X射线衍射实验样品制备要求
x射线物相分析实验报告

x射线物相分析实验报告X射线物相分析实验报告引言:X射线物相分析是一种常用的实验方法,用于研究材料的晶体结构和组成。
通过观察和分析X射线的衍射图案,我们可以得到材料的晶体结构、晶格参数以及晶体中原子的排列方式等重要信息。
本实验旨在通过X射线物相分析技术,对给定的材料样品进行结构分析,并探索其性质和应用。
实验方法:1. 样品制备:首先,我们选择了一种具有特定晶体结构的材料作为研究对象。
然后,将样品制备成粉末状,以便于进行X射线衍射实验。
制备过程中需要注意避免杂质的混入,以保证实验结果的准确性。
2. X射线衍射实验:将制备好的样品放置在X射线衍射仪器中,调整仪器参数,如入射角度、扫描范围等。
通过控制X射线的入射角度和扫描范围,我们可以获取不同角度下的衍射图案。
实验过程中需要保证仪器的稳定性和准确性,以获得可靠的实验结果。
结果与讨论:通过X射线衍射实验,我们获得了样品在不同角度下的衍射图案。
根据这些衍射图案,我们可以进行结构分析和晶格参数计算。
1. 结构分析:通过对衍射图案的观察和分析,我们可以确定样品的晶体结构。
根据布拉格方程和衍射峰的位置、强度等信息,我们可以推断出晶体中原子的排列方式和晶胞结构。
这对于研究材料的性质和应用具有重要意义。
2. 晶格参数计算:通过测量衍射图案中的衍射角度和计算相关的几何参数,我们可以得到样品的晶格参数。
晶格参数是描述晶体结构的重要参数,它们的大小和比例关系直接影响材料的性质和行为。
通过计算晶格参数,我们可以进一步了解样品的结构特征和晶体生长方式。
结论:通过X射线物相分析实验,我们成功地对给定的材料样品进行了结构分析和晶格参数计算。
通过观察和分析衍射图案,我们得到了样品的晶体结构和晶格参数等重要信息。
这些结果对于研究材料的性质和应用具有重要意义,为进一步深入研究和应用提供了基础。
总结:X射线物相分析是一种重要的实验方法,通过观察和分析X射线的衍射图案,可以获得材料的晶体结构和组成等关键信息。
XRD制样需要注意几点?

Xrd可以测量块状和粉末状的样品,对于不同的样品尺寸和样品性质有不同的要求,下面对分别对其作简要的介绍。
XRD样品制样要求XRD可以测量块状和粉末状的样品,对于不同的样品尺寸和样品性质有不同的要求,下面对分别对其作简要的介绍:XRD样品制备(a)块状样品的要求及制备•对于非断口的金属块状试样,需要了解金属自身的相组成、结构参数时,应该尽可能的磨成平面,并进行简单的抛光,这样不但可以去除金属表面的氧化膜,也可以消除表面应变层。
然后再用超声波清洗去除表面的杂质,但要保证试样的面积应大于10mm*10mm,因为xrd是扫过一个区域得到衍射峰,对试样需要一定的尺寸要求。
•对于薄膜试样,其厚度应大于20nm,并在做测试前检验确定基片的取向,如果表面十分不平整,根据实际情况可以用导电胶或者橡皮泥对样本进行固定,并使样品表面尽可能的平整。
•对于片状、圆柱状的试样会存在严重的择优取向,造成衍射强度异常,此时在测试时应合理的选择响应方向平面。
•对于断口、裂纹的表面衍射分子,要求端口尽可能的平整并提供断口所含元素。
(b)粉末样品的要求及制备颗粒度的要求:对粉末样品进行X射线粉末衍射仪分析时,适宜的晶粒大小应在320目粒度(约40um)的数量级内,这样可以避免衍射线的宽化,得到良好的衍射线。
样品试片平面的准备:在X射线衍射时,虽然样品平面不与衍射仪轴重合、聚焦圆相切会引起衍射线的宽化、位移及强度发生复杂的变化,但在实际试验中,如要求准确测量强度时,一般首先考虑如何避免择优取向的产生而不是平整度。
(避免择优取向的措施:•使样品粉末尽可能的细,装样时用筛子筛入,先用小抹刀刀口剁实并尽可能轻压等等。
