形等。
9ቤተ መጻሕፍቲ ባይዱ
结构和工作原理 F: X射线管的焦点,多数为固
定不动。
2020/6/14
D: 辐射探测器。 S1、S2 :索拉狭缝,限制X射线
垂直方向的发散。 RS:接收狭缝, SS: 防散射狭缝,屏挡其他散
透射法: 过入射斑的椭圆、抛物线或双曲线。
背射法: 凸向中心的双曲线,或过中心的直线。
晶带曲线的形状与晶带轴和入射线的夹角有 关。
26
椭圆
透射法
抛物线
双曲线
直线
α<45°
接收不到
α=45°
接收不到
α>45°
双曲线
α=90°
直线
背射法
同一晶带中符合衍射条件的晶面是有限的,因而衍射花样不是 连续的曲线,而是一系列的斑点,过这些斑点可连成各种曲线。
而 S S0 1
所以 cosα=cosα′ 即 α =α′
2020/6/14
25
同一晶带各晶面的衍射线与晶带轴的夹 角α′等于入射线与晶带轴的夹角α。
即同一晶带各晶面的衍射线分布在以试 样为顶点,晶带轴为轴,半顶角为α的圆锥 面上,入射线的延长线也在此圆锥上。
背射法
透射法
2020/6/14
此圆锥与胶片相交形成的曲线称晶带曲线。
按前述作反射球,则 必与不同半径的倒易球面 相交。交线为圆,此圆上 任意一点,必满足布拉格 方程。
2
如A、B点,其衍射线方向即 OA、OB。如此, 圆周上的所有点 与O的连线均为衍射线方向。
从试样中射出的衍射线分布为以 试样为顶点,入射束为轴,2θ为半 顶角的圆锥。
2020/6/14
不同的HKL面, 半顶角2θ不等,但 共顶点共轴线。
2020/6/14
24
单晶衍射花样的形成
由于是连续X射线,单晶中所有晶面均将按布拉格方程反射相应波 长的辐射,反射线在胶片上形成各自的劳埃斑点。