七年级下册整式的乘除练习题
(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(1)

A.﹣4B.±4C.4D.±8
10.若 ,则 的值等于( )
A.37B.27C.25D.44
11.如 , ,则 ( )
A.-11B.11
C.-7D.7
12.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是()
A. B.
C. D.
10.A
解析:A
【分析】
利用完全平方公式进行运算即可得.
【详解】
,
,即 ①,
又 ,
②,
由① ②得: ,
即 ,
故选:A.
【点睛】
本题考查了利用完全平方公式进行运算求值,熟记公式是解题关键.
11.D
解析:D
【分析】
根据 直接代入求值即可.
【详解】
解:当 , ,时,
=9-2=7.
故选:D.
【点睛】
本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键
∵ , ,
∴x+y= ,
∴
=
=
=20,
故选:A.
【点睛】
此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.
7.C
解析:C
【分析】
表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.
【详解】
解:如图,大正方形的边长是a,三角形①的两条直角边长都为a,三角形②的一条直角边为a-b,另一条直角边为b,
解析:6
【分析】
根据平方差公式计算.
【详解】
( +1)( ﹣1)=7-1=6,
七年级数学下册第一章《整式的乘除》测试卷及答案

七年级数学下册第一章《整式的乘除》单元测试卷一、选择题(本大题共15小题,共45.0分) 1. 计算−x 2·x 3的结果是( )A. −x 5B. x 5C. −x 6D. x 62. 下列算式中,计算结果等于a 6的是( )A. a 3+a 3B. a 5⋅aC. (a 4)2D. a 12÷a 23. 下列运算正确的是( )A. a 2+a 3=a 5B. (a 2)3=a 5C. a 6÷a 3=a 2D. (ab 2)3=a 3b 64. 下列计算正确的是( )A. 2x +3y =5xyB. (m +3)2=m 2+9C. (xy 2)3=xy 6D. a 10÷a 5=a 55. 已知x +y =2,xy =−2,则(1−x)(1−y)的值为( )A. −1B. 1C. 5D. −36. 已知a +b =2,ab =−2,则a 2+b 2=( )A. 0B. −4C. 4D. 87. 312是96的( )A. 1倍B. 19倍C. (19)6倍D. 36倍8. a 11÷(−a 2)3⋅a 5的值为( )A. 1B. −1C. −a 10D. a 99. 下列计算:①(−1)0=−1;②(−2)−2=14;③用科学记数法表示−0.0000108=1.08×10−5.其中正确的有( )A. 3个B. 2个C. 1个D. 0个10. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A.B. c >b >aC. b >a >cD. b >c >a11. 不论x ,y 为任何实数,x 2+y 2−4x −2y +8的值总是( )A. 正数B. 负数C. 非负数D. 非正数12. 若2x −3y +z −2=0,则16x ÷82y ×4z 的值为( )A. 16B. −16C. 8D. 413.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)914.把0.00091科学记数表示为()A. 91×10−5B. 0.91×10−3C. 9.1×104D. 9.1×10−415.下列运算正确的是()A. 6a−5a=1B. (a2)3=a5C. 3a2+2a3=5a5D. 2a⋅3a2=6a3二、填空题(本大题共5小题,共25.0分)16.一种花瓣的花粉颗粒直径约为0.00065米,0.00065用科学记数法表示为______.17.一个矩形的面积为m2+8m,若一边长为m,则其邻边长为______.18.若a+b=2,a2−b2=6,则a−b=______.19.若x8÷x n=x3,则n=______.20.若x2+2(m−3)x+16是完全平方式,则m的值是_________.三、计算题(本大题共4小题,共32.0分)21.计算:(1)(12a3−6a2+3a)÷3a−1(2)(x+y)2−(x+y)(x−y)22.计算(1)−a6⋅a5÷a3+(−2a2)4−(a2)3⋅(−3a)2;(2)(2x+y)2+(x−y)(x+y)−5x(x−y).23.计算下列各题:(1)−22+(20182−2018)0+(−13)−2−|−3|(2)(−32a2b)2⋅4ab2÷(3a3b)24.计算(1)−14+(−2)÷(−13)−|−9|(2)18×(12−56+23)四、解答题(本大题共5小题,共48.0分)25.已知(x2+mx+n)(x−1)的结果中不含x2项和x项,求m、n的值.26.若x+y=3,且(x−3)(y−3)=2.(1)求xy的值;(2)求x−y的值.27.一位同学在研究多项式除法时,把被除式的二次项系数写成a,而把结果的一次项系数又写成了−b,等式如下:(x3+ax2+1)÷(x+1)=x2−bx+1,现请你帮他求出a,b的值.28.已知x2−x+1=0,求代数式(x+1)2−(x+1)(2x−1)的值.29.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2= log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M⋅N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:log a M=m,log a N=n,则M=a m,N=a n∴M⋅N=a m⋅a n=a m+n,由对数的定义得m+n=log a(M⋅N)又∵m+n=log a M+log a N∴log a(M⋅N)=log a M+log a N解决以下问题:(1)将指数式53=125转化为对数式______;(2)log24=______,log381=______,log464______.(直接写出结果)=log a M−log a N(a>0,a≠1,M>0,N>0).(写出证明过程(3)证明:证明log a MN)(4)拓展运用:计算计算log34+log312−log316=______.(直接写出结果)答案1.A2.B3.D4.D5.D6.D7.A8.C9.C10.C11.A12.A13.C14.D15.D16.6.5×10−417.m+818.319.520.7或−121.解:(1)原式=4a2−2a+1−1=4a2−2a;(2)原式=x2+2xy+y2−(x2−y2)=x2+2xy+y2−x2+y2=2xy+2y2.22.解:(1)原式=−a11÷a3+16a8−a6⋅9a2=−a8+16a8−9a8 =6a8;(2)原式=4x2+4xy+y2+x2−y2−5x2+5xy=9xy.23.解:(1)−22+(20182−2018)0+(−13)−2−|−3|=−4+1+9−3 =3;(2)(−32a2b)2⋅4ab2÷(3a3b)=94a4b2⋅4ab2⋅13a3b=3a2b3.24.解:(1)原式=−1+6−9 =−4;(2)原式=18×12−18×56+18×23=9−15+12=6.25.解:(x2+mx+n)(x−1)=x3+(m−1)x2+(n−m)x−n.∵结果中不含x2的项和x项,∴m−1=0且n−m=0,解得:m=1,n=1.26.