2019年春七年级数学下册 第3章 整式的乘除 3.3 第1课时 简单多项式的乘法及应用练习 (新版
七年级数学下册整式的乘法整式的乘法多项式的乘法多项式乘多项式

次二项式的乘法
5. 已知(x+3)(x-2)=x2+ax+b,则 a,b 的值分别
是( B )
A.a=-1,b=-6 B.a=1,b=-6
C.a=-1,b=6
D.a=1,b=6
2019年6月9日
你是眼中最美的风景
6
6. 下 列 多 项 式 相 乘 的 结 果 为 x2 + 3x - 18 的 是
(D )
A.x2+3x+2
B.3(x-1)(x-2)
C.x2-3x+2
D.x3-3x2+2x
2019年6月9日
你是眼中最美的风景
9
11. 计算:(a-b)(a+2b)=_a_2_+__a_b_-__2_b_2_; (x+5y)(2x-y)=_2_x_2_+__9_x_y-__5_y_2__.
12. 定义ac db为二阶行列式,规定它的运算法则为
2019年6月9日
你是眼中最美的风景
2
知识点 多项式乘多项式
1. (2018·武汉)计算(a-2)(a+3)的结果是( B )
A.a2-6
B.a2+a-6
C.a2+6
D.a2-a+6
2. 下面的计算结果为 3x2+13x-10 的是( C )
A.(3x+2)(x+5)
B.(3x-2)(x-5)
C.(3x-2)(x+5)
2019年6月9日
你是眼中最美的风景
8
9. 若(x+2)(x-1)=x2+mx+n,则 m+n=( C )
A.1
B.-2
C.-1
D.2
10. (2018·镇江模拟)学校买来钢笔若干支,可以平均
分给(x-1)名同学,也可分给(x-2)名同学(x 为正整
数).用代数式表示钢笔的数量不可能的是( A )
《整式的乘法》第3课时《多项式乘以多项式的法则》教学课件2022-2023学年北师大版七年级数学下册

你会计
算吗?
教学过程
新知探究
做一做
我们可以用四种方法计算长方形的面积:
方法1: + +
方法2: + + +
方法3: + + +
方法4: + + +
事实上 + + 是两个多项式相乘,你从上面的计算过程中受
C. − 或0
D. 或0
教学过程
新知应用
做一做
3.若 − + − 结果是不含 项,则、
的关系为(B )
A. 互为倒数
B. 互为相反数
C. 相等
D.不能确定
4.若 = , = , 则 − − + − 的值为(A )
北师大版数学七年级(下)
第一章 整式的乘除
4.整式的乘法
第3课时 多项式与多项式的乘法
教学过程
重点难点
1.经历探索多项式与多项式乘法的运算法则的
过程,掌握多项式与多项式乘法的运算法则.
(重点)
2.利用多项式与多项式乘法的运算法则进行运算,进
一步加强学生的运算能力.(难点)
教学过程
温故知新
1.单项式乘以单项式的法则:
项之前,所得积的项数为两个多项式的项数的积.
2.在运算过程中,不要漏乘任何一项,特别是常数项,相乘时
按一定的顺序进行,注意每项的符号,可根据“同号得正,异
号得负”来确定积中每一项的符号.
3.结果中有同类项的,一定要合并同类项,化成最简形式.
教学过程
回归课本
读一读
整式的乘法第3课时多项式与多项式相乘课件北师大版数学七年级下册

(5)(x + y)(x2 - xy + y2).
(6) (x-y)2;
解: (x + y)(x2 - xy + y2) =x·x2+x·(- xy)+x·y2+ y·x2+ y·(- xy)+ y·y2 = x3-x2y + xy2 + x2y -xy2 + y3 = x3+y3.
解: (x-y) (x-y) =x·x+x·(-y)+(-y)·x+(-y)·(-y) =x2-xy-xy+y2 =x2-2xy+y2
( m+a ) (n+b ),n(m+a) +b(m+a),m(n+b) +
a(n+ b) 和mn+mb+na+ba,
b
从而,(m+a) (n+b) = n(m +a) + b(m+a) =m
(n+b)+a (n+b) =mn+mb+na+ba.
a
你认为小明的想法对吗? 从中你受到了什么启发?
m
n
归纳
4. 化简,再求值:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b),其中 a = -1,
b = 1. 解:原式 = a·a2+a·(2ab)+a·(4b2)- 2b ·a2- 2b ·2ab- 2b ·4b2 -(a2-5ab)(a+3b)
= a3-8b3-(a2·a+a2·3b-5ab·a-5ab·3b) =a3-8b3-a3-3a2b+5a2b+15ab2 =-8b3+2a2b+15ab2. 当 a = -1,b = 1时, 原式 = -8× 13 +2 × (-1)2 ×1 +15 ×(-1) × 12 = -21.
