微积分下册期末试卷及答案剖析
微积分下册期末试卷及答案[1]
![微积分下册期末试卷及答案[1]](https://img.taocdn.com/s3/m/97f47598767f5acfa0c7cdbc.png)
1、已知22(,)f x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x21___________.π=⎰∞+∞--dx e x 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________. 6 知dxexp ⎰∞+- 0)1(与⎰-ep x x dx11ln 均收敛,则常数p 的取值范围是( c ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( b ).(A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( a). (A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( d ). (A) b ax y += (B) x e b ax y 3)(+=(C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( d ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定 一、填空题(每小题3分,共15分)1、2(1)1x y y -+. 23、)32,31(-. 4、1. 5、"6'0y y y -+=. 11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.解:32y x =的函数为23,0x y y =>。
微积分(下册)期末试卷与答案

中南民族大学06、07微积分(下)试卷及参考答案06年A 卷1、已知22(,)y f x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x 0 21 ___________.π=⎰∞+∞--dx e x 2 3、函数22(,)1f x y x xy y y =++-+在__________点取得极值.4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________.二、选择题(每小题3分,共15分)6 知dx e x p ⎰∞+- 0 )1(与⎰-ep x x dx 1 1ln 均收敛,则常数p 的取值范围是( ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ).(A) 在原点无定义(B) 在原点二重极限不存在(C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( ).(A) 123I I I >> (B) 213I I I >>(C) 123I I I << (D) 213I I I <<9、方程x e x y y y 3)1(596+=+'-''具有特解( ).(A) b ax y += (B) x e b ax y 3)(+=(C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+=10、设∑∞=12n n a 收敛,则∑∞=-1)1(n nn a ( ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.12、求二重极限11lim222200-+++→→y x y x y x .13、),(y x z z =由xy e z z =+确定,求y x z∂∂∂2.14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值.15、计算⎰⎰1212dxedy yyyx.16、计算二重积分22()Dx y dxdy+⎰⎰,其中D是由y轴及圆周221x y+=所围成的在第一象限内的区域.17、解微分方程x y y +'=''.18、判别级数)11(133∑∞=--+n n n 的敛散性.19、将函数x 31展开成x 的幂级数,并求展开式成立的区间..根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=,求最优广告策略.四、证明题(每小题5分,共10分)21、设1133ln()z x y =+,证明:13z zx y x y ∂∂+=∂∂.22、若∑=12n n u 与∑∞=12n n v 都收敛,则∑∞=+12)(n n n v u 收敛.答案一、填空题(每小题3分,共15分)1、2(1)1x y y -+. 2 3、)32,31(-. 4、1. 5、"6'0y y y -+=.二、选择题(每小题3分,共15分)6、(C ).7、 (B).8、(A ) .9、(D). 10、(D).三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32y x =的反函数为23,0x y y =>。
微积分期末考试试题及答案

微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。
《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。
微积分(下)期末复习试题完整版