解:(1)由(x−3)(y−3)=2,整理得:xy−3(x+y)+9=2,把x+y=3代入得:xy=2;(2)∵x+y=3,xy=2,∴(x−y)2=(x+y)2−4xy=9−8=1,则x−y=±1.27.解:原除式变形为x3+ax2+1=(x+1)(x2−bx+1),=x3+(1−b)x2+(1−b)x+1,所以a=1−b,1−b=0,解得a=0,b=1.28.解:∵x2−x+1=0,∴x2−x=−1,原式=x2+2x+1−(2x2−x+2x−1)=x2+2x+1−2x2+x−2x+1=−x2+x+2=−(x2−x)+2=−(−1)+2=3.29.3=log5125 2 4 =3 1【解析】解:(1)∵一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.∴3=log5125,故答案为:3=log5125;(2)∵22=4,34=81,43=64,∴log24=2,log381=4,log464=3,故答案为:2;4;=3;(3)设log a M=m,log a N=n,则M=a m,N=a n,∴MN =a ma n=a m−n,∴由对数的定义得m−n=log a MN,又∵m−n=log a M−log a N,∴log a MN=log a M−log a N;(4)log34+log312−log316=log3(4×12÷16)=log33=1.故答案为:1.(1)根据题意可以把指数式53=125写成对数式;(2)运用对数的定义进行解答便可;(3)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算MN的结果,同理由所给材料的证明过程可得结论;(4)根据公式:log a(M⋅N)=log a M+log a N和log a MN=log a M−log a N的逆用,将所求式子表示为:log3(4×12÷16),计算可得结论.本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系。
七年级数学下册《整式的乘除》单元测试卷(附答案)

七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。
七年级下册整式的乘除训练(2021年整理)

七年级下册整式的乘除训练(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级下册整式的乘除训练(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级下册整式的乘除训练(word版可编辑修改)的全部内容。
整式的乘除
一、填空题
1、科学家测得肥皂泡的厚度约为0.0000007米,用科学计数法表示为________。
2、当x=-7时,代数式(2x+5)(x+1)—(x —3)(x+1)的值为_________.
3、整式A 与222n mn m +-的和是2)(n m +,则A=_________.
4、如果63)122)(122(=-+++b a b a ,那么b a +的值为_______.
5、一个正方形的边长为
a cm ,已知边长都减少6cm 后仍然得到一个正方形,则原来正方形的
面积减少了_________cm 2。
二、解答题 6、计算:
2232)2
1()8
1()4(xy xyz y x ÷-⋅- )2(3)2)(2(y x y y x y x ---+
22)12()12(+-a a 2201020112009-⨯
7、先化简,再求值:)1)(1()4(-++-x x x x ,其中2
1
=
x
.。
(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试题(答案解析)(3)

一、选择题1.下列计算正确的是( ) A .32a a a -= B .623a a a ÷= C .624a a a -= D .32a a a ÷= 2.23ab a ⋅的计算结果是( ) A .3abB .6abC .32a bD .33a b3.下列计算正确的是( ) A .(a +b )(a ﹣2b )=a 2﹣2b 2 B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 24.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( ) A .6x ± B .-1或4814x C .29x - D .6x ±或1-或29x -或4814x 5.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断: ①**a b b a =; ②()222**a b a b =; ③()()**a b a b -=-; ④()**a b c a b a c +=+*. 其中所有正确推断的序号是( ) A .①②③④B .①③④C .①②D .①③6.下列运算正确的是( ) A .428a a a ⋅= B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+7.下列运算正确的是( ) A .()326a a --=B .22326a a a ⋅=C .422a a ÷=D .()2211a a +=+8.若53x =,52y =,则235-=x y ( ) A .34B .1C .23D .989.若25,()49x y x y -=+=,则22x y +的值等于()A .37B .27C .25D .4410.如3a b +=-,1ab =,则22a b +=( )A .-11B .11C .-7D .711.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+ C .()2222a b a ab b +=++ D .()()2222a b a b a ab b +-=+-12.利用图形中面积的等量关系可以得到某些数学公式.根据如图能得到的数学公式是( )A .(a+b )(a-b )=a 2-b 2B .(a-b )2=a 2-2ab+b 2C .a (a+b )=a 2 +abD .a (a-b )=a 2-ab二、填空题13.如图所示,将一个边长为a 的正方形减去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.(1)利用图形的面积关系可以得到一个代数恒等式是________; (2)求前n 个正奇数1,3,5,7,…的和是________.14.计算:20(2)3--⋅=______. 15.已知18mx =,16n x =,则2m n x +的值为________. 16.计算:248(21)(21)(21)(21)1+++++=___________. 17.若2211392781n n ++⨯÷=,则n =____.18.一个底面是正方形的长方体,高为8cm ,底面正方形边长为7cm .如果正方形的边长增加了acm ,那么它的体积增加了_______3cm .19.若2a x =,3b x =,4c x =,则2a b c x +-=__________.20.如图,大正方形的边长为a ,小正方形的边长为b ,用代数式表示图中阴影部分的面积_____.三、解答题21.计算:(1)23262x y x y -÷ (2)()233221688x y z x y z xy +÷ (3)运用乘法公式计算:2123124122-⨯22.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______; (2)运用(1)中的结论,完成下列各题: ①已知:3a b -=,2224a b -=,求+a b 的值; ②计算:22222111111111123420192020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⋅⋅⋅⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 23.