七年级下册数学课本目录

七年级下册数学课本目录第一章整式的乘除
1.同底数幂的乘法
2.幂的乘方与积的乘方
3.同底数幂的除法
4.整式的乘法
5.平方差公式
6.完全平方公式
7.整式的除法
第二章相交线与平行线
1.两条直线的位置关系
2.探索直线平行的条件
3.平行线的性质
4.用尺规作角
第三章三角形
1.认识三角形
2.图形的全等
3.探索三角形全等的条件
4.用尺规作三角形
5.利用三角形全等测距离
第四章变量之间的关系
1.用表格表示的变量间关系
2.用关系式表示的变量间关系
3.用图像表示的变量间关系第五章生活中的轴对称
1.轴对称现象
2.探索轴对称的性质
3.简单的轴对称图形
4.利用轴对称进行设计
第六章概率初步
1.感受可能性
2.频率的稳定性
3.等可能事件的概率。
北师大版七年级数学下册 (整式的乘法)整式的乘除课件教学(第3课时)

1 时
2
原式= -6
ZYT
典例精析
例3 已知ax2+bx+1(a≠0)与3x-2的积不含x2项,也不含x项,
求系数a、b的值.
方法总结:解决此类问题
解:(ax2+bx+1)(3x-2)
首先要利用多项式乘法法
=3ax3-2ax2+3bx2-2bx+3x-2,
则计算出展开式,合并同
由于积不含x2的项,也不含x的项, 类项后,再根据不含某一
= 8 x 6 y 3 · ( - 7 xy 2 ) ÷14 x 4 y 3 = - 56 x7y5 ÷ 14 x 4 y3
ZYT
第一章 整式的乘除
1.7 整式的除法
第1课时
复习与回顾
1.用字母表示幂的运算性质:
(1)am an amn
(2)(am )n a mn
(3)(ab)n anbn
(4)am an amn
2.快速抢答: (1) a20÷a10; = a10
(3) (−c)4 ÷(−c)2;= c2
由上面计算的结果找规律,观察填空: (x+p)(x+q)=_x__2+_(_p_+_q_)_x+__p_q____.
ZYT
探究新知
已知等式(x+a)(x+b)= x2+mx+28,其中a、b、m均为正
考 整数,你认为m可取哪些值?它与a、b的取值有关吗?请你
考 你
写出所有满足题意的m的值.
解:由题意可得a+b=m,ab=28.
例1 计算:
(1)
3 5
x2
y3
3x2
y
;
浙教版2019年七年级数学下册第3章整式的乘除3.3第2课时复杂多项式的乘法及应用练习(含答案)

3.3 多项式的乘法第2课时复杂多项式的乘法及应用知识点复杂多项式乘多项式的运算较复杂多项式相乘,仍然遵循“先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加”的法则.[注意] (1)多项式相乘要注意多项式每一项的符号;(2)多项式相乘的结果要化为最简.计算:(x-3)(2x2+x-7).一多项式乘多项式的简单应用教材例5变式题解方程:(x-1)(2x-1)=x(x+2)+x2-1.[归纳总结] 解方程时,方程两边均化成整式,再移项,合并同类项,系数化为1即可.二利用多项式乘多项式解决实际问题教材补充题一个长方体的长为x cm,宽为(2x-3)cm,高为(x-1)cm,求这个长方体的体积.[反思] 若多项式(mx2+8x-1)(2-3x)展开后不含x2项,求m的值.一、选择题1.下列计算正确的是( )A.a2·a3=a6B.5a(b-3a2)=5ab-15a3C.(a+b)(a-2b)=a2-2b2D.(x-1)(x2+2)=x3+2x-22.计算(x-1)(x2-1)的结果是( )A.x3-1 B.x3-x2-x+1C.x3-x+1 D.x3-x2+13.如果(x-4)(2x2-x+8)=2x3+mx2+nx-32,那么m,n的值分别是( )A.m=9,n=12 B.m=9,n=-12C.m=-9,n=12 D.m=-9,n=-124.如果三角形的一边长为2a+4,这条边上的高为2a2+a+1,那么这个三角形的面积为( )A.2a3+5a2+3a+2 B.4a3+6a2+6a+4C.(2a+4)(2a2+a+1) D.2a3+25.要使(x2+px+2)(x-q)的乘积中不含x2项,则p与q的关系是( )A.互为倒数B.互为相反数C.相等D.关系不能确定6.由m(a+b+c)=ma+mb+mc,可得(a+b)(a2-ab+b2)=a3-a2b+ab2+a2b-ab2+b3=a3+b3,即(a +b)(a2-ab+b2)=a3+b3.我们把这个等式叫做多项式乘法的立方公式.下列应用这个公式进行的变形不正确的是( )A.(x+4y)(x2-4xy+16y2)=x3+64y3B.(2x+y)(4x2-2xy+y2)=8x3+y3C.(a+1)(a2+a+1)=a3+1D.x3+27=(x+3)(x2-3x+9)二、填空题7.计算:(5b+2)(2b-1)=________;(3a2-2)(3a+2)=________.8.2015·菏泽若x2+x+m=(x-3)(x+n)对x恒成立,则n=________.9.三个连续整数中,n是最小的一个,这三个数的乘积为________.10.