•把样品粉末筛落在倾斜放置的粘有胶的平面上通常也能减少择优取向,但是得到的样品表面较粗糙。
•通过加入各向同性物质(如 MgO,CaF2等)与样品混合均匀,混入物还能起到内标的作用。
•对于具有十分细小晶粒的金属样品,采用形变的方法(碾、压等等)把样品制成平板使用时也常常会导致择优取向的织构,需要考虑适当的退火处理。
九..X-射线衍射微纤丝角

实验报告五X-射线衍射实验一、实验目的掌握X-射线衍射仪的操作方法二、实验材料木片:杉木三、实验条件采用逐步扫描法,X-射线(Cu):电压40Kv,电流30Ma;角度:分离度1.00000deg,扫描度1.00000deg,接受度0.30000mm;扫描:驱动轴1Theta-2Theta 联动,扫描范围10.000-40.000,扫描方式连续扫描,扫描速度2.0000deg/min,样品倾斜0.0200deg;调整时间0.60sec。
四、实验步骤(一)、操作1、样品制备:将木材沿弦切面切成0.6mm左右厚度,20mm长度,5mm宽度的木片作为样品。
2、在X射线衍射仪的旋转靶台上安装好样品。
3、装上样品,先进行X射线衍射测试,绘出图线,进行初步数据处理,取衍射峰最高处的衍射强度,记录下对应的2θ值。
然后选定2θ,使入射X射线垂直样品。
绕转试样,使角度从0°转动到360°,扫描时间3min左右,同时在记录仪上记录强度分布曲线。
仪器具体使用方法如下:a、开启冷却水b、开启XRD电源c、启动计算机,在XRD稳定两分钟左右后,进入桌面Pmgr系统,将被测样品放置在测试架上。
d、点击画面上Display&Setup,点击Close出现对话框后,在点击确认e、点击画面上Right Conio condition,双击空白处,出现Standard Condition Edit对话框,进行实验条件设定及对样品取名;同时点击上RightConio Analysis。
f、实验条件设定以后,点击Append、start。
进入Right Conio Analysis 画面,点击start,XRD开始测试。
g、点击画面上Basic Process,进行数据处理,选取峰值4、按0.4T法,根据衍射曲线,算出木材样品的平均微纤丝角θ。
(二)、数据处理1、点击画面上Search Match,进行定性分析。
XRD制样的方法及注意事项

XRD制样的方法及注意事项如何制备XRD样品?字体:小中大 |打印发表于: -10-25 09:55 作者: wtz010 来源: 分析测试百科网查看完整版本请点击这里:如何制备XRD样品?对于样品的准备工作,必须有足够的重视。
常常由于急于要看到衍射图,或舍不得花必要的功夫而马虎地准备样品,这样常会给实验数据带入显著的误差甚至无法解释,造成混乱。
准备衍射仪用的样品试片一般包括两个步骤:首先,需把样品研磨成适合衍射实验用的粉末;然后,把样品粉末制成有一个十分平整平面的试片。
整个过程以及之后安装试片、记录衍射谱图的整个过程,都不允许样品的组成及其物理化学性质有所变化。
确保采样的代表性和样品成分的可靠性,衍射数据才有意义。
1.1 对样品粉末粒度的要求任何一种粉末衍射技术都要求样品是十分细小的粉末颗粒,使试样在受光照的体积中有足够多数目的晶粒。
因为只有这样,才能满足获得正确的粉末衍射图谱数据的条件:即试样受光照体积中晶粒的取向是完全机遇的。
这样才能保证用照相法获得相片上的衍射环是连续的线条;或者,才能保证用衍射仪法获得的衍射强度值有很好的重现性。
另外,将样品制成很细的粉末颗粒,还有利于抑制由于晶癖带来的择优取向;而且在定量解析多相样品的衍射强度时,能够忽略消光和微吸收效应对衍射强度的影响。
因此在精确测定衍射强度的工作中(例如相定量测定)十分强调样品的颗粒度问题。