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)观察图②,请用两种不同的方式表示阴影部分的面积,写出三个代数式()2m n +、()2m n -、mn 之间的等量关系是______________;(2)有许多等式可以用图形的面积来表示.如图③,它表示了_________;(3)请你用图③提供的若干个长方形和正方形硬纸片图形,用拼长方形的方法,把下列二次三项式进行因式分解:2243m mn n ++.要求:在图④的框中画出图形并在下方写出分解的因式.24.已知(a+b )2=25,(a ﹣b )2=9.求a 2﹣6ab+b 2. 25.先化简,再求值:2(21)(21)(23)+---a a a ,其中112a =-. 26.(1)填空:①32(2)(5)x xy ⋅-=____________; ②3252()(2)a b a b -÷-=_________.(2) 先化简,再求值:2(1)(1)(1)(31)(21)x x x x x x --+----,其中2x =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据合并同类项法则和同底数幂的除法分别计算,再判断即可. 【详解】解:A.等式左边不是同类项不能合并,故计算错误,不符合题意; B. 624a a a ÷=,故原选项计算错误,不符合题意; C. 等式左边不是同类项不能合并,故计算错误,不符合题意; D. 32a a a ÷=,故计算正确,符合题意. 故选:D .本题考查合并同类项和同底数幂的除法.熟记运算公式是解题关键.2.D解析:D 【分析】直接利用单项式乘单项式计算得出答案. 【详解】 解:3ab•a 2=3a 3b . 故选:D . 【点睛】本题主要考查了单项式乘单项式,正确掌握相关运算法则是解题的关键.3.D解析:D 【分析】根据整式的乘法逐项判断即可求解. 【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意; B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意; D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意. 故选:D 【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.4.D解析:D 【分析】根据完全平方公式计算解答. 【详解】解:添加的方法有5种,分别是: 添加6x ,得9x 2+1+6x=(3x+1)2; 添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2; 添加﹣9x 2,得9x 2+1﹣9x 2=12; 添加﹣1,得9x 2+1﹣1=(3x )2,添加4814x ,得242819+91142x x x ⎛⎫+=+ ⎪⎝⎭, 故选:D .此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键.5.D解析:D 【分析】根据a*b 的定义,将每个等式的左右两边分别计算,再进行判断即可. 【详解】①∵a*b=()2a b -,b*a=()()22b a a b -=-, ∴a*b=b*a 成立; ②(a*b)2=()()()224a b a b -=-,a 2*b 2=()()()22222a b a b a b -=-+,∵()()()422a b a b a b -≠-+∴(a*b )2=a 2*b 2不成立;③∵(−a)*b=()()22a b a b --=+,a*(−b)= ()()22a b a b --=+⎡⎤⎣⎦, ∴−a*b=a*(−b)成立;④∵a*(b+c)= ()()22a b c a b c -+=--⎡⎤⎣⎦,a*b+a ∗c=()()()222a b a c a b c -+-≠--, ∴a*(b+c) =a*b+a ∗c 不成立; 故选:D . 【点睛】本题考查了新定义下实数的运算,正确理解题意是解题的关键.6.B解析:B 【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断. 【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误; 故选:B . 【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.7.A解析:A 【分析】根据整式的幂的乘方计算法则、乘法计算法则、除法计算法则、完全平方公式依次计算判断即可. 【详解】 A 、()326a a --=,故此选项正确;B 、23326a a a ⋅=,故此选项不正确;C 、422a a a ÷=,故此选项不正确;D 、()22211a a a ++=+,故此选项不正确; 故选:A. 【点睛】此题考查整式的计算能力,正确掌握整式的幂的乘方计算法则、乘法计算法则、除法计算法则、完全平方公式计算法则是解题的关键.8.D解析:D 【分析】根据幂的乘方的逆运算,同底数幂的除法的逆运算进行计算. 【详解】 解:()()23232323955555328x yx y x y -=÷=÷=÷=. 故选:D . 【点睛】本题考查幂的运算,解题的关键是掌握幂的乘方的逆运算,同底数幂的除法的逆运算.9.A解析:A 【分析】利用完全平方公式进行运算即可得. 【详解】5x y -=,2()25x y -∴=,即22225x xy y -+=①,又2()49x y +=,22249x xy y ∴++=②,由①+②得:222274x y +=,即2237x y +=, 故选:A . 【点睛】本题考查了利用完全平方公式进行运算求值,熟记公式是解题关键.10.D解析:D 【分析】根据222()2a b a b ab +=+-直接代入求值即可. 【详解】解:当3a b +=-,1ab =,时,222()2a b a b ab +=+-=9-2=7. 故选:D . 【点睛】本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键11.A解析:A 【分析】分别表示出甲乙图形中阴影部分的面积,根据面积相等可得结论. 【详解】甲图中阴影部分的面积为大正方形的面积减去小正方形的面积,即22a b -,乙图中阴影部分长方形的长为()a b +,宽为()-a b ,阴影部分的面积为()()a b a b +-,根据两个图形中阴影部分的面积相等可得22()()a b a b a b -=+-. 故选:A. 【点睛】本题考查了平方差公式的验证,灵活表示图形的面积是解题的关键.12.B解析:B 【分析】根据图形得出阴影部分的面积是(a-b )2和b 2,剩余的矩形面积是(a-b )b 和(a-b )b ,即大阴影部分的面积是(a-b )2,即可得出选项. 【详解】解:从图中可知:阴影部分的面积是(a-b )2和b 2,剩余的矩形面积是(a-b )b 和(a-b )b ,即大阴影部分的面积是(a-b )2, ∴(a-b )2=a 2-2ab+b 2, 故选:B . 【点睛】本题考查了完全平方公式的应用,主要考查学生的阅读能力和转化能力,题目比较好,有一定的难度.