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是________.11.已知一个梯形的上底是(x+y)cm,下底是(5x-3y)cm,高是(2x+y)cm,则用含x,y的代数式表示梯形的面积为________ cm2.三、解答题12.计算:(1)(a+2)(a-2)(2a-1);(2)3(x2+2)-3(x+1)(x-1);(3)(2a-b)2-(b2+a-1)(2a+1).13.确定下列各式中m的值.(1)(x+4)(x+9)=x2+mx+36;(2)(x+3)(x+p)=x2+mx+36.14.解方程:x(2x+3)-(x-5)(x+3)=x2+1.15.李老师刚买了一套2室2厅的新房,其结构如图3-3-3所示(单位:米).施工方已经把卫生间和厨房根据合同约定铺上了地板砖,李老师打算把卧室1铺上地毯,其余铺地板砖.问:(1)他至少需要多少平方米的地板砖?(2)如果这种地板砖每平方米m元,那么李老师至少要花多少钱买地板砖?图3-3-3[创新题] (1)计算下列各式:(x-1)(x+1)=__________;(x-1)(x2+x+1)=__________;(x-1)(x3+x2+x+1)=__________.(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接填写下面的空格.(x-1)(______________)=x6-1.(3)利用你发现的规律计算:(x-1)(x6+x5+x4+x3+x2+x+1)=__________.(4)利用该规律计算:1+4+42+43+ (42017)详解详析【预习效果检测】解:(x -3)(2x 2+x -7)=2x 3+x 2-7x -6x 2-3x +21=2x 3-5x 2-10x +21. 【重难互动探究】例1 解:两边去括号,得2x 2-x -2x +1=x 2+2x +x 2-1.合并同类项,得2x 2-3x +1=2x 2+2x -1. 化简,得5x =2. 所以原方程的解为x =25.例2 [解析] 长方体体积的计算公式为V =长×宽×高. 解:根据题意,这个长方体的体积为 V =x(2x -3)(x -1)=x(2x 2-2x -3x +3)=x(2x 2-5x +3)=(2x 3-5x 2+3x)(cm 3). 【课堂总结反思】[反思] (mx 2+8x -1)(2-3x)=2mx 2-3mx 3+16x -24x 2-2+3x =-3mx 3+(2m -24)x 2+19x -2.因为多项式展开后不含x 2项,所以2m -24=0,解得m =12.[点评] 多项式相乘后不含某一项,说明合并同类项后此项的系数为零. 【作业高效训练】 [课堂达标] 1.B 2.B 3.C4.[解析] A 三角形的面积=12×底×高=12×(2a+4)×(2a 2+a +1)=(a +2)(2a 2+a +1)=2a 3+a 2+a+4a 2+2a +2=2a 3+5a 2+3a +2.5.[解析] C 原式=x 3-qx 2+px 2-pqx +2x -2q =x 3+(p -q)x 2+(2-pq)x -2q ,由于不含x 2项,故p -q =0,即p =q.6.C7.[答案] 10b 2-b -2 9a 3+6a 2-6a -4 8.[答案] 49.[答案] n 3+3n 2+2n 10.[答案] 111.[答案] (6x 2+xy -y 2)12.解:(1)原式=(a 2-4)(2a -1)=2a 3-a 2-8a +4.(2)原式=3x 2+6-3(x 2-1)=3x 2+6-3x 2+3=9.(3)原式=4a 2-2ab -2ab +b 2-(2ab 2+b 2+2a 2+a -2a -1)=4a 2-4ab +b 2-2ab 2-b 2-2a 2-a +2a +1=2a 2-2ab 2-4ab +a +1.13.解:(1)因为(x +4)(x +9)=x 2+mx +36,所以x 2+13x +36=x 2+mx +36, 所以m =13.(2)因为(x +3)(x +p)=x 2+mx +36,所以x 2+(3+p)x +3p =x 2+mx +36,所以⎩⎪⎨⎪⎧3+p =m ,3p =36,解得⎩⎪⎨⎪⎧m =15,p =12.所以m =15.14.解:2x 2+3x -x 2-3x +5x +15=x 2+1. 2x 2+3x -x 2-3x +5x -x 2=1-15. 5x =-14,解得x =-145.所以原方程的解为x =-145.15.解:(1)用总面积减去厨房和卫生间的面积,再减去卧室1的面积即是所铺地板砖的面积,列式为5b·5a-(5b -3b)·(5a-3a)-(5a -3a)·2b=17ab(米2). (2)所花钱数:17ab·m=17abm(元). [数学活动]解: (1)x 2-1 x 3-1 x 4-1(2)发现规律:(x -1)(x n -1+x n -2+…+x +1)=x n-1. x 5+x 4+x 3+x 2+x +1(3)x 7-1(4)因为(1+4+42+43+…+42017)(4-1)=42018-1, 所以1+4+42+43+…+42017=42018-13.。
