认识和判断轴对称图形ppt课件
合集下载
认识和判断轴对称图形

思考: 根据你对轴对称
的理解,你能发现 轴对称有哪些性质 特征?
L
对称点
o1 B
o2
D
o3 F
对称轴
第二十七页,共30页。
你能找出图中的对称轴和一些对称点吗?
M
N
A
B
Байду номын сангаас
CD
P
Q
第二十八页,共30页。
讨论:轴对称与轴对称图形有什么区别与联系?
轴对称图形
一分为二
合二为一
第二十九页,共30页。
轴对称
轴对称与轴对称图形有什么区别与联系? 区别: 轴对称是指两个图形能沿对称轴折叠后重合,
而轴对称图形是指一个图形的两部分沿对称 轴折叠后能完全重合。
联系: 都有对称轴、对称点和两部分完全重合的特性。
第三十页,共30页。
这是一种怎样的美呢? 请谈谈你的感想?
第十二页,共30页。
探究新 观察下面知的图形有什么共同的特征?
请你想一想:将上图中的每一个图形沿某条直线折叠, 直线两旁的部分能完全重合吗?
第十三页,共30页。
第十四页,共30页。
要 仔 细 观 察 哦!
轴对称图形定义:
如果 一个平面图形 沿一条直线折叠,直线两旁 的部分能够 __完__全__重__合_,那么这个图形就叫做
2、判断一个图形是不是轴对称图形以及轴对称
图形有几条对称轴的方法。
难点:
确定轴对称图形的对称轴。
重点:
判断一个图形是不是轴对称图形以及轴对称
图形有几条对称轴。
第二页,共30页。
欣赏生活中的轴对称图形,
你发现这些建筑物有什么特点?
生活中,还有许多这样对称的事物和现象。
的理解,你能发现 轴对称有哪些性质 特征?
L
对称点
o1 B
o2
D
o3 F
对称轴
第二十七页,共30页。
你能找出图中的对称轴和一些对称点吗?
M
N
A
B
Байду номын сангаас
CD
P
Q
第二十八页,共30页。
讨论:轴对称与轴对称图形有什么区别与联系?
轴对称图形
一分为二
合二为一
第二十九页,共30页。
轴对称
轴对称与轴对称图形有什么区别与联系? 区别: 轴对称是指两个图形能沿对称轴折叠后重合,
而轴对称图形是指一个图形的两部分沿对称 轴折叠后能完全重合。
联系: 都有对称轴、对称点和两部分完全重合的特性。
第三十页,共30页。
这是一种怎样的美呢? 请谈谈你的感想?
第十二页,共30页。
探究新 观察下面知的图形有什么共同的特征?
请你想一想:将上图中的每一个图形沿某条直线折叠, 直线两旁的部分能完全重合吗?
第十三页,共30页。
第十四页,共30页。
要 仔 细 观 察 哦!
轴对称图形定义:
如果 一个平面图形 沿一条直线折叠,直线两旁 的部分能够 __完__全__重__合_,那么这个图形就叫做
2、判断一个图形是不是轴对称图形以及轴对称
图形有几条对称轴的方法。
难点:
确定轴对称图形的对称轴。
重点:
判断一个图形是不是轴对称图形以及轴对称
图形有几条对称轴。
第二页,共30页。
欣赏生活中的轴对称图形,
你发现这些建筑物有什么特点?