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】(1)可分别在正方形和梯形中表示出阴影部分的面积两式联立即可得到关于ab 的恒等式(2)由12-02=122-12=332-22=542-32=7…n2-(n-1)2=2n-1相加即可得结果【解析:22()()a b a b a b -=+- 2n 【分析】(1)可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a 、b 的恒等式(2)由12-02=1,22-12=3,32-22=5,42-32=7…n 2-(n-1)2=2n-1相加即可得结果. 【详解】解:正方形中,S 阴影=a 2-b 2; 梯形中,S 阴影=12(2a+2b )(a-b )=(a+b )(a-b ); 故所得恒等式为:a 2-b 2=(a+b )(a-b ), 故答案为:a 2-b 2=(a+b )(a-b ).(2)∵12-02=1,22-12=3,32-22=5,42-32=7…n 2-(n-1)2=2n-1 ∴1+3+4+5+7+9+…+(2n-1)=12-02+22-12+32-22+42-32+…+n 2-(n-1)2=n 2 故答案为:n 2. 【点睛】本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键.14.【分析】根据0指数和负指数的意义计算即可【详解】解:故答案为:【点睛】本题考查了0指数和负指数的运算解题关键是熟悉0指数和负指数的意义解析:14【分析】根据0指数和负指数的意义计算即可. 【详解】解:22011(2)31(2)4--⋅=⨯=-, 故答案为:14. 【点睛】本题考查了0指数和负指数的运算,解题关键是熟悉0指数和负指数的意义.15.【分析】根据同底数幂的乘法可得再根据幂的乘方可得然后再代入求值即可【详解】解:故答案为【点睛】此题主要考查了同底数幂的乘法和幂的乘方关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加;幂的乘解析:14【分析】根据同底数幂的乘法可得22m n m n x x x +=⋅,再根据幂的乘方可得()22m mx x =,然后再代入18mx =,16n x =求值即可. 【详解】解:()2222111684m nmnm nxxx xx +⎛⎫=⋅=⋅=⨯= ⎪⎝⎭,故答案为14. 【点睛】此题主要考查了同底数幂的乘法和幂的乘方,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.16.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键解析:216 【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解. 【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++ =448(21)(21)(21)1-+++ =88(21)(21)1-++ =16(21)1-+ =216. 故答案是:216. 【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.17.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3 【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键. 18.8a2+112a 【分析】长方体变化后的高为8cm 底面边长为(3+a )cm 然后根据长方体的体积公式列式求解即可【详解】解:(7+a )2×8-7×7×8=8(7+a )2-72=8(7+a-7)(7+a+解析:8a 2+112a【分析】长方体变化后的高为8cm ,底面边长为(3+a )cm ,然后根据长方体的体积公式列式求解即可.【详解】解:(7+a )2×8-7×7×8=8[(7+a )2-72]=8(7+a-7)(7+a+7)=8a (14+a )=8a 2+112a故答案为8a 2+112a .【点睛】本题主要考查了平方差公式的应用,掌握长方体的体积求法和平方差公式是解答本题的关键.19.【分析】利用同底数幂的乘法逆运算同底数幂的除法逆运算幂的乘方逆运算即可求解【详解】解:故答案为:3【点睛】此题主要考查求代数式的值熟练掌握同底数幂的乘法逆运算同底数幂的除法逆运算幂的乘方逆运算是解题 解析:3【分析】利用同底数幂的乘法逆运算、同底数幂的除法逆运算、幂的乘方逆运算即可求解.【详解】解:22a b c a b c x x x x +-=•÷a 2xbc x x =÷()2234=⨯÷3=故答案为:3.【点睛】此题主要考查求代数式的值,熟练掌握同底数幂的乘法逆运算、同底数幂的除法逆运算、幂的乘方逆运算是解题关键.20.【分析】由图形可得阴影部分的面积是:大正方形面积的一半与小正方形的面积之和减去以(a+b )为底边高为b 的三角形的面积之差再加上以b 为底边高为(a-b )的三角形的面积之和从而可以解答本题【详解】∵大正 解析:22a 【分析】由图形可得,阴影部分的面积是:大正方形面积的一半与小正方形的面积之和减去以(a+b )为底边,高为b 的三角形的面积之差再加上以b 为底边,高为(a-b )的三角形的面积之和,从而可以解答本题.【详解】∵大正方形的边长为a ,小正方形的边长为b ,∴图中阴影部分的面积是:2a 2+b 2−()b a b 2++()b a b 2-=2a 2, 故答案为2a 2. 【点睛】本题考查列代数式,解题的关键是利用数形结合的思想找出所求问题需要的条件.三、解答题21.(1)23y -;(2)22xyz x z +;(3)1【分析】(1)利用单项式除以单项式法则计算;(2)运用多项式除以单项式法则计算;(3)先将124122⨯化为(1231)(1231)+⨯-,利用平方差公式计算,再计算加减法.【详解】解:(1)23262x y x y -÷=23y -;(2)()233221688x y z x y z xy +÷=22xyz x z +;(3)2123124122-⨯=222123(1231)(1231)123(1231)1-+⨯-=--=. 【点睛】此题考查整式的计算法则:单项式除以单项式、多项式除以单项式、平方差公式,熟记法则是解题的关键.22.(1)a 2-b 2=(a+b )(a-b );(2)①8;②20214040 【分析】(1)分别表示拼接前后的阴影部分的面积,可得等式a 2-b 2=(a+b )(a-b ),得出答案; (2)①利用平方差公式将a 2-b 2化为(a+b )(a-b ),再整体代入即可;②先利用平方差公式变形,再约分即可得到结果.【详解】解:(1)图1中阴影部分的面积为a 2-b 2,图2中阴影部分的面积为(a+b )(a-b ), 因此有a 2-b 2=(a+b )(a-b ),∴能验证的等式是a 2-b 2=(a+b )(a-b )(2)①∵a 2-b 2=(a+b )(a-b )=24,a-b=3,∴a+b=8;②原式=11111111(1)(1)(1)(1)(1)(1)...(1)(1)22334420202020-+-+-+-+ 1324352019,223344202020202021=⨯⨯⨯⨯⨯⨯⨯⨯ 1202122020=⨯ 20214040= 【点睛】本题考查平方差公式的意义和应用,理解和掌握平方差公式的结构特征是正确应用的前提.23.(1)()()224m n m n mn -=+-;(2)()()22223m n m n m mn n ++=++;(3)见解析;()()22433m mn n m n m n ++=++【分析】(1)在图2中,大正方形由小正方形和4个矩形组成,则()()224m n m n mn -=+-; (2)大长方形的面积=两个边长为m 的正方形的面积+边长为n 的正方形的面积+3个边长为m 、n 的长方形的面积,列式即可;(3)由已知的等式,画出相应的图形即可分解因式.