直线的倾斜角和斜率教案
直线的倾斜角和斜率教案

直线的倾斜角和斜率教案一、教学目标1. 理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 掌握直线的斜率公式,能够计算直线的斜率。
3. 能够运用直线的倾斜角和斜率解决实际问题。
二、教学重点1. 直线的倾斜角的概念。
2. 直线的斜率公式的运用。
三、教学难点1. 直线的倾斜角的求解。
2. 直线的斜率的计算。
四、教学准备1. 教师准备PPT,内容包括直线的倾斜角和斜率的定义、公式和例题。
2. 准备黑板和粉笔,用于板书和讲解。
五、教学过程1. 导入:通过提问方式引导学生回顾初中阶段学习的直线方程和倾斜角的概念,为新课的学习做好铺垫。
2. 直线的倾斜角的概念:讲解直线的倾斜角的定义,通过图形和实例让学生直观地理解直线的倾斜角。
3. 直线的斜率公式:讲解直线的斜率公式,并通过图形和实例让学生理解公式的含义和运用。
4. 例题讲解:给出几个例题,让学生上台板书和讲解,巩固对直线的倾斜角和斜率的理解和运用。
5. 课堂练习:给出几道练习题,让学生独立完成,检测对直线的倾斜角和斜率的掌握程度。
7. 作业布置:布置几道有关直线的倾斜角和斜率的作业题,让学生课后巩固。
六、教学反思通过本节课的教学,发现学生在直线的倾斜角的求解和直线的斜率的计算方面存在一定的困难。
在今后的教学中,应更加注重这两个方面的讲解和练习,让学生更好地理解和掌握。
结合实际问题,让学生感受直线的倾斜角和斜率在解决实际问题中的重要性。
七、教学评价通过课堂讲解、例题讲解和课堂练习,评价学生对直线的倾斜角和斜率的掌握程度。
关注学生在课后作业的完成情况,全面评估学生对本节课内容的掌握。
八、教学拓展1. 讲解直线的倾斜角和斜率在实际问题中的应用,如计算直线的倾斜角度数、求解直线的斜率等。
2. 引导学生思考直线的倾斜角和斜率与其他数学概念的联系,如与函数、方程等的关系。
九、教学资源1. PPT课件。
2. 直线方程和倾斜角的相关教材和辅导书。
3. 网络资源,如直线斜率的计算器等。
直线的倾斜角和斜率教学设计

直线的倾斜角和斜率教学设计教学设计:直线的倾斜角和斜率一、教学目标:1.知识目标:理解直线的倾斜角和斜率的概念,能够计算直线的斜率。
2.能力目标:能够运用直线的倾斜角和斜率解决实际问题。
3.情感目标:培养学生对数学的兴趣和积极参与数学学习的态度。
二、教学内容:1.直线的倾斜角和斜率的概念介绍。
2.直线的斜率的计算方法。
3.直线的倾斜角和斜率在实际问题中的应用。
三、教学过程:1.导入新知识(5分钟)让学生观察一些直线的图片,引导学生思考直线的特征和性质。
然后提出问题:“如何刻画直线的倾斜程度?”进一步引导学生思考斜率的概念。
2.概念讲解(10分钟)介绍直线的倾斜角和斜率的概念,并进行示例说明。
通过几个具体图例,让学生理解倾斜角和斜率的计算方法。
3.斜率计算练习(15分钟)在黑板上给出几组直线的坐标,让学生自行计算斜率。
然后互相交流答案,老师给予必要的指导和讲解。
4.斜率的性质探究(10分钟)在黑板上给出不同的两条直线,让学生分别计算斜率并进行比较,引导学生发现两条平行线的斜率相等,两条垂直线的斜率的乘积为-15.应用实例探讨(20分钟)以实际问题为例,引导学生应用倾斜角和斜率的概念计算问题。
例如,计算两个点之间的坡度、判断两个线段的交叉情况等。
6.巩固练习(15分钟)提供一些练习题,要求学生计算直线的斜率,并在给出的坐标系中绘制这些直线。
让学生将所学知识应用到实际问题中,巩固对倾斜角和斜率的理解和计算能力。
7.拓展应用(15分钟)让学生从生活实际中寻找更多的与斜率相关的问题,并用倾斜角和斜率的概念解决这些问题。
鼓励学生讨论和分享解决思路,加深对知识的理解和应用能力。
8.知识总结(5分钟)让学生自主总结直线的倾斜角和斜率的关系,并展示自己的总结。
教师进行点评和补充说明。
四、课堂训练:借助数字资源软件或练习册等材料,布置适量的作业题目,巩固学生对直线的倾斜角和斜率的理解和应用。
五、教学反思:本教学设计通过多种方式引导学生理解直线的倾斜角和斜率的概念,并加以实际问题的应用,既注重了学生的思维能力培养,又培养了学生对数学的兴趣和动手能力。
直线的倾斜角与斜率教案