生活中,还有许多这样对称的事物和现象。
《轴对称再认识(一)》轴对称和平移

对称变换在经济学中 的应用
在对称经济学中,对称原则被用来建 立经济模型,从而对经济现象进行分 析和研究。此外,在对称金融学中, 对称变换也被广泛应用于金融衍生品 定价和风险管理等领域。
对称变换的未来展望
随着科学技术的发展,对称变换将在 更多领域得到应用和发展。例如,在 人工智能领域,通过对称变换可以研 究深度学习和神经网络等算法的本质 和结构;在数据科学领域,通过对称 变换可以挖掘数据中的模式和规律; 在生物医学领域,通过对称变换可以 研究分子结构和生物大分子的性质等 。
对称变换在现代数学中的应用
01 02
对称变换在几何学中的应用
对称变换被广泛应用于几何学中,例如在平面几何、立体几何和解析 几何中,通过对称变换可以解决许多问题,如证明定理、求解方程等 。
对称变换在代数中的应用
对称变换也被广泛应用于代数中,例如在矩阵变换、群论和李代数中 ,通过对称变换可以研究问题的本质和结构。
平移和轴对称的关系
平移和轴对称都是图形的基本变换,它们之间存在密切 的关系。例如,可以通过平移将两个图形重合,也可以 通过轴对称将两个图形重合。
04
轴对称的实例
生活中的轴对称实例
建筑物
许多建筑物,如中国的故宫、 美国的自由女神像,都利用了 轴对称的设计,使建筑在视觉
上更具美感。
植物
自然界中许多植物也呈现出轴对 称的特点,如向日葵、睡莲等。
轴对称图形的特点
轴对称图形是左右或上下对称的,对称轴两侧的对应点到对称轴的距离相等 。
轴对称的判断,通过折叠或比较对应 部分来判断是否为轴对称图形。
常见的轴对称图形
正方形、长方形、等腰三角形、等边三角形、圆形、菱形等 。
轴对称的应用
§图形的轴对称、平移与旋转(共198张PPT)

本文档汇集了关于图形的轴对称、平移与旋转的中考数学题目。其中包括了轴对称与折叠、图形的平移和旋转等多个考点。每一道题目都详细列出了题目内容、选项,并提供,通过折叠纸片的方式判断哪些图形是轴对称的。另一道题目则涉及到了图形的平移,需要通过坐标系的建立来确定图形平移后的位置。还有题目结合了轴对称和勾股定理,要求计算图形的边长。这些题目不仅涵盖了图形变换的基本概念,还融合了其他数学知识,旨在全面考察学生对图形变换的理解和应用能力。通过解答这些题目,学生可以加深对图形变换的认识,提高解题技巧。
部编人教版八年级数学上册《13第十三章 轴对称【全章】》精品PPT优质课件

正方形ABCD面积的一半,∵正方形ABCD的边长为4cm, ∴S阴影=42÷2=8(cm2).故选B.
方法归纳:正方形是轴对称图形,在轴对称图形中 求不规则的阴影部分的面积时,一般可以利用轴对 称变换,将其转换为规则图形后再进行计算.
当堂练习
1.观察下列各种图形,判断是不是轴对称图形?
√
√
√
√
√
方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
例2 如图,正方形ABCD的边长为4cm,则图中 阴影部分的面积为( B )
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析:根据正方形的轴对称性可得,阴影部分的面积等于
(1)
(2)
思考:如图,△ABC和△A′B′C′关于直线MN对称, 点A′,B′,C′分别是点A,B,C的对称点,线段AA′, BB′,CC′与直线MN有什么关系?
A
AA′⊥MN,
M A′
BB′⊥MN,
B
B′
CC′⊥MN.
C
C′
N
知识要点
线段垂直平分线的定义
M
经过线段中点并且垂直于这条
线段的直线,叫做这条线段的
A
P
垂直平分线.
B
如图,MN⊥AA′, AP=A′P.
C
直线MN是线段AA ′的垂直平分线.
N
图形轴对称的性质
A'
B' C'
如果两个图形关于某条直线对称,那么对称轴是任 何一对对应点所连线段的垂直平分线.
一个轴对称图形的对称轴是否也具有上述性质呢? 请你自己找一些轴对称图形来检验吧!
方法归纳:正方形是轴对称图形,在轴对称图形中 求不规则的阴影部分的面积时,一般可以利用轴对 称变换,将其转换为规则图形后再进行计算.
当堂练习
1.观察下列各种图形,判断是不是轴对称图形?
√
√
√
√
√
方法归纳:轴对称是一种全等变换,在轴对称图形中求角度 时,一般先根据轴对称的性质及已知条件,得出相关角的度 数,然后再结合多边形的内角和或三角形外角的性质求解.
例2 如图,正方形ABCD的边长为4cm,则图中 阴影部分的面积为( B )
A.4cm2 B.8cm2 C.12cm2 D.16cm2
解析:根据正方形的轴对称性可得,阴影部分的面积等于
(1)
(2)
思考:如图,△ABC和△A′B′C′关于直线MN对称, 点A′,B′,C′分别是点A,B,C的对称点,线段AA′, BB′,CC′与直线MN有什么关系?