2019-2020年七年级数学下册第3章整式的乘除3.4乘法公式第1课时校本作业B本新版浙教版

2019-2020年七年级数学下册第3章整式的乘除3.4乘法公式第1课时校本作业B本新版浙教版2019-2020年七年级数学下册第3章整式的乘除3.4乘法公式第1课时校本作业B本新版浙教版课堂笔记两数和与这两数差的积等于这两数的 . 即(a+b)(a-b)=a2-b2.分层训练A组基础训练1. 计算(-4x-5y)(5y-4x)的结果是()A. 16x2-25y2B. 25y2-16x2C. -16x2-25y2D. 16x2+25y22. 下列计算错误的是()A. (6a+1)(6a-1)=36a2-1B. (-m-n)(m-n)=n2-m2C. (a3-8)(-a3+8)=a9-64D. (-a2+1)(-a2-1)=a4-13. (4x2-5y)需乘以下列哪个式⼦,才能使⽤平⽅差公式进⾏计算()A. -4x2-5yB. -4x2+5yC. (4x2-5y)2D. (4x+5y)24. 若x+y=6,x-y=5,则x2-y2的值为()A. 11B. 15C. 30D. 605. 与(9a-b)相乘的积等于b2-81a2的因式为()A. 9a-bB. 9a+bC. -9a-bD. b-9a6. 已知x2-y2=4,那么(x-y)2(x+y)2的结果是()A. 4B. 8C. 16D. 327. 对于(2a+3b-1)(2a-3b+1),为了⽤平⽅差公式,下列变形正确的是()A. [2a-(3b+1)]2B. [2a+(3b-1)][2a-(3b-1)]C. [(2a-3b)+1][(2a-3b)-1]D. [2a-(3b-1)]28. 计算(x4+1)(x2+1)(x+1)(x-1)的结果是()A. x8+1B. x8-1C. (x+1)8D. (x-1)89.判断题(对的打“√”,错的打“×”):(1)(-x+y)(-x-y)=-x2-y2;()(2)(-x-y)(x-y)=-x2+y2;()(3)(-x+y)(x-y)=-x2-y2;()(4)(2x-1)(x+1)=2x2-1.()10. 计算:(1)(a+1)(a-1)= ;(2)(-a+1)(-a-1)= ;(3)(-a+1)(a+1)= ;(4)(a+1)(-a-1)= .11. 如果(-x-y)·P=x2-y2,那么P等于 .12. 填空:(1)(x+y)()=x2-y2;(2)()(m+n)=m2-n2;(3)(-5s+6t)()=25s2-36t2;(4)(+ )( -)=x4-.13. 请你观察如图的图形,依据图形⾯积的关系,不需要添加辅助线,便可得到⼀个⾮常熟悉的乘法公式,这个公式是 .14. 若x-y=4,x2-y2=24,则(x+y)3= .15. 计算:(1)(5ab-3x)(-3x-5ab);(2)(-y2+x)(x+y2);(3)(宜昌中考)(a+b)(a-b)+2b2;(4)(m+n)(m-n);(5)(-2x-1)(1-2x)-(3-2x)(2x+3);(6)(m-)(m2+)(m+).16. ⽤平⽅差公式计算:(1)30.8×29.2;(2)xx2-xx×xx.17. 先化简,再求值:(a-2b)(2a-b)-(2a-b)(b+2a),其中a=-1,b=1.B组⾃主提⾼18. 对于任意的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是()A. 4B. 3C. 5D. 219.某村正在进⾏绿地改造,原有⼀正⽅形绿地,若将它的每边都加长3m,则⾯积增加63m2.问:原绿地的边长为多少⽶?C组综合运⽤20. 我们在计算(2+1)(22+1)(24+1)(28+1)(216+1)时,发现直接运算很⿇烦,如果在算式前乘以(2-1)即1,原算式的值不变,⽽且还使整个算式能⽤乘法公式计算. 即:原式=(22-1)(22+1)(24+1)(28+1)(216+1)=232-1. 你能⽤上述⽅法迅速地算出(5+1)(52+1)(54+1)(58+1)(516+1)的值吗?请试着计算.参考答案3.4 乘法公式(第1课时)【课堂笔记】平⽅差【分层训练】1—5. ACACC 6—8. CBB9. (1)×(2)√(3)×(4)×10. (1)a2-1 (2)a2-1 (3)1-a2(4)-a2-2a-111. -x+y12. (1)x-y (2)m-n (3)-5s-6t(4)x2 x213. (x+y)(x-y)=x2-y2【点拨】利⽤⾯积相等即可列出.14. 21615. (1)原式=9x2-25a2b2(2)原式=x2-y4(3)原式=a2+b2(4)原式=(m)2-(n)2=2m2-3n2(5)原式=4x2-1-(9-4x2)=8x2-10.(6)原式=m4-16. (1)原式=(30+0.8)(30-0.8)=302-0.82=900-0.64=899.36(2)原式=xx2-(xx-1)(xx+1)=xx2-(xx2-1)=1.17. (a-2b)(2a-b)-(2a-b)(b+2a)=2a2-ab-4ab+2b2-[(2a)2-b2]=2a2-5ab+2b2-(4a2-b2)=2a2-5ab+2b2-4a2+b2=-2a2-5ab+3b2. 