对于衍射仪(以及聚焦照相法),实验时试样实际上是不动的。
即使使用样品旋转器,由于只能使样品在自身的平面内旋转,并不能很有效的增加样品中晶粒取向的随机性,因此衍射仪对样品粉末颗粒尺寸的要求比粉末照相法的要求高得多,有时甚至那些能够经过360目(38μm)粉末颗粒都不能符合要求。
对于高吸收的或者颗粒基本是个单晶体颗粒的样品,其颗粒大小要求更为严格。
例如,石英粉末的颗粒大小至少小于5μm,同一样品不同样片强度测量的平均偏差才能达到1%,颗粒大小若在10μm以内,则误差在2~3%左右。
x射线衍射分析实验报告

x射线衍射分析实验报告X射线衍射分析实验报告。
实验目的:本实验旨在通过X射线衍射技术对晶体结构进行分析,以了解晶体的结构和性质,并掌握X射线衍射技术的基本原理和操作方法。
实验仪器与设备:1. X射线衍射仪,用于产生X射线,并测量样品对X射线的衍射情况。
2. 样品,需要进行分析的晶体样品。
3. 数据处理软件,用于处理和分析实验得到的数据。
实验步骤:1. 样品制备,取得晶体样品,进行必要的处理和制备。
2. 实验仪器准备,打开X射线衍射仪,调试仪器参数,确保仪器正常工作。
3. 进行X射线衍射,将样品放置在X射线衍射仪中,进行X射线衍射实验。
4. 数据处理与分析,使用数据处理软件对实验得到的数据进行处理和分析,得出样品的晶体结构信息。
实验结果与分析:通过本次实验,我们成功得到了样品的X射线衍射图谱,并进行了数据处理和分析。
根据X射线衍射图谱的特征峰值和衍射角度,我们确定了样品的晶体结构信息,包括晶格常数、晶胞结构等。
通过对实验数据的分析,我们得出了样品的晶体结构参数,并对样品的性质进行了初步了解。
实验结论:本次实验通过X射线衍射技术对样品的晶体结构进行了分析,得出了样品的晶体结构信息,并初步了解了样品的性质。
实验结果表明,X射线衍射技术是一种有效的手段,可用于分析晶体结构和性质。
通过本次实验,我们对X射线衍射技术有了更深入的了解,并掌握了X射线衍射技术的基本原理和操作方法。
实验总结:本次实验对我们了解晶体结构分析技术具有重要意义,通过实际操作,我们深入掌握了X射线衍射技术的原理和方法。
同时,本次实验也为我们今后的科研工作奠定了基础,为我们进一步深入研究晶体结构和性质打下了良好的基础。
希望通过今后的努力,能够更深入地探索X射线衍射技术在晶体结构分析中的应用,为科学研究做出更大的贡献。
通过本次实验,我们不仅学习到了X射线衍射技术的基本原理和操作方法,还对晶体结构分析有了更深入的了解。
我们相信,通过不断的学习和实践,我们一定能够运用所学知识,取得更加丰硕的科研成果。
xrd制样要求

“涂片法”所需的样品量最少。把粉末撒在一片大小约 25×35×1mm3的显微镜载片上(撒粉的位置要相当于制样框窗孔位置),然后加上足够量的丙酮或酒精(假如样品在其中不溶解),使粉末成为薄层浆液状,均匀地涂布开来,粉末的量只需能够形成一个单颗粒层的厚度就可以,待丙酮蒸发后,粉末粘附在玻璃片上,可供衍射仪使用,若样品试片需要永久保存,可滴上一滴稀的胶粘剂。
对于样品的准备工作,必须有足够的重视。常常由于急于要看到衍射图,或舍不得花必要的功夫而马虎地准备样品,这样常会给实验数据带入显著的误差甚至无法解释,造成混乱。
准备衍射仪用的样品试片一般包括两个步骤:
首先,需把样品研磨成适合衍射实验用的粉末;
然后,把样品粉末制成有一个十分平整平面的试片。
然而,如果为了研究样品的某一特征衍射,择优取向却是十分有用的,此时,制样将力求使晶粒高度取向,以得到某一晶面的最大强度,例如在粘土矿物的鉴定与研究中,001衍射具有特别的价值,故它们的X射线衍射分析常在样品晶粒的定向集合体上进行,需要制作所谓“定向试片”。