A
AA′⊥MN,
M A′
BB′⊥MN,
B
B′
CC′⊥MN.
C
C′
N
知识要点
线段垂直平分线的定义
M
经过线段中点并且垂直于这条
线段的直线,叫做这条线段的
A
P
垂直平分线.
B
如图,MN⊥AA′, AP=A′P.
C
直线MN是线段AA ′的垂直平分线.
N
图形轴对称的性质
A'
B' C'
如果两个图形关于某条直线对称,那么对称轴是任 何一对对应点所连线段的垂直平分线.
一个轴对称图形的对称轴是否也具有上述性质呢? 请你自己找一些轴对称图形来检验吧!
新课标小学数学五年级上册第1课时 轴对称再认识(一)ppt教学课件

» 五级
(×)
(2)三角形中只有等边三角形才是轴对称图形。
(×)
辨析:没有理解轴对称图形的特征,平行四边形不是轴对 称图形;三角形中等腰三角形是轴对称图形。
2019/10/15
15
单击此处编辑母版标题样式
• 单击作此业处编辑母版文本样式
– 二请级完成《典中点》的“应用提升练”和“思
维• 三拓级展练”习题,具体内容见习题课件。
• 单击此处编辑母版文本样式
– 二级
• 三级
– 四级 » 五级
请同桌两人也像淘气、笑笑那样,剪一剪、猜一猜、画一画。
2019/10/15
14
单击此处编辑母版标题样式
• 单击易错此辨处析编(选辑题母源于版《文典中本点》样)式
– 二4.级判断。
• 三级 (1)平–行四四级边形是轴对称图形,它有两条对称轴。
二 轴对称和平移
轴对称再认识(一)(建议一课时完成)
BS 五年级上册
单击此处编辑母版标题样式
• 单1击此课处堂探编究辑点母版文本样式
– 二级
认• 识三轴级对称图形及其对称轴
– 四级 » 五级
2 课时流程
探索 新知
2019/10/15
课堂 小结
当堂 检测
课后 作业
2
单击此处编辑母版标题样式
• 单击此你见处过哪编些辑轴对母称版图形文?本样式
(√ )
( ×)
(√ )
8
单击此处编辑母版标题样式
• 单2击.此下面处的编图辑形各母有版几文条对本称样轴式?
– 二级
• 三级
– 四级 » 五级
(3)
(1)
(6)
( 1)
2019/10/15
16.1 轴对称课件

等边三角
形是 三条
正六边形
是 六条
正方形
是 四条
圆
是 无数条
圆有无数条 对称轴
知识点2 轴对称
如图,两个图形,沿着图中的虚线对折后, 这两个图形完全重合.
一般地,如果两个图形沿某条 直线对折后,这两个图形能够完全 重合,那么我们就说这两个图形成 轴对称,这条直线叫做对称轴.
关于对称轴对称的点、对称的线段、对称的角分别 叫做对应点、对应线段、对应角.
1.指出下列图形各有几条对称轴,画出每个图形的对称轴.
①
②
③
④
⑤
⑥
⑦
图形代码
①②③
④
⑤
⑥
⑦
对称轴条数 2 2
46
2
3
4
2.下列图形中,不是轴对称图形的是
(C )
3.下列图形中,△A′B′C′与△ABC关于直线MN成轴对称的是( B )
1.请观察下列图形,看这些轴对称图形各有几条对称轴.
6条
1条
成轴对称图形的性质对于轴对称图形同样适用. 垂直且平分一条线段的直线,叫做这条直线的垂 直平分线,简称中垂线.
线段是轴对称图形,线段的中垂线是它的对称轴.
例1 如图(1),已知直线AB和直线l,画出线段AB 关于直线l的对称线段.
解:如图(2). (1)分别过点A和点B画直线l 的垂线段AO和BO',垂足分别 为O和O'. (2)分别延长AO到点A',BO' 到点B',使A'O=AO,B'O'=BO'. (3)连接A'B'. 线段A'B'即为所求.