当a=-1,b=1时,原式=-2×(-1)2-5×(-1)×1+3×12=6.【点拨】利⽤平⽅差公式直接写出结果时,“平⽅”是⼀个整体的平⽅,不但字母要平⽅,系数也必须同时平⽅.18. C19. 设原绿地的边长为x(m),根据题意,得(x+3)2-x2=63,即3(2x+3)=63,解得x=9.答:原绿地的边长为9m.20. (532-1)2019-2020年七年级数学下册第3章整式的乘除3.4乘法公式第2课时校本作业A本新版浙教版课堂笔记1. 两数和的平⽅,等于这两数的平⽅和,加上这两数积的 . 即(a+b)2=a2+2ab+b2.2. 两数差的平⽅,等于这两数的,减去这两数积的2倍. 即(a-b)2=a2-2ab+b2. 分层训练A组基础训练1.计算(a+)2的结果是()A. a2-a+B. -a2+a+C. a2+a+D. -a2-a+2. 下列计算正确的是()A. (a+b)2=a2+b2B. (a-b)2=a2-b2C. (2x+y)2=4x2+4xy+y2D. (x-2y)2=x2-2xy+4y23. 若a2+ab+b2加上⼀个整式后,可得(a-b)2,则这个整式为()A. -abB. 3abC. -3abD. ab4. 在下列各式中:①(-2a-1)2;②(-2a-1)(-2a+1);③(-2a+1)(2a+1);④(2a-1)2;⑤(2a+1)2,计算结果相同的是()A. ①④B. ①⑤C. ②③D. ②④5. 如果(x-y)2+P=(x+y)2,那么P等于()A. ±4xyB. 4xyC. ±2xyD. 2xy 6.利⽤图形中阴影部分的⾯积与边长a,b之间的关系,可以验证某些数学公式.例如,根据图1,可以验证两数和的平⽅公式:(a+b)2=a2+2ab+b2,根据图2能验证的数学公式是()A. (a-2b)2=a2-4ab+4b2B. (a-b)2=a2-2ab+b2C. a2-b2=(a+b)(a-b)D. (a+2b)2=a2+4ab+4b27. 加上下列单项式后,仍不能使4x2+1成为⼀个整式的完全平⽅式的是()A. 2xB. 4xC. -4xD. 4x48. 填空:(1)x2+ +36=(x+6)2;(2)x2- +25=(x-5)2;(3)9x2+6x+ =(3x+1)2;(4)4-12x+ =(2-3x)2.9. 填空:(1)若(7x+A)2=49x2-14xy+B,则A= ,B= ;(2)若(a+b)2+M=(a-b)2,则M= ;(3)(+ )2=a4+ +1;(4)( +3b)2= +12a2b+ .10. 若a2+2a=4,则(a+1)2= .11. 将正⽅形的边长由acm增加6cm,则正⽅形的⾯积增加了 .12. 运⽤完全平⽅公式计算:(1)(3a+b)2= ;(2)(-x+3y)2= ;(3)(x-2y)2= ;(4)(-m-2n)2= ;(5)(a-2)2=.13. 运⽤公式计算下列各题:(1)992;(2)10.2214.利⽤乘法公式计算:(1)(2m+1)2(2m-1)2;(2)(a-2b)(a+2b)(a2-4b2).B组⾃主提⾼15.解⽅程:(1-3x)2+(2x-1)2=13(x-1)(x+1).16.(1)已知a+b=3,ab=2,求a2+b2的值;(2)已知(m+n)2=21,m2+n2=9,求mn的值;(3)若a2+b2=10,ab=-3,求a+b的值;(4)已知x+=2,则x2+=.17.(1)已知x+y=,x-y=,求xy的值.(2)已知x2-2x-2=0,求(x-1)2+(x+3)(x-3)+(x-3)(x-1)的值.C组综合运⽤18. 如下所⽰,(a+b)n与相应的杨辉三⾓中的⼀⾏数相对应. (a+b)1……………………1 1(a+b)2…………………1 2 1(a+b)3………………1 3 3 1(a+b)4……………1 4 6 4 1(a+b)5…………1 5 10 10 5 1由以上规律可知:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b))4=a4+4a3b+6a2b2+4ab3+b4.请你写出下⾯两个式⼦的结果:(a+b)5= ;(a+b)6= .参考答案3.4 乘法公式(第2课时)【课堂笔记】1. 2倍2. 平⽅和【分层训练】1—5. CCCBB 6—7. BA8. (1)12x (2)10x (3)1 (4)9x29. (1)-y y2(2)-4ab (3)1 a2 (4)2a2 4a4 9b210. 511. (12a+36)cm212. (1)9a2+6ab+b2(2)x2-6xy+9y2(3)x2-2xy+4y2(4)m2+4mn+4n2(5)3a2-4a+413. (1)9801 (2)104.0414. (1)16m4-8m2+1 (2)a4-8a2b2+16b415. 1-6x+9x2+4x2-4x+1=13(x2-1),-10x=-15,解得x=1.5.16. (1)5 (2)6 (3)±2 (4)217. (1)∵(x+y)2=x2+y2+2xy=6,(x-y)2=x2+y2-2xy=5,∴(x+y)2-(x-y)2=4xy=1,∴xy=.(2)∵x2-2x-2=0,∴x2-2x=2. ∴原式=x2-2x+1+x2-9+x2-4x+3=3x2-6x-5=3(x2-2x)-5=3×2-5=1.18. a5+5a4b+10a3b2+10a2b3+5ab4+b5a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6。