期末复习题一、填空题1、=⎰→xt t xx 020d cos lim.2、若)(x f 在],[b a 上连续, 则=⎰bxx x f x 2d )(d d .3、已知)(x F 是)(x f 的原函数,则⎰>+x x t a t f t)0( d )(1等于 . 4、若2e x -是)(xf 的一个原函数,则='⎰10d )(x x f .5、=++⎰-112d 1||x x x x .6、已知21)(xxx f +=,则)(x f 在]2,0[上的平均值为 .7、设⎰=+π0),(sin d )(x f x x x f 且)(x f 连续, 则=)(x f .8、设曲线kx y =<0,0>>x k >与直线1=y 及y 轴围成的图形面积为31,则=k . 9、设yx y y x y x f arcsin)1()2(),(22---=,则=∂∂)1,0(y f .10、设yx z 2e =,则=∂∂∂yx z2. 11、交换积分次序 =⎰⎰x y y x f x ln 0e 1d ),(d . 12、交换积分次序 =⎰⎰---xx y y x f x 11122d ),(d .13、交换积分次序⎰⎰-2210d ),(d y yx y x f y =.二、选择题1、极限xtt x x cos 1d )1ln(lim2sin 0-+⎰→等于〔 〔A1〔B2〔C4〔D82、设x x t t f xe d )(d d e 0=⎰-,则=)(xf 〔 <A>21x<B> 21x - <C> x 2e - <D> x2e -- 3、设)(x f 是连续函数,且C x F x x f +=⎰)(d )(,则必有〔 B〔A )(d )(x F t t f x a =⎰ 〔B )(]d )([x F t t F x a ='⎰ 〔C)(d )(x f t t F x a='⎰〔D )()(]d )([a f x f t t F xa-=''⎰4、设)(x f 在],[b a 上连续,则)(x f 在],[b a 上的平均值是〔〔A2)()(b f a f + 〔B ⎰b a x x f d )(〔C ⎰-b a x x f a b d )(1 〔D ⎰-b a x x f ba d )(15、积分⎰=t sx x t f tI 0d )(与〔 有关。
微积分下册期末试卷及答案

1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x0 21___________.π=⎰∞+∞--dx e x 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值.4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________.二、选择题(每小题3分,共15分 评分阅卷人6 知dx e x p ⎰∞+- 0 )1(与⎰-e p x x dx 1 1ln 均收敛, 则常数p 的取值范围是( ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ).(A) 在原点无定义(B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若22223111x y I x y dxdy +≤=--⎰⎰,222232121x y I x y dxdy≤+≤=--⎰⎰222233241x y I x y dxdy≤+≤=--⎰⎰,则下列关系式成立的是( ).(A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( ).(A) b ax y += (B) xe b ax y 3)(+= (C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定三、计算题(每小题6分,共60分)评分11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.12、求二重极限11lim222200-+++→→y x y x y x . 13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2. 14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值. 15、计算⎰⎰1 212dxe dy yyyx. 16、计算二重积分22()Dx y dxdy +⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.17、解微分方程x y y +'=''.18、判别级数)11(133∑∞=--+n n n 的敛散性.19、将函数x -31展开成x 的幂级数,并求展开式成立的区间.21、设1133ln()z x y =+,证明:13z z xy xy ∂∂+=∂∂. 22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n nv u收敛.答案一、填空题(每小题3分,共15分)1、2(1)1x y y -+.2、π.3、)32,31(-. 4、1. 5、"6'0y y y -+=. 二、选择题(每小题3分,共15分)6、(C ).7、 (B).8、(A ) .9、(D). 10、(D).三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32y x =的反函数为23,0x y y =>。
微积分期末试卷附详细标准答案2