知识点1 轴对称图形
《生活中的轴对称》课件

《生活中的轴对称》PPT课件
生活中的轴对称
什么是轴对称
- 轴对称是一种图形的特征, 左右或上下对称。
- 通过一个轴线将图形分为两 个完全相同的部分。
- 轴对称中的基本概念如轴线 和对称中ቤተ መጻሕፍቲ ባይዱ。
轴对称的应用
- 生活中的轴对称:自然界中 的形状和生物体。
- 建筑物中的轴对称:古代建 筑和现代建筑的设计。
- 艺术中的轴对称:绘画、雕 塑和摄影中的艺术创作。
轴对称的实践
- 用手绘制轴对称图形:练习 构图和对称性。
- 制作一个轴对称的模型:用 纸板和其他材料创建。
- 判断物体是否是轴对称的: 观察和分析图像和实物。
轴对称的重要性
轴对称在日常生活中 的应用
家居摆放、服装设计、厨房烹 饪。
轴对称在科学研究中 的作用
1 轴对称是生活中随处 2 轴对称在各个领域中 3 希望通过本课程能够
可见的重要概念
都有广泛的应用和发
更好地认识和理解轴
无论是自然界还是人类创
展前景
对称的意义和作用
造的事物,轴对称都扮演
从日常生活到工业制造,
通过学习和实践,提升对
着重要角色。
轴对称的应用潜力仍有很
轴对称的认知和创造能力。
多待发掘。
物理学、化学、生物学和天文 学。
轴对称在工业制作中 的重要性
汽车制造、电子产品、品牌标 志。
轴对称的发展趋势
新材料的开发和使用
研发更轻、更坚固的材料,推动 轴对称设计的创新。
机器人应用轴对称的机制
利用轴对称技术改进机器人的运 动和操作。
未来轴对称技术的发展方向
探索更高级的轴对称概念和应用 场景。
结论
生活中的轴对称
什么是轴对称
- 轴对称是一种图形的特征, 左右或上下对称。
- 通过一个轴线将图形分为两 个完全相同的部分。
- 轴对称中的基本概念如轴线 和对称中ቤተ መጻሕፍቲ ባይዱ。
轴对称的应用
- 生活中的轴对称:自然界中 的形状和生物体。
- 建筑物中的轴对称:古代建 筑和现代建筑的设计。
- 艺术中的轴对称:绘画、雕 塑和摄影中的艺术创作。
轴对称的实践
- 用手绘制轴对称图形:练习 构图和对称性。
- 制作一个轴对称的模型:用 纸板和其他材料创建。
- 判断物体是否是轴对称的: 观察和分析图像和实物。
轴对称的重要性
轴对称在日常生活中 的应用
家居摆放、服装设计、厨房烹 饪。
轴对称在科学研究中 的作用
1 轴对称是生活中随处 2 轴对称在各个领域中 3 希望通过本课程能够
可见的重要概念
都有广泛的应用和发
更好地认识和理解轴
无论是自然界还是人类创
展前景
对称的意义和作用
造的事物,轴对称都扮演
从日常生活到工业制造,
通过学习和实践,提升对
着重要角色。
轴对称的应用潜力仍有很
轴对称的认知和创造能力。
多待发掘。
物理学、化学、生物学和天文 学。
轴对称在工业制作中 的重要性
汽车制造、电子产品、品牌标 志。
轴对称的发展趋势
新材料的开发和使用
研发更轻、更坚固的材料,推动 轴对称设计的创新。
机器人应用轴对称的机制
利用轴对称技术改进机器人的运 动和操作。
未来轴对称技术的发展方向
探索更高级的轴对称概念和应用 场景。
结论
轴对称的复习课件

镜子改变了什么
其实是:现实与镜中的像关于镜面成轴对称 如果已知其中一个求另一个时,通常的方法是: 利用镜子照(注意镜子的位置摆放) 利用轴对称性质
放松一下:
我们一起来做个游戏。游戏规则:将走道抽象成一条直线,将每位同学抽象成一个点,现在以这条直线为对称轴,老师报一个同学的学号也就是确定一个点(报到学号的同学立刻起立),请表示其对称点的这位同学也立刻起立,并回答:“我叫某某某,我是某某某的对称点。”
如果把轴对称图形沿对称轴 分成两部分,那么这两个图形 就关于这条直线成轴对称.
如果把两个成轴对称的图形 拼在一起看成一个整体,那 么它就是一个轴对称图形.