七年级数学下册 第3章 整式的乘除 3.3 多项式的乘法作业设计 (新版)浙教版-(新版)浙教版初中

3.3 多项式的乘法一.选择题(共4小题)1.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为()A.1 B.﹣3 C.﹣2 D.32.(x2+ax+8)(x2﹣3x+b)展开式中不含x3和x2项,则a、b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=0,b=0 D.a=3,b=83.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?()A.﹣4 B.﹣2 C.0 D.44.下列计算错误的是()A.(x+a)(x+b)=x2+(a+b)x+abB.(x+a)(x﹣b)=x2+(a+b)x+abC.(x﹣a)(x+b)=x2+(b﹣a)x+(﹣ab)D.(x﹣a)(x﹣b)=x2﹣(a+b)x+ab二.填空题(共8小题)5.若(x+1)(x+a)展开是一个二次二项式,则a=6.定义运算:a⊕b=(a+b)(b﹣2),下面给出这种运算的四个结论:①3⊕4=14;②a⊕b=b⊕a;③若a⊕b=0,则a+b=0;④若a+b=0,则a⊕b=0.其中正确的结论序号为.(把所有正确结论的序号都填在横线上)7.已知m+n=3,mn=﹣6,则(1﹣m)(1﹣n)=.8.已知(3x﹣p)(5x+3)=15x2﹣6x+q,则p+q=.9.如图,正方形卡片A类、B类和长方形卡片C类各若干X,如果要拼一个长为(a+3b),宽为(2a+b)的长方形,则需要C类卡片X.(第9题图)10.一个三角形的底边长为(2a+6b),高是(3a﹣5b),则这个三角形的面积是.11.计算下列各式,然后回答问题.(a+4)(a+3)=;(a+4)(a﹣3)=;(a﹣4)(a+3)=;(a﹣4)(a﹣3)=.(1)从上面的计算中总结规律,写出下式结果.(x+a)(x+b)=.(2)运用上述结果,写出下列各题结果.①(x+2008)(x﹣1000)=;②(x﹣2005)(x﹣2000)=.12.已知m,n满足|m+1|+(n﹣3)2=0,化简(x﹣m)(x﹣n)=.三.解答题(共6小题)13.已知将(x3+mx+n)(x2﹣3x+4)展开的结果不含x3和x2项.(m,n为常数)(1)求m、n的值;(2)在(1)的条件下,求(m+n)(m2﹣mn+n2)的值.14.探究新知:(1)计算:(a﹣2)(a2+2a+4)=;(2x﹣y)(4x2+2xy+y2)=;(x+3)(x2﹣3x+9)=;(m+3n)(m2﹣3mn+9n2)=.发现规律:(2)上面的多项式乘法计算很简洁,用含a、b字母表示为(a﹣b)(a2+ab+b2)=;(a+b)(a2﹣ab+b2)=.(3)计算:①(4﹣x)(16+4x+x2);②(3x+2y)(9x2﹣6xy+4y2).15.如图所示,某规划部门计划将一块长为(3a+b)米,宽为(2a+b)米的长方形地块进行改建,其中阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.(第15题图)16.已知有理数a、b、c满足|a﹣b﹣3|+(b+1)2+|c﹣1|=0,求(﹣3ab)•(a2c﹣6b2c)的值.17.先阅读后作答:根据几何图形的面积关系可以说明整式的乘法.例如:(2a+b)(a十b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(第17题图)(1)根据图②写出一个等式:(2)(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.18.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.参考答案一.1.D2.A3.D4.B二.5.﹣1或06.①④7.﹣88.﹣69.710.3a2+4ab﹣15b2 11.解:(a+4)(a+3)=a2+7a+12;(a+4)(a﹣3)=a2+a﹣12;(a﹣4)(a+3)=a2﹣a﹣12;(a﹣4)(a﹣3)=a2﹣7a+12.(1)(x+a)(x+b)=x2+(a+b)x+ab.(2)①(x+2008)(x﹣1000)=x2+1008x﹣2 008 000;②(x﹣2005)(x﹣2000)=x2﹣4 005x+4 010 000.12.解:∵|m+1|+(n﹣3)2=0,∴m+1=0,n﹣3=0,即m=﹣1,n=3,则原式=x2﹣(m+n)x+mn=x2﹣2x﹣3.三.13.