微积分(下册)期末试卷与答案

合集下载

微积分下册期末试卷及答案

微积分下册期末试卷及答案

中南民族大学06、07微积分(下)试卷及参考答案06年A 卷评分阅卷人1、已知22(,)yf x y x y x +=-,则=),(y x f _____________. 2、已知,则=⎰∞+--dx e x x21___________. 3、函数22(,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________.二、选择题(每小题3分,共15分)评分阅卷人6 知dx e x p ⎰∞+- 0 )1(与⎰-e p xx dx 1 1ln 均收敛,则常数p 的取值范围是( ).(A)1p >(B)1p <(C)12p <<(D)2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ). (A)在原点无定义(B)在原点二重极限不存在(C)在原点有二重极限,但无定义(D)在原点二重极限存在,但不等于函数值8、若22223111x y I x y dxdy +≤=--⎰⎰,222232121x y I x y dxdy≤+≤=--⎰⎰,222233241x y I x y dxdy≤+≤=--⎰⎰,则下列关系式成立的是( ).(A)123I I I >>(B)213I I I >> (C)123I I I <<(D)213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( ).(A)b ax y +=(B)xe b ax y 3)(+=(C)x e bx ax y 32)(+=(D)xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( ). (A)绝对收敛(B)条件收敛(C)发散(D)不定 三、计算题(每小题6分,共60分)评分评分评阅人11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.评分评阅人12、求二重极限11lim222200-+++→→y x y x y x .评分评阅人13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2. 评分评阅人14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值. 评分评阅人15、计算⎰⎰1 212dxe dy yyyx .评分评阅人16、计算二重积分22()Dxy dxdy+⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.评分评阅人17、解微分方程x y y +'=''.评分评阅人18、判别级数)11(133∑∞=--+n n n 的敛散性.评分评阅人19、将函数x -31展开成x 的幂级数,并求展开式成立的区间.评分评阅人20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=, 求最优广告策略.四、证明题(每小题5分,共10分)评分评分评阅人21、设1133ln()z x y =+,证明:13z z xy xy ∂∂+=∂∂. 评分评阅人22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n nv u收敛.答案一、填空题(每小题3分,共15分)1、2(1)1x y y -+.2、π.3、)32,31(-.4、1.5、"6'0y y y -+=. 二、选择题(每小题3分,共15分)6、(C).7、(B).8、(A).9、(D).10、(D). 三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32yx =的反函数为23,0x y y =>。

微积分期末考试试题及答案

微积分期末考试试题及答案

微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。

微积分下册期末试卷(1-4缺2答案)及答案

微积分下册期末试卷(1-4缺2答案)及答案

安徽财经大学微积分(下)期末总复习练习卷(1)及参考答案二、填空题(每小题3分,共15分)1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知π=⎰∞+∞--dx e x 2,则=⎰∞+--dx e x x0 21___________.3、函数22(,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是_________________. 二、选择题(每小题3分,共15分)6 知dx e x p ⎰∞+- 0 )1(与⎰-e p xx dx 1 1ln 均收敛,则常数p 的取值范围是( ). (A) 1p > (B) 1p < (C) 12p << (D) 2p >7 二元函数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ). (A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰, 则下列关系式成立的是( ).(A) 123I I I >> (B) 213I I I>>(C) 123I I I << (D) 213I I I<<9、方程xe x y y y 3)1(596+=+'-''具有特解( ).(A) b ax y += (B) xe b ax y 3)(+=(C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nn a ( ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.12、求二重极限 11lim 22220-+++→→y x y x y x .13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2.14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值.15、计算⎰⎰1 212dxe dy yyyx .16、计算二重积分22()Dx y dxdy +⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.17、解微分方程x y y +'=''.18、判别级数)11(133∑∞=--+n n n 的敛散性.19、将函数x -31展开成x 的幂级数,并求展开式成立的区间. 20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=,求最优广告策略.四、证明题(每小题5分,共10分)21、设1133ln()z x y =+,证明:13z z x y x y ∂∂+=∂∂. 22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n nv u收敛.练习卷(1)答案一、填空题(每小题3分,共15分)1、2(1)1x y y -+. 23、)32,31(-. 4、1. 5、"6'0y y y -+=. 二、选择题(每小题3分,共15分)6、(C ).7、 (B).8、(A ) .9、(D). 10、(D). 三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32y x =的反函数为23,0x y y =>。