一、填空题(每小题3分,共15分)1、已知 f(x)=e x , f N(x)] =1—x ,且中(x)之0,则9(x) = v'ln(1—x)…2c解 f(u)=e =1-x ,u =ln(1-x) ,u = .J 〕n(1 - x).2、已知 a 为常数,lim (--2— ax +1) =1,则 a =1.i : x一-ax 1) = lim (1 4 - a —) = 1 - a .x'二 x x3、已知 f ⑴=2,则 limf(1 3x)-f(1 x)=4.x )Dx解:lim[f(1 3x)-f(1)]-[f(1 x)-f(1)]=4x—0x4、函数 f(x)=(x —1)(x —2)(x —3)(x —4)地拐点数为 2.解:f (x)有 3 个零点 £,焦二:1 <彳 <2<^<3<^3<4, f "(x)有 2 个零点 %尸2:1<。
<2 <之2 <”2 <4,f "(x) =12(x —1)(x —”2),显然 f*(x)符号是:+「,+,故有 2 个拐点. dx-5、 -2 ------ - = tan x -cot x C .sin xcos x,2. 2 , ,dx cos x sin x , dx dx 斛: -- —2 --------------- 2- = 2 2-dx = ------- 2- ------------- -2- = tan x - cot x C .sin xcos x sin xcos x cos x sin x二、选择题(每小题3分,共15分)1、设f(x)为偶函数,甲(x)为奇函数,且f /(x)]有意义,则f [邛(x)]是A(A)偶函数; (B)奇函数;(C)非奇非偶函数;(D)可能奇函数也可能偶函数.1 - cosx C2—, x : 0,,,2、x=0 是函数 f (x) = { x 地 D0, x = 0.2「 1 1 x 1 斛:0 = lim — = lim ( ----(A)跳跃间断点; (B)连续点;(C)振荡间断点;(D)可去间断点.3、若函数f(x)在X0处不可导,则下列说法正确地是 B(A)f(x)在%处一定不连续;(B) f (x)在X o处一定不可微;(C)f(x)在X o处地左极限与右极限必有一个不存在;(D) f (x)在x0处地左导数与右导数必有一个不存在^4、仅考虑收益与成本地情况下,获得最大利润地必'要条件是: D(A) R"(Q)>C"(Q) ; (B) R"(Q) <C"(Q);(C) R"(Q) =C“(Q) ;(D) R'(Q) =C'(Q).5、若函数f '(x)存在原函数,下列错误地等式是: Bd(A) 一ff(x)dx=f (x) ;(B)』f (x)dx=f(x);dx(C) d f f (x)dx =f (x)dx;(D) f df (x) =f (x) +C .三、计算题(每小题6分,共60分)1、设f (x —2) =2x2"x— x,求f(x +2).答案:f(x + 2) =2x244x—x—4解:令t =x - 2,则f ⑴=2(t均24t物_(t+2) =2「*七54 T+2=2t2/_t_2,(3 分)于是f(x+2) =2(x阳2u — (x+2) -2 =2x2 七、七“ 一x —4 = 2x2 七x— x —4. (6 分)2、计算1吧m05( J n十1 一J n).答案:1n mc 0sin有-«户n m8s舄十二(3 分)解:1=lim cos —^n— n1二 11-1 nsin 11nx解:y' = (e x )'(2 分)6、求曲线xln y + y —2x=1在点(1,1)处地法线方程.答案:x+y —2 = 0解:方程两边对x 求导得:ln y + xy + y '- 2 = 0 , y_ Cos 「0 一 -1 .(6分) cos,1 0 - 13、求极限lim ( 2 n——n 2n +… 2 n 2).答案: 解:由于— nn n 21n n 22 +…2n八-7, (3分)而 lim 一=lim—=1 1 lim 一=limn —i彳二1,2 n所以lim(+…+)=1. (6 分)4、求极限lim 2ln(1 x )x —0 secx - cos x,〃2、解:lim1n(1 x)x—0secx - cosx x 02ln(1 x ) 二 lim cosxlim ——2-- x 0sin x=lim 2x1+ x 2(4 分)x 0 2sinxcosx =limx —02、 (1 x )cosx.. x lim --- x 「° sin x =1. (6 分) sin 15、求函数y = x x 地导数.答案:.1 sin —x y = xcos'nx 1sin 1)x.1 , sin - ln x 11 1 1 =e x [cos-( --2) ln x sin ] .1 , , , ,sin — 1 1 1 1 =x x ( 2cos — ln x sin ) .(6 分)1将(x, y) = (1,1)代入得法线斜率k = 一—― = _1, (3分) y⑴从而法线方程为:y_1=_1,(x—1),即:* + 丫—2 = 0.(6分),一八 1 4 3 r 一、7、求曲线y= x —x +1地凹凸区间和拐点.24答案:曲线在区间(―吗0]和[1,+“)是凹地,在区间[Q1]是凸地拐点为(0,1), (1;).31 x _ 1 x _ 1 x _ 1x_ 1x_ e cos2x e d sin 2x e cos2x e sin 2x - e sin 2xdx ,2 4 2 4 4 x 一 . 4 x.1 .一 一 、一 … , J e cos2xdx =^e (asin 2x-cos2x)+C .(6 分)10、设某商品地需求函数为 Q =100 -5P 淇中P,Q 分别表示需求量和价格,试求当总收益达到最大时,此时地需求弹性,并解释其经济意义.b5E2RGbCAP解:⑴ f (x) C(-::, ::),(2)3 2 _ .. 