解:(1)(x3+mx+n)(x2﹣3x+4),=x5﹣3x4+4x3+mx3﹣3mx2+4mx+nx2﹣3nx+4n,=x5﹣3x4+(4+m)x3+(n﹣3m)x2+(4m﹣3n)x+4n,由题意,得,解得,(2)(m+n)(m2﹣mn+n2)=m3+n3.当m=﹣4,n=﹣12时,原式=(﹣4)3+(﹣12)3=﹣64﹣1728=﹣1792.14.解:(1)(a﹣2)(a2+2a+4)=a3﹣8;(2x﹣y)(4x2+2xy+y2)=8x3﹣y3;(x+3)(x2﹣3x+9)=x3+27;(m+3n)(m2﹣3mn+9n2)=m3+27n3.(2)(a﹣b)(a2+ab+b2)=a3﹣b3;(a+b)(a2﹣ab+b2)=a3+b3.(3)①(4﹣x)(16+4x+x2)=43﹣x3=64﹣x3;②(3x+2y)(9x2﹣6xy+4y2)=(3x)3+(2y)3=27x3+8y3.15.解:S阴影=(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab(平方米),当a=3,b=2时,5a2+3ab=5×9+3×3×2=45+18=63(平方米).16.解:由|a﹣b﹣3|+(b+1)2+|c﹣1|=0,得.解得.(﹣3ab)•(a2c﹣6b2c)=﹣3a3bc+18ab3c,当时,原式=﹣3×23×(﹣1)×1+18×2×(﹣1)3×1=24﹣36=﹣12.17.解:①(a+2b)(2a+b)=2a2+5ab+2b2;②画出的图形如答图.(第17题答图)(答案不唯一,只要画图正确即得分)18.解:(1)(x2+px﹣)(x2﹣3x+q)=x4+(p﹣3)x3+(q﹣3p﹣)x2+(qp+1)x+q,∵积中不含x项与x3项,∴P﹣3=0,qp+1=0∴p=3,q=﹣,(2)(﹣2p2q)2+(3pq)﹣1+p2012q2014=[﹣2×32×(﹣)]2++×(﹣)2=36﹣+=35.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3 多项式的乘法
第1课时 简单多项式的乘法及应用
知识点 多项式乘多项式
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加,能合并同类项的需合并同类项.
ab +am +nb +nm.
计算:(2x +y)(x -3y).
一 多项式乘多项式进行化简求值运算
教材例2变式题先化简,再求值:(x +2)(x -2)-x(x -1),其中x =xx.
[归纳总结] 有关代数式的求值问题,无论题目是否要求“先化简,再求值”,一般都应先化简,再求值.
二 多项式乘多项式与单项式的乘法及幂的运算的混合运算
计算: a(a -3b)+(a +b)(2a -b)-(2a)2
+4a ·12
b.
[归纳总结] (1)应用多项式的乘法法则计算时,应注意法则的使用条件; (2)运算时,遵循先乘方,再乘除,最后加减的运算顺序.
三 多项式乘多项式的简单应用
教材作业题第4题变式题已知一个长方形的长为4,宽为3.若将长增加x ,宽增加
1
2
x. (1)用代数式表示此时长方形的面积S ;
(2)分别计算当x 为0.5,2时,长方形的面积.
[反思] 计算:-2a(a2-2a+1).
解:原式=-2a×a2+(-2a)×(-2a)+1①=-2a3+4a2+1②.
(1)找错:从第________步开始出现错误;
(2)纠错:
一、选择题
1.计算(x -2)(x +3)的结果是( ) A .x 2-6 B .x 2+6
C .x 2+x -6
D .x 2-x -6 2.下列计算正确的是( ) A .(m -1)(m -2)=m 2+2 B .(x +y)(x +y)=x 2+y 2
C .(x +y)(x -2y)=x 2-xy -2y 2
D .(2+b)(1-2b)=2b 2-3b +2
3.若(3x +1)(-2x +5)=-6x 2
+mx +n ,则m 的值为( ) A .3 B .-2 C .13 D .5
4.如图3-3-1所示的阴影部分的面积为( )
图3-3-1
A .ac +bc +ad +bd
B .ab +ac +bd +cd
C .ac +bd +ad
D .ac +bd +bc
5.如果(x +1)(2x +m)的乘积中不含一次项,那么m 的值为( ) A .2 B .-2 C .0.5 D .-0.5 二、填空题
6.xx·福州计算(x -1)(x +2)的结果是________.
7.若(3x +2)(-x -2)=ax 2
+bx +c ,则a =________,b =________,c =________. 8.一辆汽车的速度为(a +2b)千米/时,行驶(a -2b)小时的路程为________千米. 9.若a -b =1,ab =-2,则(b +1)(a -1)=________.
10.如图3-3-2,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为a +2b 、宽为a +b 的大长方形,那么需要C 类卡片______张.
图3-3-2
三、解答题
11.计算:(a +3)(a -1)+a(a -2).