【详解】解:(1)大正方形由小正方形和4个长方形组成,大正方形的面积为(m+n )2,小正方形的面积为(m-n )2,长方形的面积为mn∴()()224m n m n mn -=+-. (2)大长方形的面积=两个边长为m 的正方形的面积+边长为n 的正方形的面积+3个边长为m 、n 的长方形的面积,∴()()22223m n m n m mn n ++=++. (3)先拼接长方形,然后利用面积之间的关系得到()()22433m mn n m n m n ++=++..【点睛】本题考查了完全平方公式的实际应用,完全平方公式的几何背景,利用面积法证明完全平方公式,完全平方公式与正方形的面积公式和长方形的面积公式经常联系在一起,要学会观察.24.﹣7【分析】根据完全平方公式(a±b )2=a 2±2ab+b 2,可得a 2﹣6ab+b 2=(a ﹣b )2﹣4ab ,(a ﹣b )2﹣(a ﹣b )2=4ab =16,据此计算即可.【详解】解:因为(a+b )2=25,(a ﹣b )2=9,所以(a ﹣b )2﹣(a ﹣b )2=4ab =16,所以a 2﹣6ab+b 2=(a ﹣b )2﹣4ab =9﹣16=﹣7.【点睛】本题主要考查了完全平方公式,熟记公式是解答本题的关键.25.12a -10,-11【分析】先按乘法公式进行化简,再代入求值即可.【详解】解:原式=2241(4129)---+a a a=22414129--+-a a a=12a -10 当112a =-时, 原式=112()1012⨯-- =110--=11-.【点睛】本题考查了运用乘法公式进行化简整式并求值,解题关键是熟练运用乘法公式进行化简,注意符号的变化.26.(1)①4240-x y ;②12a -;(2)253x x -+;-14 【分析】(1)①先计算积的乘方,然后计算单项式乘单项式;②先计算积的乘方,然后计算单项式除以单项式;(2)整式的混合运算,先算乘法,然后再算加减合并同类项化简,最后代入求值.【详解】解:(1)①32(2)(5)x xy ⋅- =328(5)x xy ⋅-4240x y =-;②3252()(2)a b a b -÷-=6252(2)a b a b ÷- =12a -; (2)2(1)(1)(1)(31)(21)x x x x x x --+---- 22222(1)(651)x x x x x =-----+222221651x x x x x =--+-+-253x x =-+当2x =时,原式2523220614=-⨯+⨯=-+=-.【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。
整式的乘除测试题(3套)及答案

北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)

七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)(满分100分,限时60分钟)一、选择题(共10小题,每小题3分,共30分)1.若2a=5,2b=3,则2a+b=()A.8B.2C.15D.12.计算(-x2)·(-x)4的结果是()A.x6B.x8C.-x6D.-x83.下列式子能用平方差公式计算的是()A.(2x-y)(-2x+y)B.(2x+1)(-2x-1)C.(3a+b)(3b-a)D.(-m-n)(-m+n)4.(2022江苏泰州泰兴济川中学月考)下列运算中,正确的是()A.a8÷a2=a4B.(-m)2·(-m3)=-m5C.x3+x3=x6D.(a3)3=a65.(2022江苏淮安洪泽期中)若a>0且a x=2,a y=3,则a x-y的值为()A.23B.1 C.−1 D.326.4a7b5c3÷(-16a3b2c)÷(18a4b3c2)等于()A.aB.1C.-2D.-17.【整体思想】已知m-n=1,则m2-n2-2n的值为()A.1B.-1C.0D.28.如果x2-(a-1)x+9是一个完全平方式,则a的值为()A.7B.-4C.7或-5D.7或-49.【新独家原创】若a=(π-2 023)0,b=2 0222-2 021×2 023,c=-23,则a-b-c的值为()A.2 021B.2 022C.8D.110.【转化思想】从前,一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算:(−13)100×3101=.12.(2022广东佛山月考)已知a+b=8,ab=15,则a2+b2=.13.(2022江苏盐城滨海第一初级中学月考)已知4×16m×64m=421,则m的值为.14.已知一个三角形的面积等于8x3y2-4x2y3,一条边长等于8x2y2,则这条边上的高等于.15.调皮的弟弟把小明的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮小明算出被除式等于.÷(5x)=x2-3x+6.16.【学科素养·几何直观】有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形如图1,其阴影部分的面积为16.将B放在A的内部得到图2,其阴影部分(正方形)的面积为3,则正方形A,B的面积之和为.三、解答题(共5小题,共52分)17.(2022宁夏银川三中月考)(14分)计算:(1)4y·(-2xy2);(2)(3x2+12y−23y2)·(−12xy)2;(3)(2a+3)(b2+5);(4)(6x3y3+4x2y2-3xy)÷(-3xy).18.(12分)计算:(1)-12+(π-3.14)0-(−13)−2+(-2)3;(2)2 001×1 999(运用乘法公式);(3)(x+y+3)(x+y-3).,y=-1.19.(6分)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=1320.(2022江苏泰州二中月考)(10分)(1)已知m+4n-3=0,求2m·16n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.21.【代数推理】(2022河北保定十七中期中)(10分)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2-12x+37的最小值.解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,∵不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,∴(x-6)2+1≥1,∴当x=6时,x2-12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2-14x+=(x-)2;(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;(3)如图,第一个长方形的长和宽分别是(3a+2)和(2a+5),面积为S1,第二个长方形的长和宽分别是5a和(a+5),面积为S2,试比较S1与S2的大小,并说明理由.参考答案1.C当2a=5,2b=3时,2a+b=2a×2b=5×3=15,故选C.2.C(-x2)·(-x)4=-x2·x4=-x6,故选C.3.D A.原式=-(2x-y)(2x-y)=-(2x-y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B.原式=-(2x+1)(2x+1)=-(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C.原式=(3a+b)(-a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D.