微积分下册期末试卷及答案[1]

微积分下册期末试卷及答案[1]

、已知22(,)yf x y x y x +=- 则=),(y x f、已知 则=⎰∞+--dx e x x21π=⎰∞+∞--dx ex 2、函数22(,)1f x y x xy y y =++-+在__________点取得极值 、已知y y x x y x f arctan )arctan (),(++= 则=')0,1(x f、以xe x C C y 321)(+= 21,C C 为任意常数 为通解的微分方程是知dx e x p ⎰∞+- 0 )1(与⎰-e p xx dx 1 1ln 均收敛 则常数p 的取值范围是1p > 1p < 12p << 2p >数⎪⎩⎪⎨⎧=+≠++=0 ,0 0,4),(222222y x y x y x x y x f 在原点间断 是因为该函数在原点无定义 在原点二重极限不存在 在原点有二重极限 但无定义 在原点二重极限存在 但不等于函数值、若2211x y I +≤=⎰⎰22212x y I ≤+≤=⎰⎰22324x y I ≤+≤=⎰⎰则下列关系式成立的是123I I I >> 213I I I >> 123I I I << 213I I I <<、方程xe x y y y 3)1(596+=+'-''具有特解b ax y += xe b ax y 3)(+= x e bx ax y 32)(+= x e bx ax y 323)(+=、设∑∞=12n na收敛,则∑∞=-1)1(n nna绝对收敛 条件收敛 发散 不定 一、填空题 每小题 分 共 分、2(1)1x y y -+、)32,31(- 、 、"6'0y y y -+= 、求由23x y = 4=x 0=y 所围图形绕y 轴旋转的旋转体的体积 解:32y x=的函数为23,0x y y =>。

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。

微积分下期末考试试题

微积分下期末考试试题

微积分下期末考试试题一、选择题(每题3分,共30分)1. 函数 \( f(x) = \ln(x) \) 的导数是:A. \( \frac{1}{x} \)B. \( x^{-1} \)C. \( \frac{1}{x} \)(不包括x=0)D. \( \frac{1}{x} \)(不包括x<0)2. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),则下列哪个选项是正确的?A. \( \int_{0}^{1} x f(x) \, dx \leq 1 \)B. \( \int_{0}^{1} x f(x) \, dx \geq 1 \)C. \( \int_{0}^{1} x f(x) \, dx = 1 \)D. 无法确定3. 泰勒级数展开 \( \sin(x) \) 在 \( x = 0 \) 处的前三项是:A. \( x - \frac{x^3}{3!} + \frac{x^5}{5!} \)B. \( x + \frac{x^3}{3!} + \frac{x^5}{5!} \)C. \( x - \frac{x^3}{3!} + \frac{x^5}{3!} \)D. \( x + \frac{x^3}{3!} + \frac{x^5}{4!} \)4. 以下哪个函数是偶函数?A. \( f(x) = x^2 + 1 \)B. \( f(x) = x^3 - 1 \)C. \( f(x) = \sin(x) + \cos(x) \)D. \( f(x) = \ln|x| \)5. 若 \( \lim_{x \to 0} \frac{f(x)}{x} = 1 \),则下列哪个选项是正确的?A. \( \lim_{x \to 0} f(x) = 0 \)B. \( \lim_{x \to 0} f(x) = 1 \)C. \( \lim_{x \to 0} f(x) \) 不存在D. \( \lim_{x \to 0} f(x) \) 可以是任意值二、计算题(每题10分,共40分)1. 求函数 \( f(x) = \sin(x) + e^x \) 在区间 \( [0, \pi] \) 上的定积分。