12.先化简,再求值:
(1)(3x -2)(x -3)-2(x +6)(x -5)+3(x 2
-7x +13),其中x =72;
(2)(x -y)(x -2y)+(x -2y)(x -3y)-2(x -3y)(x -4y),其中x =4,y =3
2
.
13.一块长方形草坪的长是2x m ,宽比长少4 m .如果将这块草坪的长和宽都增加3 m ,那么面积会增加多少?求出当x =2时,面积增加的值.
1.[技巧性题目] 利用多项式的乘法知识解决以下问题:若M =123456789×123456786,N =123456788×123456787,试比较M 与N 的大小.
2.分类讨论题已知等式(x +a)(x +b)=x 2
+mx +28,其中a ,b ,m 均为整数,你认为整数m 可取哪些值?它与a ,b 的取值有关吗?请写出所有满足题意的整数m 的值.
详解详析
【预习效果检测】
解:(2x +y )(x -3y )=2x 2-6xy +yx -3y 2
= 2x 2-5xy -3y 2. 【重难互动探究】
例1 解:原式=x 2-2x +2x -4-x 2
+x =x -4. 当x =xx 时,原式=xx -4=xx.
例2 解:原式=a 2-3ab +2a 2-ab +2ab -b 2-4a 2+2ab =-a 2-b 2
. 例3 [解析] 长方形的长增加x 后变为4+x ,宽增加12x 后变为3+1
2x.
解:(1)S =(4+x)(3+12x)=12+2x +3x +12x 2=12x 2
+5x +12.
(2)当x =0.5时,S =12×0.52
+5×0.5+12=14.625.
当x =2时,S =12
×22
+5×2+12=24.
【课堂总结反思】 [知识框架]
相加 ab +am +nb +nm [反思] (1)①
(2)原式=-2a×a 2+(-2a)×(-2a)+(-2a)×1=-2a 3+4a 2
-2a. 【作业高效训练】 [课堂达标]
1.C
2.[解析] C A 项,(m -1)(m -2)=m 2
-3m +2,故此选项错误.B 项,(x +y)(x +y)=x 2+2xy +y 2,故此选项错误.D 项,(2+b)(1-2b)=-2b 2
-3b +2,故此选项错误.
3.C 4.C
5.[解析] B (x +1)(2x +m)=2x 2+mx +2x +m =2x 2
+(m +2)x +m.因为乘积中不含一次项,所以m +2=0,即m =-2.
6.[答案] x 2
+x -2
7.[答案] -3 -8 -4
[解析] 根据法则计算后对比就可求解.
因为(3x +2)(-x -2)=-3x 2-6x -2x -4=-3x 2-8x -4=ax 2
+bx +c ,所以a =-3,b =-8,c =-4.
8.[答案] (a 2-4b 2
) 9.[答案] -2
[解析] (b +1)(a -1)=ab -b +a -1=-2+1-1=-2. 10.[答案] 3
[解析] (a +2b)(a +b)=a 2+ab +2ab +2b 2=a 2+3ab +2b 2
,故需C 类卡片3张.
11.解:(a +3)(a -1)+a(a -2)=a 2+2a -3+a 2-2a =2a 2
-3.
12.解:(1)原式=3x 2-9x -2x +6-2x 2+10x -12x +60+3x 2-21x +39=4x 2
-34x +105.
当x =72时,原式=4×⎝ ⎛⎭
⎪⎫722-34×72+105=35.
(2)原式=x 2
-2xy -xy +2y 2
+x 2
-3xy -2xy +6y 2
-2x 2
+8xy +6xy -24y 2
=6xy -16y 2
. 当x =4,y =3
2
时,
原式=6×4×32-16×⎝ ⎛⎭
⎪⎫322=0.
13.[解析] 该题取材于生活,体现了数学来源于生活,又服务于生活的特点,只要根据
题意列出式子并化简即可.
解:(2x +3)(2x -4+3)-2x(2x -4)
=(2x +3)(2x -1)-(4x 2
-8x)
=4x 2-2x +6x -3-4x 2
+8x
=(12x -3)(m 2
).
当x =2时,12×2-3=21(m 2
).
答:如果将这块草坪的长和宽都增加 3 m ,那么面积会增加(12x -3)m 2.当x =2时,面
积增加21 m 2
.
[数学活动]
1.解:令a =123456788,则M =(a +1)(a -2),N =a(a -1),所以M -N =(a +1)(a -
2)- a(a -1)=(a 2-a -2)-(a 2
-a)=-2<0,由此得到M <N .
2.解:∵(x+a)(x +b)=x 2+bx +ax +ab =x 2+(a +b)x +ab =x 2
+mx +28,∴ab =28且a +b =m.
∵ab =28=1×28=(-1) ×(-28)=2×14=(-2) ×(-14)=4×7=(-4)×(-7), ∴m =a +b =1+28=29或(-1)+(-28)=-29或2+14=16或(-2)+(-14)=-16
或4+7=11或(-4)+(-7)=-11,即m与a,b的取值有关,m的值可能为29,-29,16,-16,11,-11.
欢迎您的下载,资料仅供参考!。