2f (x) =2x -3x , f (x) =6x -6x =6x(x -1),4f "(x)=0,得 x 1 =0, x 2 =1. f(0) = 1, f (1) =43 (3分)(4).... ... 4 曲线地拐点为(0,1)、(1,-).(6) 曲线在区间(―g,0]和[1,+比)是凹地,在区间[0,1]是凸地. (6分)8、计算dx.答案:66G - 6 arctan 6x + Cdx dx解 (1 3 x) x -(6x)3[1 (6x)2]56t 5dt八----- 了(3分)2A (1 t )-1 6 2dtdt =6 ! dt - = 6 । 1 t=6t -6arctant +C =66/x -6arctan6/x +C .(6分)9、计算 [exsin 2xdx 答案• —e x(-sin 2x -cos2x) +C1021 V斛: e sin 2xdx e d cos2x =一 21e xcos2x 1 2 2fe xcos2xdx (3 分)列表如答案:。
微积分期末试题及答案

微积分期末试题及答案一、选择题(每题4分,共20分)1. 函数y=x^3-3x+2的导数是()。
A. 3x^2 - 3B. x^3 - 3xC. 3x^2 - 3xD. 3x^2 + 3x答案:A2. 极限lim(x→0) (sin x/x)的值是()。
A. 0B. 1C. 2D. -1答案:B3. 曲线y=x^2在点(1,1)处的切线方程是()。
A. y=2x-1B. y=2x+1C. y=x+1D. y=x-1答案:A4. 若f(x)=x^2+3x-2,则f'(-1)的值是()。
A. 0B. 2C. -2D. 4答案:C5. 定积分∫(0 to 1) (2x-1)dx的值是()。
A. 1/2B. 1C. 3/2D. 2答案:B二、填空题(每题4分,共20分)1. 若f(x)=ln(x),则f'(x)=______。
答案:1/x2. 函数y=e^x的原函数是______。
答案:e^x3. 曲线y=x^3与直线y=2x+1在x=1处的交点坐标是______。
答案:(1,3)4. 函数y=x^2-4x+4的极小值点是______。
答案:x=25. 定积分∫(0 to 2) x dx的值是______。
答案:4三、计算题(每题10分,共30分)1. 求函数y=x^2-6x+8的极值点。
答案:函数y=x^2-6x+8的导数为y'=2x-6,令y'=0,解得x=3。
将x=3代入原函数,得到极小值点为(3,-1)。
2. 求定积分∫(0 to 3) (x^2-2x+1)dx。
答案:首先求出原函数F(x)=1/3x^3-x^2+x,然后计算F(3)-F(0)=1/3*27-9+3-0=6。
3. 求曲线y=x^3在点(1,1)处的切线方程。
答案:首先求导得到y'=3x^2,将x=1代入得到y'|_(x=1)=3,切线方程为y-1=3(x-1),即y=3x-2。
四、证明题(每题10分,共30分)1. 证明:若f(x)在[a,b]上连续,则∫(a to b) f(x)dx存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x0 21___________.π=⎰∞+∞--dx e x 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值.4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________.二、选择题(每小题3分,共15分)6 知dx e x p ⎰∞+- 0 )1(与⎰-e p xx dx 1 1ln 均收敛,则常数p 的取值范围是( ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ).(A) 在原点无定义(B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( ).(A) 123I I I >> (B) 213I I I>>(C) 123I I I << (D) 213I I I<<9、方程xe x y y y 3)1(596+=+'-''具有特解( ).(A) b ax y += (B) x e b ax y 3)(+=(C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2.14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值.15、计算⎰⎰1 212dxe dy yyyx .16、计算二重积分22()D xy dxdy+⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.17、解微分方程x y y +'=''.18、判别级数)11(133∑∞=--+n n n 的敛散性.19、将函数x -31展开成x 的幂级数,并求展开式成立的区间..根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=, 求最优广告策略.四、证明题(每小题5分,共10分)21、设1133ln()z x y =+,证明:13z z xy x y ∂∂+=∂∂.22、若∑=12nnu与∑∞=12nnv都收敛,则∑∞=+12)(nnnvu收敛.答案一、填空题(每小题3分,共15分)1、2(1)1x yy-+. 23、)32,31(-. 4、1. 5、"6'0y y y-+=.二、选择题(每小题3分,共15分)6、(C ).7、(B).8、(A ) .9、(D). 10、(D).三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32y x =的反函数为23,0x y y =>。