原式=(-m)2-n2=m2-n2,原式能用平方差公式进行计算,此选项符合题意.故选D.4.B a8÷a2=a6,故A选项错误;(-m)2·(-m3)=-m5,故B选项正确;x3+x3=2x3,故C选项错误;(a3)3=a9,故D选项错误.故选B.5.A a x-y=a x÷a y=2÷3=23.故选A.6.C4a7b5c3÷(-16a3b2c)÷(18a4b3c2)=-14a4b3c2÷(18a4b3c2)=-2.故选C.7.A∵m-n=1,∴原式=(m+n)(m-n)-2n=m+n-2n=m-n=1,故选A.8.C∵x2-(a-1)x+9是一个完全平方式,∴x2-(a-1)x+9=(x+3)2或x2-(a-1)x+9=(x-3)2,∴a-1=±6,解得a=-5或a=7,故选C.9.C∵a=(π-2 023)0=1,b=2 0222-(2 022-1)×(2 022+1)=2 0222-2 0222+1=1,c=-23=-8,∴a-b-c=1-1+8=8.故选C.10.A由题意可知原土地的面积为ab平方米, 第二年按照庄园主的想法,土地的面积变为(a+10)(b-10)=ab-10a+10b-100=[ab-10(a-b)-100]平方米,∵a>b,∴ab-10(a-b)-100<ab, ∴租地面积变小了,故选A.11.3解析原式=(13)100×3101=(13×3)100×3=3.故答案是3.12.34解析∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为34.13.4解析∵4×16m×64m=421,∴4×42m×43m=421,∴41+5m=421,∴1+5m=21,∴m=4.故答案为4.14.2x-y解析易知该边上的高=2(8x3y2-4x2y3)÷(8x2y2)=16x3y2÷(8x2y2)-8x2y3÷(8x2y2)=2x-y.故答案为2x-y.15.5x3-15x2+30x解析由题意可得被除式等于5x·(x2-3x+6)=5x3-15x2+30x.故答案为5x3-15x2+30x.16.19解析设正方形A的边长为a,正方形B的边长为b,由题图1得(a+b)2-a2-b2=16,∴2ab=16,∴ab=8,由题图2得a2-b2-2(a-b)b=3,∴a2+b2-2ab=3,∴a2+b2=3+2ab=3+2×8=19,∴正方形A,B的面积之和为19.故答案为19.17.解析(1)4y·(-2xy2)=-8xy3.(2)原式=(3x2+12y−23y2)·14x2y2=3 4x4y2+18x2y3−16x2y4.(3)(2a+3)(b2+5)=ab+10a+32b+15.(4)(6x3y3+4x2y2-3xy)÷(-3xy)=-2x2y2-43xy+1.18.解析(1)原式=-1+1-9-8=-17.(2)2 001×1 999=(2 000+1)(2 000-1)=2 0002-1=3 999 999.(3)(x+y+3)(x+y-3)=[(x+y)+3][(x+y)-3]=(x+y)2-9=x2+2xy+y2-9.19.解析(2x+3y)2-(2x+y)(2x-y) =(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.当x=13,y=-1时,原式=12×13×(-1)+10×(-1)2=6.20.解析(1)∵m+4n-3=0,∴m+4n=3,∴2m·16n=2m·24n=2m+4n=23=8.(2)原式=x6n-2x4n=(x2n)3-2(x2n)2=64-2×16=64-32=32.21.解析(1)49;7.(2)x2+10x-2=x2+10x+25-25-2=x2+10x+25-27=(x+5)2-27≥-27, ∴当x=-5时,x2+10x-2有最小值,为-27.(3)由题意得,S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1-S2=6a2+19a+10-(5a2+25a)=a2-6a+10=(a-3)2+1,∵(a-3)2≥0,∴(a-3)2+1≥1,∴S1-S2>0,∴S1>S2.。
新北师大版七年级数学下册第一章《整式的乘除》单元练习题含答案解析 (11)

一、选择题(共10题)1.计算x2⋅y2⋅(−xy3)2的结果是( )A.x5y10B.x4y8C.−x5y8D.x6y122.数32019⋅72020⋅132021的个位数是( )A.1B.3C.7D.93.不论a,b为何有理数,a2+b2−2a−4b+c的值总是非负数,则c的最小值是( )A.4B.5C.6D.无法确定4.若(x+k)(x−5)的积中不含有x的一次项,则k的值是( )A.0B.5C.−5D.−5或55.小明做了下列四道单项式乘法题,其中他做对的一道是( )A.3x2⋅2x3=5x5B.3a3⋅4a3=12a9C.2m2⋅3m3=6m3D.3y3⋅6y3=18y66.在下列各式中,运算结果为x2的是( )A.x4−x2B.x4⋅x−2C.x6÷x3D.(x−1)27.已知(m−2018)2+(m−2020)2=34,则(m−2019)2的值为( )A.4B.8C.12D.168.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为( )A.0.7×10−3B.7×10−3C.7×10−4D.7×10−59.有4张长为a,宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,S2,则a,b满足( )图中阴影部分的面积为S1,空白部分的面积为S2.若S1=12A.2a=3b B.2a=5b C.a=2b D.a=3b10.已知a,b,c是△ABC的三边,且满足a2+b2+c2=ab+bc+ca,则△ABC的形状是( )A.等腰三角形B.等边三角形C.直角三角形D.不能确定二、填空题(共7题)11.一个正方形的边长增加了3cm,面积相应增加了39cm2,则原来这个正方形的边长为cm.12.完成下列各题.(1)若x2−2mx+1是一个完全平方式,则m的值为.(2)如果有理数a,b同时满足(2a+2b+3)(2a+2b−3)=55,那么a+b的值为.(3)已知a=255,b=344,c=433,d=522,则这四个数从大到小排列顺序是.(4)观察下列算式:① (x−1)(x+1)=x2−1;② (x−1)(x2+x+1)=x3−1;③ (x−1)(x3+x2+x+1)=x4−1寻找规律,并判断22018+22017+⋯+22+2+1的值的末位数字为.13.m(a−b)3=( )(b−a)3,m(y−x)2=( )(x−y)2.14.x2+mx−15=(x+3)(x+n),则m的值为.15.计算:30−2−1=.16.已知(5+2x)2+(3−2x)2=40,则(5+2x)⋅(3−2x)的值为.17.已知实数12∣a−b∣+√2b+c+c2−c+14=0,则cab=.三、解答题(共8题)18.若x+y=3,且(x+2)(y+2)=12.(1) 求xy的值;(2) 求x2+4xy+y2的值.19.计算:(1) 先化简,再求值:(x−1)(x−3)−4x(x+1)+3(x+1)(x−1),其中x=116;(2) 已知3×9m×27m=317+m,求:(−m2)3÷(m3⋅m2)的值.20.解答下列问题.(1) 如图甲,从边长为a的正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形,然后拼成一个平行四边形(如图乙),那么通过计算两个图形阴影部分的面积,可以验证因式分解公式成立的是;(2) 根据下面四个算式:52−32=(5+3)×(5−3)=8×2;112−52=(11+5)×(11−5)=16×6=8×12;152−32=(15+3)×(15−3)=18×12=8×27;192−72=(19+7)×(19−7)=26×12=8×39.