直线的倾斜角与斜率教案一、教学目标:1. 让学生理解直线的倾斜角的概念,能够求出直线的倾斜角。
2. 让学生掌握直线的斜率计算公式,能够计算直线的斜率。
3. 让学生了解直线的倾斜角与斜率之间的关系,能够运用关系解决问题。
二、教学重点与难点:1. 教学重点:直线的倾斜角的概念,直线的斜率计算公式,直线的倾斜角与斜率之间的关系。
2. 教学难点:直线的倾斜角与斜率之间的关系的运用。
三、教学方法:1. 采用问题驱动法,引导学生主动探究直线的倾斜角与斜率之间的关系。
2. 利用数形结合法,让学生在几何图形中观察和理解直线的倾斜角与斜率。
3. 运用实例分析法,让学生通过实际问题运用直线的倾斜角与斜率之间的关系。
四、教学准备:1. 教学课件:直线的倾斜角与斜率的定义及计算公式。
2. 教学素材:几何图形、实际问题。
3. 教学工具:黑板、粉笔、直尺、圆规。
五、教学过程:1. 导入新课:通过复习平面几何中直线的基本概念,引导学生进入直线的倾斜角与斜率的学习。
2. 讲解直线的倾斜角:介绍直线的倾斜角的定义,讲解如何求直线的倾斜角。
3. 讲解直线的斜率:介绍直线的斜率计算公式,讲解如何计算直线的斜率。
4. 探究直线的倾斜角与斜率之间的关系:引导学生通过几何图形和实际问题,探究直线的倾斜角与斜率之间的关系。
5. 巩固知识:通过实例分析,让学生运用直线的倾斜角与斜率之间的关系解决问题。
6. 课堂小结:总结直线的倾斜角与斜率的概念、计算方法和关系。
7. 布置作业:布置有关直线的倾斜角与斜率的练习题,巩固所学知识。
六、教学反思:在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了直线的倾斜角与斜率的概念和计算方法,以及是否能够运用关系解决问题。
如有问题,要及时调整教学方法,提高教学质量。
七、课时安排:本节课安排2课时,第一课时讲解直线的倾斜角和斜率的概念及计算方法,第二课时讲解直线的倾斜角与斜率之间的关系和巩固知识。
八、教学评价:通过课堂讲解、练习题和实际问题解决,评价学生对直线的倾斜角与斜率的掌握程度。
直线的倾斜角和斜率教案

直线的倾斜角和斜率教案一、教学目标1. 知识与技能:(1)理解直线的倾斜角的概念,能够求出直线的倾斜角;(2)掌握直线的斜率与倾斜角的关系,能够计算直线的斜率;(3)能够运用直线的倾斜角和斜率解决实际问题。
2. 过程与方法:通过观察实际情境,让学生感受直线的倾斜角和斜率的概念,培养学生的观察能力和思维能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)直线的倾斜角的概念;(2)直线的斜率与倾斜角的关系;(3)运用直线的倾斜角和斜率解决实际问题。
2. 教学难点:直线的斜率与倾斜角的计算。
三、教学过程1. 导入新课:通过展示实际情境,如倾斜的梯子、斜坡等,引导学生思考直线的倾斜角和斜率的概念。
2. 讲解直线的倾斜角:(1)介绍直线的倾斜角的概念,即直线与水平线之间的夹角;(2)引导学生通过观察和思考,理解直线的倾斜角的大小与直线的斜率之间的关系。
3. 讲解直线的斜率:(1)介绍直线的斜率的概念,即直线的倾斜角的正切值;(2)引导学生通过观察和思考,掌握直线的斜率与倾斜角的关系;(3)举例说明如何计算直线的斜率。
4. 练习与巩固:布置一些有关直线的倾斜角和斜率的练习题,让学生独立完成,巩固所学知识。
四、课后作业1. 请描述直线的倾斜角和斜率的概念,并说明它们之间的关系。
(1)直线y = 2x + 3;(2)直线x = 4。
五、教学反思通过本节课的教学,学生应该能够理解直线的倾斜角和斜率的概念,并掌握它们之间的关系。
在教学过程中,要注意引导学生通过观察和思考,培养学生的观察能力和思维能力。
布置适量的练习题,让学生巩固所学知识。
在课后,要关注学生的学习情况,及时进行教学反思,不断提高教学质量。
六、教学拓展1. 探讨直线的倾斜角与斜率在实际应用中的例子,如建筑设计中的斜屋顶、物理学中的倾斜面等。
2. 引导学生思考直线的倾斜角和斜率在几何图形中的作用,如在三角形、四边形等图形中的运用。
直线的倾斜角和斜率教案