微积分下册期末试卷及答案

微积分下册期末试卷及答案

1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x0 21___________.π=⎰∞+∞--dx e x 23、函数22(,)1f x y x xy y y =++-+在__________点取得极值.4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________.二、选择题(每小题3分,共15分 评分阅卷人6 知dx e x p ⎰∞+- 0 )1(与⎰-e p x x dx 1 1ln 均收敛, 则常数p 的取值范围是( ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0,0 0,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ).(A) 在原点无定义(B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若22223111x y I x y dxdy +≤=--⎰⎰,222232121x y I x y dxdy≤+≤=--⎰⎰222233241x y I x y dxdy≤+≤=--⎰⎰,则下列关系式成立的是( ).(A) 123I I I >> (B) 213I I I >> (C) 123I I I << (D) 213I I I <<9、方程xe x y y y 3)1(596+=+'-''具有特解( ).(A) b ax y += (B) xe b ax y 3)(+= (C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nna ( ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定三、计算题(每小题6分,共60分)评分11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.12、求二重极限11lim222200-+++→→y x y x y x . 13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2. 14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值. 15、计算⎰⎰1 212dxe dy yyyx. 16、计算二重积分22()Dx y dxdy +⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.17、解微分方程x y y +'=''.18、判别级数)11(133∑∞=--+n n n 的敛散性.19、将函数x -31展开成x 的幂级数,并求展开式成立的区间.21、设1133ln()z x y =+,证明:13z z xy xy ∂∂+=∂∂. 22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n nv u收敛.答案一、填空题(每小题3分,共15分)1、2(1)1x y y -+.2、π.3、)32,31(-. 4、1. 5、"6'0y y y -+=. 二、选择题(每小题3分,共15分)6、(C ).7、 (B).8、(A ) .9、(D). 10、(D).三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32y x =的反函数为23,0x y y =>。