请你再写出两个(不同于上面算式)具有上述规律的算式;(3) 用文字写出反映(2)中算式的规律,并证明这个规律的正确性.21.如图,将一张长方形纸板按图中虚线裁剪成9块,其中有2块是边长都为m厘米的大正方形,2块是边长都为n厘米的小正方形,5块是长为m厘米,宽为n厘米的一模一样的小长方形,且m>n,设图中所有裁剪线(虚线部分)长之和为L厘米.(1) L=.(试用m,n的代数式表示)(2) 若每块小长方形的面积为10平方厘米,四个正方形的面积和为58平方厘米,求L的值.22.在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算:(1)把这个数加上2后平方;(2)然后再减去4;(3)再除以原来所想的那个数,得到一个商.最后把你所得到的商告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?23.已知代数式:① a2−2ab+b2;② (a−b)2.(1) 当a,b满足(a−5)2+∣ab−15∣=0时,分别求代数式①和②的值;(2) 观察(1)中所求的两个代数式的值,探索代数式a2−2ab+b2和(a−b)2有何数量关系,并把探索的结果写出来;(3) 利用你探索出的规律,求128.52−2×128.5×28.5+28.52的值.24.回答下列问题.(1) 请填空:(x−1)(x+1)=;(x−1)(x2+x+1)=;(x−1)(x3+x2+x+1)=.(2) 观察猜想观察上述几个式子,我们可以猜想得到(x−1)(x99+x98+x97+⋯+x+1)=.(3) 请你利用上面的结论,完成下面各题.计算:299+298+297+⋯+22+2+1;计算:(−2)50+(−2)49+(−2)48+⋯+(−2)2+(−2)+1.(4) 在括号内填上一个多项式:(x+1)( )=x5+1.25.小马、小虎两人共同计算一道题:(x+a)(2x+b).小马抄错了a的符号,得到的结果是2x2−7x+3;小虎漏抄了第二个多项式中x的系数,得到的结果是x2+2x−3.(1) 求a,b的值.(2) 细心的你请计算这道题的正确结果.(3) 当x=−1时,计算(2)中的代数式的值.答案一、选择题(共10题)1. 【答案】B【知识点】积的乘方2. 【答案】A【解析】∵31=3,32=9,33=27,34=81,35=243⋯,∴3n的个位数分别以3,9,7,1循环,∵2019÷4=504⋯3,∴32019的个位数是7;71=7,72=49,73=343,74=2041,75=16807⋯,∴7n的个位数分别以7,9,3,1循环,∵2020÷4=505,∴72020的个位数是1;∵131=13,132=169,133=2197,134=28561,135=371293,∴13n的个位数分别以3,9,7,1循环,∵2021÷4=505⋯1,∴132021的个位数为3,∵7×1×3=21,∴32019⋅72020⋅132021的个位数为1,故选:A.【知识点】同底数幂的乘法3. 【答案】B【解析】∵a2+b2−2a−4b+c=(a−1)2−1+(b−2)2−4+c =(a−1)2+(b−2)2+c−5≥0,∴c的最小值是5.【知识点】完全平方公式4. 【答案】B【解析】(x+k)(x−5)=x2−5x+kx−5k =x2+(k−5)x−5k,∵不含有x的一次项,∴k−5=0,解得k=5.【知识点】多项式乘多项式5. 【答案】D【解析】3x2⋅2x3=6x5;3a3⋅4a3=12a6;2m2⋅3m3=6m5;3y3⋅6y3=18y6.【知识点】单项式乘单项式6. 【答案】B【解析】x4与x2不是同类项,不能合并,A选项错误;x4⋅x−2=x2,B选项正确;x6÷x3=x3,C选项错误;(x−1)2=x−2,D选项错误.【知识点】同底数幂的除法7. 【答案】D【解析】∵(m−2018)2+(m−2020)2=34,∴[(m−2019)+1]2+[(m−2019)−1]2=34,∴(m−2019)2+2(m−2019)+1+(m−2019)2−2(m−2019)+1=34,∴2(m−2019)2=32,∴(m−2019)2=16.【知识点】完全平方公式8. 【答案】C【知识点】负指数科学记数法9. 【答案】C【解析】由题意可得:S2=12b(a+b)×2+12ab×2+(a−b)2=ab+b2+ab+a2−2ab+b2 =a2+2b2,S1=(a+b)2−S2=(a+b)2−(a2+2b2)=2ab−b2,∵S1=12S2,∴2ab−b2=12(a2+2b2),∴4ab−2b2=a2+2b2,∴a2+4b2−4ab=0,∴(a−2b)2=0,∴a−2b=0,∴a=2b.【知识点】完全平方公式10. 【答案】B【解析】∵a2+b2+c2=ab+bc+ca,∴2a2+2b2+2c2−2ab−2bc−2ca=0,则(a−b)2+(a−c)2+(b−c)2=0故a=b=c,△ABC的形状等边三角形.【知识点】完全平方公式二、填空题(共7题)11. 【答案】5【解析】设原来正方形的边长是x cm.根据题意,得(x+3)2−x2=39,∴(x+3+x)(x+3−x)=3(2x+3)=39,解得x=5.【知识点】平方差公式12. 【答案】±1;±4;b>c>a>d;7【解析】(1)∵x2−2mx+1是一个完全平方式,∴x2−2mx+1=(x±1)2=x2±2x+1,∴m=±1.(2)∵(2a+2b+3)(2a+2b−3)=(2a+2b)2−9=55,∴(2a+2b)2=64,∴2a+2b=±8,∴a+b=±4.(3)∵a=255=(25)11=3211,b=344=(34)11=8111,c=433=(43)11=6411,d=522=(52)11=2511,∵8111>6411>3211>2511,∴b>c>a>d.(4)根据算式可总结规律得,(2−1)×(22018+22017+⋯+22+2+1)=22019−1,∴22018+22017+⋯+22+2+1=22019−1.∵21=2,22=4,23=8,24=16,25=32,26=64,⋯⋯∵2n的末位数字每4个一组循环重复,又∵2019÷4=504⋯⋯3,∴22019的末位数字是8,∴22019−1的末位数字是7,即22018+22017+⋯+22+2+1的值的末位数字是7.【知识点】完全平方公式、平方差公式、用代数式表示规律13. 【答案】−m;m【知识点】幂的乘方14. 【答案】−2【解析】(x+3)(x+n)=x2+(3+n)x+3n,又x2+mx−15=(x+3)(x+n),所以3n=−15,3+n=m,所以n=−5,m=−2.【知识点】多项式乘多项式15. 【答案】12【解析】原式=1−12=12.【知识点】负指数幂运算、零指数幂运算16. 【答案】12【解析】∵(5+2x)2+(3−2x)2=40,∴[(5+2x)+(3−2x)]2−2(5+2x)(3−2x)=40,即64−2(5+2x)(3−2x)=40,∴(5+2x)(3−2x)=12.【知识点】完全平方公式17. 【答案】8【知识点】绝对值的性质、完全平方公式、二次根式的性质三、解答题(共8题)18. 【答案】(1) ∵(x+2)(y+2)=12,x+y=3,∴xy+2(x+y)+4=xy+2×3+4=12,解得xy=2.(2) ∵x+y=3,xy=2,∴x2+4xy+y2=(x+y)2+2xy=32+2×2=9+4=13.【知识点】完全平方公式、多项式乘多项式、简单的代数式求值19. 【答案】(1) 原式=(x2−4x+3)−(4x2+4x)+(3x2−3)=−8x;当x=116时,原式的值是:−8×116=−12.(2) 因为3×9m×27m=317+m,所以35m+1=317+m,所以5m+1=17+m,所以m=4,又因为(−m2)3÷(m3⋅m2)=−m6÷m5=−m,所以原式的值是:−4.