1.3 关于样品试片的厚度
样品对X射线透明度的影响,跟样品表面对衍射仪轴的偏离所产生的影响类似,会引起衍射峰的位移和不对称的宽化,此误差使衍射峰位移向较低的角度,特别是对线吸收系数μ值小的样品,在低角度区域引起的位移Δ(2θ)会很显著。
此外,将样品制成很细的粉末颗粒,还有利于抑制由于晶癖带来的择优取向;而且在定量解析多相样品的衍射强度时,可以忽略消光和微吸收效应对衍射强度的影响。所以在精确测定衍射强度的工作中(例如相定量测定)十分强调样品的颗粒度问题。
对于衍射仪(以及聚焦照相法),实验时试样实际上是不动的。即使使用样品旋转器,由于只能使样品在自身的平面内旋转,并不能很有效的增加样品中晶粒取向的随机性,因此衍射仪对样品粉末颗粒尺寸的要求比粉末照相法的要求高得多,有时甚至那些可以通过360目(38μm)粉末颗粒都不能符合要求。对于高吸收的或者颗粒基本是个单晶体颗粒的样品,其颗粒大小要求更为严格。
X 射线衍射测试样品制备方法

X 射线衍射仪(XRD)
(1)
在1D XRD测试中,样品的制备方法主要有两种:(1)将固体粉末铺洒在干净的硅片基底上,加热至熔融态以消除样品的热历史,以0.5 °C/min 速率缓慢降至室温,提供足够长的退火时间使得样品结构充分地发育,该方法操作简单,适用于热稳定性好的样品;(2)将固体样品溶于有机溶剂(沸点通常低于100 °C,挥发性视样品性质而定),配制成~20 mg/mL的浓溶液,将其在硅片基底上浇膜。
在合适温度(通常为室温)下将溶剂挥发完全,然后升温高于溶剂沸点,真空干燥12 h后测试。
该方法需要避免薄膜中存在气泡,溶剂需要挥发完全,适用于热稳定性较差的样品。
(2)
在2D XRD测试中,样品的常规制备方法为:将样品加热至各向同性态,然后降温到液晶相温度区间,在刮刀与样品共同恒温一段时间后,使用刮刀迅速剪切样品取向。
样品剪切取向后,或淬冷至室温,或恒温退火一段时间后缓慢降至室温,视样品情况而定。
另外,样品还可拉伸制成纤维进行取向:将样品加热至各向同性态,然后降温到液晶相温度区间,在镊子与样品共同恒温一段时间后,使用镊子迅速夹住样品拉起,淬冷至室温。
(3)
在变温小角X射线散射测试中,样品用铝箔包裹,达到每个温度后需要稳定15分钟,然后进行测试,曝光时间为25 min。
热台控温范围为室温至300 °C,精度为±0.1 °C。
多晶材料x射线衍射 实验原理 方法与应用

多晶材料x射线衍射实验原理方法与应用多晶材料x射线衍射是一种非常重要的材料结构表征方法,可以用来确定晶体结构、晶格常数、晶面间距、晶胞参数等信息。
本文将介绍多晶材料x射线衍射的实验原理、方法和应用。
实验原理
多晶材料x射线衍射法是利用x射线与晶体中的原子作用而产生衍射现象的一种方法。
当x射线入射晶体后,会与晶体中的原子发生作用,形成散射波,这些散射波在晶体中的原子排列方式的影响下,会发生干涉,最终形成衍射花样。
通过分析衍射花样,可以获得晶体的结构信息。
方法
多晶材料x射线衍射的实验步骤主要包括样品制备、x射线衍射仪调试、数据采集和数据处理等环节。
样品制备:样品需要磨成粉末或者切成薄片,以便x射线可以穿透并与其发生作用。
x射线衍射仪调试:确定适当的x射线波长、角度等参数,保证x射线能够穿透样品并产生足够的衍射强度。
数据采集:将x射线衍射仪测得的衍射花样数据记录下来,通常是以衍射强度随衍射角度的变化曲线的形式呈现。
数据处理:通过计算和分析衍射曲线,可以得到晶体的结构信息。
应用
多晶材料x射线衍射法在材料科学、地质学、化学等领域得到了
广泛应用。
其中,材料科学领域是其最主要的应用领域之一。
该方法可以用于研究材料的结构、相变、缺陷、应力等问题,对于新材料的设计、合成和改进具有重要意义。