微积分下册期末试卷及复习资料

微积分下册期末试卷及复习资料

(A)p1(B)p1(C) 1 p 2(D)p24x,22f (x,y)2 2 , x 2 y 2xy7数0, 22xy在原点间断 ,中南民族大学06、07微积分(下)试卷及参考答案f (x1、已知y, y) x 2x 2y,则 f (x,y)2、已知 , 则1x 2edxe xdxf(x, y)3、函数x 2xy2y 2 y1在 点取得极值 .4、已知f (x, y) (xarctan y) arctan y, 则f x (1,0) .5、以 y3x(C 1 C 2x )e 3x (C 1,C 2为任意常数 )为通解的微分方、选择题 ( 每小题 3分, 共15分)e dx 与edx1xln p 1x 均收敛 ,则常数 p的取值范围是 ().(A) 在原点无定义(B) 在原点二重极限不存在(C) 在原点有二重极限 , 但无定义(D)在原点二重极限存在 , 但不等于函数值10、设 n 1 a n 收敛,则 n1( 1) a n(32(A) 绝对收敛 (B)条件收敛 (C) 发散(D)不定三、计算题 ( 每小题 6分, 共60分)I 18、若I 3x 231 x2 y 2dxdy 131 x 2y 2 dxdyy 2 4I 2 3 1 x 2 y 2 dxdy1 x2 y 2 2, 则下列关系式成立的是 ( ).(A) (C)I 1I 19、方程 y (A) (C)I 2 I 3I 2 I 3(B) (D)I 2 I 1I 3I 2I 1I 36y y ax b y (ax 29y 5(xbx)e 3x1)e具有特解 ( y (ax (ax 3bx 2 )e3x).(B) (D)3xb)e2 3x).所围图形绕 y轴旋转的旋转体的体积11、求由y x2, x 4, y13、z z(x,y)由z e z xy确定,求2z12、求二重极限22l x y im00 x2 y2 1 1xy2214、用拉格朗日乘数法求z x2 y2 1在条件x y 1下的极值.x 1yy1dy 2 e dx15、计算 2 y2围成的在第一象限内的区域16、计算二重积分 (x 2 y 2) dxdyD, 2其中 D 是由y轴及圆周x22y 21所17y y x18、判别级数n 1( n 1n 1)的敛散性.119、将函数 3 x 展开成 x 的幂级数 , 并求展开式成立的区间20、某公司可通过电台及报纸两种方式做销售某商品的广告 . 根据统计资料 , 销售收入 R (万元 )与电台广告费用 x1 (万元)的及报 纸广告费用 x2(万元) 之间的关系有如下的经验公式 :22R 15 14x 1 32x 2 8x 1x 2 2x 12 10x 22,求最优广告策略.四、证明题 ( 每小题 5分, 共10分)答案、填空题 (每小题 3分,共15分)评分评阅人1121、设 z ln( x 3 y 3 ) ,证明:u n22、若 n 1与都收敛 , 则 (u1v n )2收敛.2x 2(1 y) 1 2( , )1、 1 y. 2 、 . 3 、 3 3 . 4 、1. 5 、y" 6y' y 0.二、选择题 (每小题 3分,共15分)6、(C ). 7 、 (B). 8 、(A ) . 9、(D). 10 、(D).三、计算题 (每小题 6分,共60分)311、求由 y x2 , x 4, y 0所围图形绕 y轴旋转的旋转体的体积 .32 23解: y x2的反函数为 x y 3,y 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南民族大学06、07微积分(下)试卷及参考答案06年A 卷1、已知22(,)y f x y x y x +=-,则=),(y x f _____________.2、已知,则=⎰∞+--dx e x x 0 21 ___________.π=⎰∞+∞--dx e x 2 3、函数22(,)1f x y x xy y y =++-+在__________点取得极值.4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以x e x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是____________________.二、选择题(每小题3分,共15分)6 知dx e x p ⎰∞+- 0 )1(与⎰-ep x x dx 1 1ln 均收敛,则常数p 的取值范围是( ).(A) 1p > (B) 1p < (C) 12p << (D) 2p >7 数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ).(A) 在原点无定义(B) 在原点二重极限不存在(C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰,则下列关系式成立的是( ).(A) 123I I I >> (B) 213I I I >>(C) 123I I I << (D) 213I I I <<9、方程x e x y y y 3)1(596+=+'-''具有特解( ).(A) b ax y += (B) x e b ax y 3)(+=(C) x e bx ax y 32)(+= (D) x e bx ax y 323)(+=10、设∑∞=12n n a 收敛,则∑∞=-1)1(n nn a ( ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.12、求二重极限11lim222200-+++→→y x y x y x .13、),(y x z z =由xy e z z =+确定,求y x z∂∂∂2.14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值.15、计算⎰⎰1212dxedy yyyx.16、计算二重积分22()Dx y dxdy+⎰⎰,其中D是由y轴及圆周221x y+=所围成的在第一象限内的区域.17、解微分方程x y y +'=''.18、判别级数)11(133∑∞=--+n n n 的敛散性.19、将函数x 31展开成x 的幂级数,并求展开式成立的区间..根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=,求最优广告策略.四、证明题(每小题5分,共10分)21、设1133ln()z x y =+,证明:13z zx y x y ∂∂+=∂∂.22、若∑=12n n u 与∑∞=12n n v 都收敛,则∑∞=+12)(n n n v u 收敛.答案一、填空题(每小题3分,共15分)1、2(1)1x y y -+. 2 3、)32,31(-. 4、1. 5、"6'0y y y -+=.二、选择题(每小题3分,共15分)6、(C ).7、 (B).8、(A ) .9、(D). 10、(D).三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32y x =的反函数为23,0x y y =>。