【知识点】整式的混合运算、同底数幂的除法、幂的乘方20. 【答案】(1) a2−b2=(a+b)(a−b)(2) 72−52=8×3;92−32=8×9等.(3) 规律:任意两个奇数的平方差是8的倍数.设m,n为整数,两个奇数可表示为2m+1和2n+1,则(2m+1)2−(2n+1)2=4(m−n)(m+n+1).当m,n同是奇数或偶数时,m−n一定为偶数,∴4(m−n)一定是8的倍数;当m,n一偶一奇时,则m+n+1一定为偶数,∴4(m+n+1)一定是8的倍数.∴任意两个奇数的平方差是8的倍数.【知识点】平方差公式21. 【答案】(1) 6m+6n(2) 依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴图中所有裁剪线(虚线部分)长之和为42 cm.【知识点】简单的代数式求值、简单列代数式、完全平方公式22. 【答案】设这个数是x,则最后所得的商为[(x+2)2−4]÷x=(x2+4x+4−4)÷x=x+4.如果把这个商告诉主持人,主持人只需减去 4 就知道你原来想的那个数是多少. 【知识点】完全平方公式、多项式除以单项式23. 【答案】(1) ∵(a −5)2+∣ab −15∣=0, ∴a =5,ab =15,则 b =3,∴ ① a 2−2ab +b 2=52−2×5×3+32=4; ② (a −b )2=(5−3)2=4.(2) 由(1)知 a 2−2ab +b 2=(a −b )2.(3) 128.52−2×128.5×28.5+28.52=(128.5−28.5)2=1002=10000.【知识点】完全平方公式24. 【答案】(1) x 2−1;x 3−1;x 4−1 (2) x 100−1 (3) 2100−1;251+13.(4) x 4−x 3+x 2−x +1【知识点】平方差公式、其他公式、立方公式25. 【答案】(1) 根据题意,得小马的计算过程为 (x −a )⋅(2x +b )=2x 2+bx −2ax −ab =2x 2+(b −2a )x −ab =2x 2−7x +3;小虎的计算过程为 (x +a )(x +b )=x 2+bx +ax +ab =x 2+(a +b )x +ab =x 2+2x −3. ∴{b −2a =−7,a +b =2.解得 {a =3,b =−1.(2) 由(1),得 (x +3)(2x −1)=2x 2−x +6x −3=2x 2+5x −3. (3) 当 x =−1 时,2x 2+5x −3=2×1+5×(−1)−3=−6. 【知识点】多项式乘多项式、简单的代数式求值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版本七年级下册 整式的乘除测试题
-.选择题: (1) (-a m )5 *a n (A ) 一a 5m (B ) a (C )
5m- n a (D ) _ a 5m n
以下运算不正确的是(
4 2 3 c
x x — x -x = 0; —x( — X )3 ( — X )5 3.下列运算正确的是( 2. A 、 C 、 B 、 4 5 9 (A ) a a a 4.以下计算正确的是
2 3
A. 3a 2 4ab = 7a 3b 9 =—x ; ) •x 2 = 2x 4
-4 12
(B ) a 3 x x 3+ x x D 、— 58X (— 5)4= 5
3 3 小3 只 4小5 — 9 / 3、4
a a = 3a (C ) 2a 3a =6a (D ) (-a )
a 7
3“ 2 、 3 3 C. (xy) (— x y)= — x y 5.用科学记数方法表示 0.0000907,得( )
B. (2ab 3) (- — 4ab)= —
2a 2b 4
2 3 2
D. — 3a b(— 3ab)= 9a b
) (A ) 9.07 10* (B ) 9.07 10^ (C ) 90.7 10』 (D ) 90.7 10^
6. 1 — (x — y)2化简后结果是(
2 2
(A) 1 — x + y ; 2
(B)1 — x 2 2 (C) 1 — x — 2x y + y ; (D)1 — x 2+
2x
3 2
(-―a bc)“(-3ab)等于( )
4 9 2
1 9 1 2
a c B. ac C. a
b D. a
c 4 4 4 4 GO A Q r\
(8x y +12x y-4x )半4x )的结果是( 3 2 2 A. -2x y -3x y 4 2 2 C. -2x y -3x y+1 9. (0.75a 2b 3-3 ab 2 5 2 A. -1.5ab 2+1.2b-1 2
C. -1.5ab +1.2b 7.
A. 8.
B. -2x 3y 2-3x 2y+1
D. 2x 3y 3+3x 2y-1 1
+ ?ab)十0.5ab)等于 _______
2
B. -0.375ab 2+0.3b-0.25
3
ab 2-1.2b+1
2
D. 10. ① (-3x)4亠(-3x)— ④8x n 2y 4 “(-2xy 2)2 =2x n ; -3x ② 6a 6 “ 2a 2 = 3a 3 a 8b^' (a 3b 3)2
二 a 2b 其中错误的运算个数有(
A. 1个
B. 2个
C. 3个
D. 4个
二•填空:(每小题2分,共30 分)
1. (―2a 2b 3 3 = _______ ;
2. [(_m)2]3 = _________________________ ;
n _2
n +2
3.X X 100 100
4. - 4 0.25 = ______________
2 3
5. (x-y) (y-x) (x-y)=_______________ ;
6.
2 7. (0.1x + ________ ) = __________ +2x + __________
8. (a 2b)(a -2b)= ________________
2 2
9. 已知:a+b=9, a +b =21,求 ab= ______________
10. (-x-y)(x-y)=, ;
1 6 1 3 11. ------------------------------------------ (-2a)讯-= ;
3 3 x 2 2 2 2
12. (25a x y)匸 _________ = 5a x y
13. (12x 5y 3z —3x 2y 4) + (—xy) = _________
7 5 14. (x-y)讯y-x) = ___________
15. — (-0.1)0= ____________ ;
三•解答题:(每小题3分,共21分)
3 4 2、4 4 2 2、3
3、2
1. — a a a + (a ) + (— a )
2. (— 3x y) (— 2xy z)
4. 3a 2 — 2a(5a- 4b) — b(3a — b)
2 2
3. (5a 2b — 3ab —1)(—
5. 6x2 —(x —1)(x + 2) —2(x—1)(x + 3)
6. 15x 8y 2z 4-:-(—3x 4yz 3) " (—4x 2y)
4 2 3 3 2 3
7. (0.16mn-0.6mn +1.4mn )半 mn ) 5 四.计算题:
1. (-2a 3b)(-2a -3b) H.先化简,再求值: 8X 2—( x+2) (2-x )— 2 (x — 5) 2,其中 x= — 3
六、计算阴影的面积(6分) 正方形的边长是 a b 。
小正方形的边长是 a - b,空白长方形的宽是 a - b,求阴影的面积。
3
七、长方形纸片的长是15 cm,长宽上各剪去两个宽为 3 cm 的长条,剩下的面积是原面积的
>。
5
求原面积。
(6分)
2. (a+4b-3c ) (a-4b-3c )
3. 79.8 30.2
4. (X- y)(x y)(x 2 - y 2)。