且4=x 时,8=y 。
于是)6()3(分分24882233837730(4)16(80)33128128(80)775127V y dy y dyy ππππππππ=-=--⎡⎤=-⋅=-⋅-⎢⎥⎣⎦=⎰⎰12、求二重极限11lim222200-+++→→y x y x y x .解:原式11)11)((lim 22222200-++++++=→→y x y x y x y x (3分)2)11(lim 220=+++=→→y x y x (6分)13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2. 解:设(,,)zF x y z z e xy =+-,则 x F y=-, y F x =- ,1zz F e =+11x z z z z F y y x F e e ∂-=-=-=∂++, 11y z z z F z x xy F e e ∂-=-=-=∂++ (3分)222111(1)1(1)z z z z z z z z e y e z y e xy yx y y e e e e ∂+-⋅⋅∂∂∂⎛⎫===- ⎪∂∂∂++++⎝⎭ (6分)14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值. 解:222(1)1222z x x x x =+-+=-+令'420z x =-=,得12x =,"40z =>,12x =为极小值点. (3分) 故221z x y =++在1y x =-下的极小值点为11(,)22,极小值为32 (6分)15、计算⎰⎰1 212dxe dy yyyx .解:2112123182x yyy I dy e dx e e ==-⎰⎰ (6分)16、计算二重积分22()D x y dxdy +⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.解:22()D x y dxdy +⎰⎰=13200d r drπθ⎰⎰=8π (6分)17、解微分方程x y y +'=''.解:令y p '=,p y '='',方程化为x p p +=',于是)(1)1()1(C dx e x e p dxdx +⎰⎰=---⎰)(1C dx e x e x x +=-⎰])1([1C e x e xx++-=-xe C x 1)1(++-= (3分)⇒2121)1(21])1([C e C x dx e C x dx p y x x +++-=++-==⎰⎰ (6分)18、判别级数)11(133∑∞=--+n n n 的敛散性.解:-=(3分)因为lim 11n n →∞== (6分)19、将函数x -31展开成x 的幂级数,并求展开式成立的区间.解:由于3113131x x -⋅=-,已知 ∑∞==-011n nx x ,11<<-x , (3分) 那么 ∑∑∞=+∞===-01031)3(3131n nn n n xx x ,33<<-x . (6分)20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=, 求最优广告策略.解:公司利润为22212121211028311315x x x x x x x x R L ---++=--= 令⎪⎩⎪⎨⎧=--='=--=',020831,04813211221x x L x x L x x 即⎩⎨⎧=+=+,31208,13842121x x x x得驻点)25.1,75.0()45,43(),(21==x x ,而 (3分)0411<-=''=x xL A ,821-=''=x x L B ,2022-=''=x x L C ,064802>-=-=B AC D , 所以最优广告策略为:电台广告费用75.0(万元),报纸广告费用25.1(万元). (6分)四、证明题(每小题5分,共10分)21、设1133ln()z x y =+,证明:13z z x y xy ∂∂+=∂∂. 证:2233113311113333,x y z z x y x y x y --∂∂==∂∂++ (3分)2233113311331111333311331133x y z zx y x y x y x yx yx x x y --∂∂+=⋅+⋅∂∂++⎛⎫+ ⎪== ⎪ ⎪+⎝⎭(6分)22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n nv u收敛.证:由于)(22)(022222n n n n n n n n v u v u v u v u +≤++=+≤, (3分) 并由题设知∑∞=12n nu与∑∞=12n nv都收敛,则)(2212n n n v u ∑∞=+收敛,从而∑∞=+12)(n n nv u收敛。