且4=x 时,8=y 。

于是)6()3(分分2488223300837730(4)16(80)33128128(80)775127V y dy y dy y ππππππππ=-=--⎡⎤=-⋅=-⋅-⎢⎥⎣⎦=⎰⎰12、求二重极限 11lim222200-+++→→y x y x y x . 解:原式11)11)((lim 22222200-++++++=→→y x y x y x y x (3分)2)11(lim 2200=+++=→→y x y x (6分)13、),(y x z z =由xy e z z =+确定,求y x z∂∂∂2. 解:设(,,)z F x y z z e xy =+-,则 x F y =-, y F x =- ,1z z F e =+11x z z z z F y y x F e e ∂-=-=-=∂++, 11y z z z F z x x y F e e ∂-=-=-=∂++ (3分)222111(1)1(1)z z z z z z z z e y e z y e xy y x y y e e e e ∂+-⋅⋅∂∂∂⎛⎫===- ⎪∂∂∂++++⎝⎭ (6分)14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值. 解:222(1)1222z x x x x =+-+=-+ 令'420z x =-=,得12x =,"40z =>,12x =为极小值点. (3分)故221z x y =++在1y x =-下的极小值点为11(,)22,极小值为32 (6分)15、计算⎰⎰1 212dxe dy yyyx .解:2112123182x yyy I dy e dx e e ==-⎰⎰ (6分)16、计算二重积分22()D x y dxdy +⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域. 解:22()Dx y dxdy +⎰⎰=13200d r drπθ⎰⎰=8π(6分)17、解微分方程x y y +'=''.解:令y p '=,p y '='',方程化为x p p +=',于是)(1)1()1(C dx e x e p dxdx +⎰⎰=---⎰)(1C dx e x e x x +=-⎰])1([1C e x e xx++-=-xe C x 1)1(++-= (3分)⇒2121)1(21])1([C e C x dx e C x dx p y x x +++-=++-==⎰⎰ (6分)18、判别级数)11(133∑∞=--+n n n 的敛散性.-=(3分)因为lim 11n n →∞== (6分)19、将函数x -31展开成x 的幂级数,并求展开式成立的区间.解:由于3113131x x -⋅=-,已知 ∑∞==-011n nx x ,11<<-x , (3分) 那么 ∑∑∞=+∞===-01031)3(3131n nn n n xx x ,33<<-x . (6分)20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=,求最优广告策略.解:公司利润为22212121211028311315x x x x x x x x R L ---++=--=令⎪⎩⎪⎨⎧=--='=--=',020831,04813211221x x L x x L x x 即⎩⎨⎧=+=+,31208,13842121x x x x得驻点)25.1,75.0()45,43(),(21==x x ,而 (3分)0411<-=''=x xL A ,821-=''=x x L B ,2022-=''=x x L C ,064802>-=-=B AC D ,所以最优广告策略为:电台广告费用75.0(万元),报纸广告费用25.1(万元). (6分)四、证明题(每小题5分,共10分)21、设1133ln()z x y =+,证明:13z z xy x y ∂∂+=∂∂. 证:2233113311113333,x y z z xyx yx y --∂∂==∂∂++ (3分)2233113311331111333311331133x y z zx y x y x y x yx yx x x y --∂∂+=⋅+⋅∂∂++⎛⎫+ ⎪== ⎪ ⎪+⎝⎭(6分)22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n nv u收敛.证:由于)(22)(022222n n n n n n n n v u v u v u v u +≤++=+≤, (3分) 并由题设知∑∞=12n nu与∑∞=12n nv都收敛,则)(2212n n n v u∑∞=+收敛,从而∑∞=+12)(n nn v u收敛。