此外,多晶材料x射线衍射法也可以用于分析矿物、岩石等地质样品的结构特征,为地质学研究提供了有力的工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X射线衍射实验样品制备要求
金属样品如块状、板状、圆拄状要求磨成一个平面,面积不小于10X10毫米,如果面积太小可以用几块粘贴一起。
对于片状、圆拄状样品会存在严重的择优取向,衍射强度异常。
因此要求测试时合理选择响应的方向平面。
对于测量金属样品的微观应力(晶格畸变),测量残余奥氏体,要求样品不能简单粗磨,要求制备成金相样品,并进行普通抛光或电解抛
光,消除表面应变层。
粉末样品要求磨成320目的粒度,约40微米。
粒度粗大衍射强度底,峰形不好,分辨率低。
要了解样品的物理化学性质,如是否易燃,易潮解,易腐蚀、有毒、易挥发。
粉末样品要求在3克左右,如果太少也需5毫克。
样品可以是金属、非金属、有机、无机材料粉末。
对于研究课题使用的、购买的各种原料一定要进行鉴定,如材料分子式,晶型,结晶度,粒度等。
以免用错原料。
对于不同基体的薄膜样品,要了解检验确定基片的取向,X射线测量的膜厚度约20个纳米。
对于纤维样品的测试应该提出测试纤维的照射方向,是平行照射还是垂直照射,因为取向不同衍射强度也不相同。
对于焊接材料,如断口、焊缝表面的衍射分析,要求断口相对平整,
提供断口所含元素。
如果一个断口照射面积小则可用两个或三个断口拼起来。
为保证对实验样品有一个好的实验结果,对于特殊的样品可以找老师帮助提出衍射实验方案。
要求研究生、博士生、具备材料X射线衍射数据的分析解析能力,能独立的鉴定对照PDF卡标准衍射数据。
实验室为同学们提供PDF数据库的检索。
X射线衍射技术可以分析研究金属固溶体、合金相结构、氧化物相合成、材料结晶状态、金属合金化、金属合金薄膜与取向、焊接金属相、各种纤维结构与取相、结晶度、原料的晶型结构检验、金属的氧化、各种陶瓷与合金的相变、晶格参数测定、非晶态结构、纳米材料粒度、矿物原料结构、建筑材料相分析、水泥的物相分析等。
非金属材料的X射线衍射技术可以分析材料合成结构、氧化物固相相转变、电化学材料结构变化、纳米材料掺杂、催化剂材料掺杂、晶体材料结构、金属非金属氧化膜、高分子材料结晶度、各种沉积物、挥发物、化学产物、氧化膜相分析、化学镀电镀层相分析等。
X射线实验室接受同学们的XRD衍射技术咨询和指导,并提供PDF检索数据库供同学们检索。
如果对样品的成分不了解可以利用X射线荧光光谱仪测定成分为X射线衍射分析提供成分信息。
X射线衍射实验的准确性和实验得到的信息质量好与坏与样品的制备有很大关系,在做XRD衍射实验时合理处理样品和制备样品。
4种xrd分析软件功能的对比
1.pcpdfwin
属于第二代物相检索软件。
它是在衍射图谱标定以后,按照d值检索。
一般可以有限定元素、按照三强线、结合法等方法。
所检索出的卡片多数时候不对。
一张复杂的衍射谱有时候需要花几天的时间。
2.search match
一个专门的物相检索程序,属于第三代检索软件,采用图形界面,根据图谱实体来对谱,直观性好。
可以实现和原始实验数据的直接对接,可以自动或手动标定衍射峰的位置,对于一般的图都能很好的应付。
而且有几个小工具使用很方便。
如放大功能、十字定位线、坐标指示按钮、网格线条等。
最重要的是它有自动检索功能。
可以帮你很方便的检索出你要找的物相。
也可以进行各种限定以缩小检索范围。
如果你对于你的材料较为熟悉的话,对于一张含有4,5相的图谱,检索也就3分钟。
效率很高。
而且它还有自动生成实验报告的功能! 3.high score