(6分)06年B 卷一、填空题(每小题3分,共15分)1、设22(,)yf x y x y x -=-,则=),(y x f _____________.2、已1()2Γ=知,则5()2Γ=___________.3、设函数22(,)22f x y x ax xy y =+++在点(1,1)-取得极值,则常数 ________a = .4、已知)arctan 4(),(y x y x y x f +++=,则=')0,1(x f ________.5、以xx e C e C y 321+=(21,C C 为任意常数)为通解的微分方程是__________________.二、选择题(每小题3分,共15分)6、已知dx e p x⎰∞+- 0 与⎰e p xx dx 1 ln 均收敛,则常数p 的取值范围是( ).(A) 0>p (B) 0<p (C) 1<p (D) 10<<p7、对于函数22(,)f x y x y =-,点(0,0)( ).(A) 不是驻点 (B) 是驻点而非极值点 (C) 是极大值点 (D) 是极小值点8、已知21()D I x y d σ=+⎰⎰,32()D I x y d σ=+⎰⎰,其中D 为22(2)(1)1x y -+-≤,则( ).(A) 12I I = (B) 12I I > (C) 12I I < (D) 2212I I =9、方程xxe y y y 265=+'-''具有特解( ).(A) b ax y += (B) x e b ax y 2)(+=(C) x e bx ax y 22)(+= (D)xe bx ax y 223)(+=10、级数∑∞=-12)1(n nnna收敛,则级数∑∞=1n na( ). (A) 条件收敛 (B) 绝对收敛 (C) 发散 (D) 敛散性不定三、计算题(每小题6分,共60分)11、求x y =,0=y ,2=x 所围图形绕x 轴旋转的旋转体的体积.12、求二重极限)1sin 1sin(lim 00xy y x y x +→→.13、设xy y x z -+=1arctan,求22x z ∂∂.14、用拉格朗日乘数法求(,)f x y xy =在满足条件1x y +=下的极值.15、计算⎰⎰010d e d yx x xy .16、计算二重积分D,其中D 是由y 轴及圆周22(1)1x y +-=所围成的在第一象限内的区域.17、解微分方程0='+''y y x .18、判别级数∑∞=⎪⎭⎫ ⎝⎛12!n nn n 的敛散性.19、将函数x x f 1)(=展开成)3(-x 的幂级数.20、某工厂生产甲、乙两种产品,单位售价分别为40元和60元,若生产x 单位甲产品,生产y 单位乙产品的总费用为2220300.1(223)100x y x xy y ++-++,试求出甲、乙两种产品各生产多少时该工厂取得最大利润.四、证明题(每小题5分,共10分)21、设222ln z y x u ++=,证明222222z uy u x u ∂∂+∂∂+∂∂=2221x y z ++.22、若∑=12n na与∑∞=12n nb都收敛,则∑∞=1n nn ba 收敛.07年A 卷一、填空题(每小题3分,共15分)1、设)(y x f y x z -++=,且当0=y 时,2x z=,则=z .2、计算广义积分⎰∞+ 13x dx= .3、设xye z =,则=)1,1(dz .4、微分方程xxe y y y 265=+'-''具有 形式的特解.5、设14n n u ∞==∑,则11122n n n u ∞=⎛⎫-= ⎪⎝⎭∑_________二、选择题(每小题3分,共15分)6、2222003sin()lim x y x y x y →→++的值为( ).(A) 3 (B) 0 (C) 2 (D)不存在7、),(00y x f x 和),(00y x f y 存在是函数),(y x f 在点),(00y x 可微的( ).(A) 必要非充分的条件 (B) 充分非必要的条件 (C) 充分且必要的条件 (D) 即非充分又非必要的条件8、由曲面z x y =--422和z =0及柱面x y 221+=所围的体积是( ).(A)d d θπr r r42202-⎰⎰(B)24d rπθ⎰⎰(C) 20d rπθ⎰⎰(D)442012d d θπr r r-⎰⎰9、设二阶常系数非齐次线性方程()y py qy f x '''++=有三个特解x y =1,xe y =2,xe y 23=,则其通解为( ).(A) xx e C e C x 221++ (B) x x e C e C x C 2321++(C) )()(221x x x e x C e e C x -+-+ (D) )()(2221x e C e e C xx x -+-10、无穷级数∑∞=--11)1(n pn n (p 为任意实数) ( ).(A) 收敛 (B) 绝对收敛 (C) 发散 (D) 无法判断三、计算题(每小题6分,共60分)11、求极限0x y →→.12、求由x y =与直线1=x 、4=x 、0=y 所围图形绕x 轴旋转的旋转体的体积.13、求由xyz e z=所确定的隐函数),(y x z z =的偏导数,z z x y ∂∂∂∂.14、求函数322(,)42f x y x x xy y =-+-的极值..根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=.若提供的广告费用为5.1万元,求相应的最优广告策略.16、计算积分⎰⎰D d x y σ,其中D 是由直线x y x y 2,==及2,1==x x 所围成的闭区域.17、已知连续函数)(x f 满足⎰+=xx x xf dt t f 0)(2)(,且0)1(=f ,求)(x f .18、求解微分方程212y y y '-+''=0.19、求级数1n n ∞=的收敛区间.20、判定级数∑∞=⋅1!)2sin(n n n x 是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛.四、证明题(每小题5分,共10分)21、设正项级数1nn u∞=∑收敛,证明级数1n ∞=也收敛.22、设)(22y x f yz -=,其中)(u f 为可导函数, 证明211y zy z y x z x =∂∂+∂∂.07(A )卷参考答案(可能会有错误大家一定要自己核对)一、填空题(每小题3分,共15分)1、设)(y x f y x z -++=,且当0=y 时,2x z =,则=z 。