(6分)06年B 卷一、填空题(每小题3分,共15分)1、设22(,)yf x y x y x -=-,则=),(y x f _____________.2、已1()2Γ=5()2Γ=___________.3、设函数22(,)22f x y x ax xy y =+++在点(1,1)-取得极值,则常数 ________a =.4、已知)arctan 4(),(y x y x y x f +++=,则=')0,1(x f ________.5、以xx e C e C y 321+=(21,C C 为任意常数)为通解的微分方程是__________________.二、选择题(每小题3分,共15分)6、已知dx e p x⎰∞+- 0 与⎰ep x x dx1ln 均收敛,则常数p 的取值范围是( ).(A) 0>p (B) 0<p (C) 1<p (D) 10<<p7、对于函数22(,)f x y x y =-,点(0,0)( ).(A) 不是驻点 (B) 是驻点而非极值点 (C) 是极大值点 (D) 是极小值点8、已知21()D I x y d σ=+⎰⎰,32()D I x y d σ=+⎰⎰,其中D 为22(2)(1)1x y -+-≤,则( ).(A) 12I I = (B) 12I I > (C) 12I I < (D) 2212I I =9、方程xxe y y y 265=+'-''具有特解( ).(A) b ax y += (B) x e b ax y 2)(+=(C) x e bx ax y 22)(+= (D)xe bx ax y 223)(+=10、级数∑∞=-12)1(n nnna 收敛,则级数∑∞=1n na( ). (A) 条件收敛 (B) 绝对收敛 (C) 发散 (D) 敛散性不定三、计算题(每小题6分,共60分)11、求x y =,0=y ,2=x 所围图形绕x 轴旋转的旋转体的体积.12、求二重极限)1sin 1sin(lim 00xy y x y x +→→.13、设xy y x z -+=1arctan,求22x z ∂∂.14、用拉格朗日乘数法求(,)f x y xy =在满足条件1x y +=下的极值.15、计算⎰⎰010d e d yx x xy .16、计算二重积分D ,其中D 是由y 轴及圆周22(1)1x y +-=所围成的在第一象限内的区域.17、解微分方程0='+''y y x .18、判别级数∑∞=⎪⎭⎫ ⎝⎛12!n nn n 的敛散性.19、将函数x x f 1)(=展开成)3(-x 的幂级数.乙两种产品,单位售价分别为40元和60元,若生产x 单位甲产品,生产y单位乙产品的总费用为2220300.1(223)100x y x xy y ++-++,试求出甲、乙两种产品各生产多少时该工厂取得最大利润.四、证明题(每小题5分,共10分)21、设222ln z y x u ++=,证明222222z uy u x u ∂∂+∂∂+∂∂=2221x y z ++.22、若∑=12n na与∑∞=12n nb都收敛,则∑∞=1n nn ba 收敛.07年A 卷一、填空题(每小题3分,共15分)1、设)(y x f y x z -++=,且当0=y 时,2x z=,则=z .2、计算广义积分⎰∞+ 13x dx= .3、设xye z =,则=)1,1(dz .4、微分方程xxe y y y 265=+'-''具有 形式的特解.5、设14n n u ∞==∑,则11122n n n u ∞=⎛⎫-= ⎪⎝⎭∑_________二、选择题(每小题3分,共15分)6、2222003sin()lim x y x y x y →→++的值为( ).(A) 3 (B) 0 (C) 2 (D)不存在7、),(00y x f x 和),(00y x f y 存在是函数),(y x f 在点),(00y x 可微的( ).(A) 必要非充分的条件 (B) 充分非必要的条件 (C) 充分且必要的条件 (D) 即非充分又非必要的条件8、由曲面z x y =--422和z =0及柱面x y 221+=所围的体积是( ).(A)d d θπr r r42202-⎰⎰(B)204d rπθ⎰⎰(C)20d rπθ⎰⎰(D)442012d d θπr r r-⎰⎰9、设二阶常系数非齐次线性方程()y py qy f x '''++=有三个特解x y =1,xe y =2,xe y 23=,则其通解为( ).(A) xx e C e C x 221++ (B) x x e C e C x C 2321++ (C) )()(221x x x e x C e e C x -+-+ (D))()(2221x e C e e C xx x -+-10、无穷级数∑∞=--11)1(n pn n (p 为任意实数) ( ). (A) 收敛 (B) 绝对收敛(C) 发散 (D) 无法判断三、计算题(每小题6分,共60分)11、求极限0x y →→.12、求由x y =与直线1=x 、4=x 、0=y 所围图形绕x 轴旋转的旋转体的体积.13、求由xyz e z=所确定的隐函数),(y x z z =的偏导数,z z x y ∂∂∂∂.14、求函数322(,)42f x y x x xy y =-+-的极值..根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=.若提供的广告费用为5.1万元,求相应的最优广告策略.16、计算积分⎰⎰D d x y σ,其中D 是由直线x y x y 2,==及2,1==x x 所围成的闭区域.17、已知连续函数)(x f 满足⎰+=xx x xf dt t f 0)(2)(,且0)1(=f ,求)(x f .18、求解微分方程212yyy'-+''=0.19、求级数nn∞=的收敛区间.20、判定级数∑∞=⋅1!)2sin(nnnx是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛.四、证明题(每小题5分,共10分)21、设正项级数1nn u∞=∑收敛,证明级数1n ∞=也收敛.22、设)(22y x f yz -=,其中)(u f 为可导函数, 证明211y zy z y x z x =∂∂+∂∂.07(A )卷参考答案(可能会有错误大家一定要自己核对)一、填空题(每小题3分,共15分)1、设)(y x f y x z -++=,且当0=y 时,2x z =,则=z 。

相关文档
最新文档