几乎search match中所有的功能highscore都具备,而且它比search-match更实用。
(1)它可以调用的数据格式更多。
(2)窗口设置更人性化,用户可以自己选择。
(3)谱线位置的显示方式,可以让你更直接地看到检索的情况。
(4)手动加峰或减峰更加方便。
(5)可以对衍射图进行平滑等操作,是图更漂亮。
(6)可以更改原始数据的步长、起始角度等参数。
(7)可以进行0点的校正。
(8)可以对峰的外形进行校正。
(9)可以进行半定量分析。
(10)物相检索更加方便,检索方式更多。
(11)可以编写批处理命令,对于同一系列的衍射图,一键搞定。
4.jade
具有highscore相似的自动检索功能少些,但它有比之更多的功能。
(1)它可以进行衍射峰的指标化。
(2)进行晶格参数的计算。
(3)根据标样对晶格参数进行校正。
(4)轻松计算峰的面积、质心。
(5)出图更加方便,你可以在图上进行更加随意的编辑。
扫描方式及其用法
多晶体X射线衍射方法一般都是θ-2θ扫描。
即样品转过θ角时,测角仪同时转过2θ角。
这个转动的过程称为扫描。
例如,我们要对样品进行物相鉴定时,需要测量2θ=5°-80°范围内的衍射谱,这个测量过程就称为“扫描”。
扫描的方式一般分为两种:连续扫描和步进扫描。
连续扫描
是指测角仪的连续转动方式,测角仪从起始的2θ到终止的2θ进行匀速扫描。
其参数主要有两个,一个是数据点间隔,另一个是扫描速度。
扫描速度是指单位时间内测角仪转过的角度,通常取2°/min,4°/min或8°/min或16°/min等。
数据点间隔是指每隔多少度取一个数据点。
一般来说,两个参数需要组合。
若数据点间隔取0.02°,则步长可取4-8°/min。
不当的组合会引起衍射峰强度的降低、衍射峰型不对称、或峰位向扫描方向一侧移动。
连续扫描一般用于做较大2θ范围内的全谱的扫描,适合于定性分析。
例如:用连续扫描方式,从20°扫描到80°,数据点间隔为0.02°,扫描速度为4°/min。
所需要的时间为:(80-20)/4=15min。
从这个计算过程来看,实验时间与数据点间隔无关,连续扫描一般用时较少。
一般来说,如果X光管的功率较低或实际使用功率较低或光管使用时间较长,为了获得更加清晰的图谱和较高的强度,需要使用较慢的扫
描速度,如2°/min。
反之,使用高功率的光管,如18KW的转靶光管,当使用功率达到10KW时,扫描速度可以使用8°/min。
有人做过实验,发现18KW的转靶衍射仪上,用扫描速度4,8和16°/min 来扫描同一个样品,图谱基本没有变化。
对于硅酸盐之类的无机物、金属材料中的微量相或结晶状态不好的化合物相分析,建议使用较慢的扫描速度来获得较高的强度和清晰的图谱。
扫描速度极慢时可以使用数据点间隔0.01°,但当扫描速度为4°/min或以上的速度时,建议使用0.02°或0.03°。
否则,图谱的噪声很大,图谱上下波动很大,把一些可能的弱峰掩盖。
步进扫描
步进扫描方式是将扫描范围按一定的步进宽度(0.01°或0.02°)分成若干步,在每一步停留若干秒(步进时间),并且将这若干秒内记录到的总光强度作为该数据点处的强度。
例如,从20°扫描到80°,步进宽度为0.02°,步进时间为1sec。
那么,扫描完成所需的时间为:{[(80-20)/0.02]*1}/60=50min。
从结果来看,实验所需时间与两个参数都有关。
不合适的参数组合,会让一个实验做上一天。
由于步进扫描可以增加每个数据点的强度(不是某一时间的真实强度而是一段时间内的累积强度),因而可以降低记数时的统计误差,提高信噪比。
步进扫描一般用于较窄2θ范围内的精细扫描,可用于定量分析、线形分析以及精确测定点阵常数、Retiveld全谱拟合等。
XRD摘引论坛发言并修改。