一个
一个
不一定
两个
两个
一条
知识回顾:
1
角平分线性质
角平分线所在的直线是角的对称轴 角平分线上的点到这个角的两边距离相等
线段垂直平分线性质
A
L1
L2
A1
A2
B
C
解: (1)如图,∵ A 与 A1关于L1对称, A 与 A2关于L2对称 ∴ A1 B=AB, A2 C=AC ∴A1A2=2BC=36厘米 答:A1与A2间的距离为36厘米。
(2)答:不论A 在L1,L2间的哪个位置,A1与A2 间的距离都不会改变吗。
例2 已知如图:一辆汽车在直线公路AB上由A向B行驶,M、N分别表示位于公路AB两侧的村庄,
(1)当汽车行驶到什么位置时距村庄M最近?行驶到什么位置时距村庄N最近?
答:如图 ,当汽车行驶到P1时,距村庄M最近, 当汽车行驶到P2时,距村庄N最近。
拓展题:动手折一折
将图中的三角形纸片沿虚线折叠,图中由粗实线围成的图形面积与三角形面积之比为2:3,已知图中三个阴影的三角形面积之和为1,试确定重叠部分的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要 仔 细 观 察 哦!
轴对称图形定义:
如果 一个平面图形 沿一条直线折叠,直线两 旁的部分能够 完_全___重__合___,那么这个图形就叫做
轴__对__称__图___形___.这条直线 叫做_对___称__轴____.
轴对称图形
轴对称图形
对称轴
对称轴
练习:下面的图形是轴对称图形吗?如果是,你能指
性。
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
对称点
D
o3
F
对称轴
你能找出图中的对称轴和一些对称点吗?
M
N
A
B
CD
P
Q
讨论:轴对称与轴对称图形有什么区别与联系?
轴对称图形一分为二 合二来自一轴对称轴对称与轴对称图形有什么区别与联系?
区别: 轴对称是指两个图形能沿对称轴折叠后重
合,而轴对称图形是指一个图形的两部分 沿对称轴折叠后能完全重合。
联系:都有对称轴、对称点和两部分完全重合的特
A BC D
E FG H
猜字游戏
在艺术字中,有些汉字是轴对称的,你能猜一猜 下列是哪些字的一半吗?
试一试
把一圆形纸片两次对折后,得到 右图,然后沿虚线剪开,得到两 部分,其中一部分展开后的平面
图形是( B )
A
B
C
D
下面的文字中有轴对称图形吗?
六中吉祥
观察下面的图形,你能发现它们 有什么共同的特征吗?
下面每对图形呢?
轴对称、对称轴、对称点
平面内两个如果把一个图
形沿着某一条直线折叠后,能 够与另一个图形重合,那么这
A
B
两个图形关于这条直线成轴对
称,这条直线叫做对称轴。 C
D
折叠重合的两点叫对应点
也叫对称点。
轴对称
A
C
E
思考: 根据你对轴对称
的理解,你能发现 轴对称有哪些性质 特征?
L
o1 B o2
学习目标 1、探索确定轴对称图形的对称轴的方法。 2、判断一个图形是不是轴对称图形以及轴对称
图形有几条对称轴的方法。 难点:
确定轴对称图形的对称轴。 重点:
判断一个图形是不是轴对称图形以及轴对称 图形有几条对称轴。
你发现这些建筑物有什么特点? 生活中,还有许多这样对称的事物和现象。
欣赏精美图片
巨灵神 李天王 张 飞 盖书文 李 逵
中国戏曲脸谱 北京天安门
斯里兰卡
印度 泰姬陵
法国艾菲尔铁塔
加拿大国旗 澳门特区区徽
脸谱艺术
车标设计
面对生活中这些美丽的图片, 你是否强烈地感受到美就在我们身边!
这是一种怎样的美呢? 请谈谈你的感想?
请你想一想:将上图中的每一个图形沿某条直线 折叠,直线两旁的部分能完全重合吗?
出它的对称轴吗?
是
是
是
不是
是
是
猜猜看?
美3 A
图形
形状 是否轴对称图形 对称轴的数量
长方形 正方形
平行四边形 等腰三角形
圆形
线段 角
是
是 不是 是 是 是
是
2
4
0 1 无数 2 1
想一想:一辆汽车的车牌在水中 的倒影如图所示,你能确定该车
车牌的号码吗?
练一练:下面的字母哪些是轴对 称图形?找出对称轴?