直线的倾斜角和斜率教案一、教学目标1.理解直线的倾斜角和斜率的概念;2.掌握求直线的倾斜角和斜率的方法;3.能够应用直线的倾斜角和斜率解决实际问题。
二、教学重点1.直线的倾斜角和斜率的概念;2.求直线的倾斜角和斜率的方法。
三、教学难点1.直线的倾斜角和斜率的关系;2.应用直线的倾斜角和斜率解决实际问题。
四、教学内容1. 直线的倾斜角和斜率的概念直线的倾斜角是指直线与水平线之间的夹角,用α表示。
直线的斜率是指直线的倾斜程度,用k表示。
2. 求直线的倾斜角和斜率的方法(1)已知直线的解析式设直线的解析式为y=kx+b,其中k为斜率,b为截距。
直线的倾斜角可以用斜率k求得,即tanα=k。
直线的斜率可以用解析式求得,即k=(y2-y1)/(x2-x1)。
(2)已知直线上两点坐标设直线上两点坐标为(x1,y1)和(x2,y2)。
直线的倾斜角可以用斜率k求得,即tanα=k=(y2-y1)/(x2-x1)。
直线的斜率可以用解析式求得,即k=(y2-y1)/(x2-x1)。
3. 应用直线的倾斜角和斜率解决实际问题(1)求两条直线的夹角设两条直线的斜率分别为k1和k2,则两条直线的夹角为α=|tan(k2-k1)/(1+k1k2)|。
(2)求直线的方程已知直线上一点坐标为(x1,y1)和直线的斜率为k,则直线的解析式为y-y1=k(x-x1)。
(3)求直线与坐标轴的交点设直线与x轴的交点坐标为(x,0),则x=-b/k。
设直线与y轴的交点坐标为(0,b),则b=y1-kx1。
五、教学方法1.讲解法:通过讲解直线的倾斜角和斜率的概念、求解直线的倾斜角和斜率的方法以及应用直线的倾斜角和斜率解决实际问题的步骤,让学生掌握相关知识点。
2.案例分析法:通过实际案例,让学生应用所学知识解决实际问题,提高学生的实际应用能力。
3.互动探究法:通过让学生自己探究直线的倾斜角和斜率的关系,提高学生的自主学习能力。
六、教学评价1.课堂练习:通过课堂练习,检查学生对直线的倾斜角和斜率的掌握程度。
直线的倾斜角和斜率教学教案

直线的倾斜角和斜率一教学教案教学目标(1)了解直线方程的概念.(2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率.(3)理解公式的推导过程,掌握过两点的直线的斜率公式.(4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(5)通过斜率概念的建立和斜率公式的推导,援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学建议1.教材分析(1)知识结构本节内容首先依据一次函数与其图像一一直线的关系导出直线方程的概念;其次为进一步研究直线,建立了直线倾斜角的概念,进而建立直线斜率的概念,从而完成了直线的方向或者说直线的倾斜角这一直线的几何属性向直线的斜率这一代数属性的转变;最后推导出经过两点的直线的斜率公式.这些充分表达了解析几何的思想方法.(2)重点、难点分析①本节的重点是斜率的概念和斜率公式.直线的斜率是后继内容展开的主线,无论是建立直线的方程,还是研究两条直线的位置关系,以及商量直线与二次曲线的位置关系,直线的斜率都发挥着重要作用.因此,正确理解斜率概念,熟练掌握斜率公式是学好这一章的关键.②本节的难点是对斜率概念的理解.学生对于用直线的倾斜角来刻画直线的方向并不难接受,但是,为什么要定义直线的斜率,为什么把斜率定义为倾斜角的正切两个问题却并不简单接受.2.教法建议(1)本节课的教学任务有三大项:倾斜角的概念、斜率的概念和斜率公式.学生思维也对应三个高潮:倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式如何建立.相应的教学过程也有三个阶段①在教学中首先是创设问题情境,然后通过商量明确用角来刻画直线的方向,如何定义这个角呢,学生在商量中逐渐明确倾斜角的概念.②本节的难点是对斜率概念的理解.学生认为倾斜角就可以刻画直线的方向,而且每一条直线的倾斜角是唯一确定的,而斜率却不这样.学生还会认为用弧度制表示倾斜角不是一样可以数量化吗.再有,为什么要用倾斜角的正切定义斜率,而不用正弦、余弦或余切哪要解决这些问题,就要求教师援助学生认识到在直线的方程中表达的不是直线的倾斜角,而是倾斜角的正切,即直线方程(一次函数的形式,下同)中X的系数恰好就是直线倾斜角的正切.为了便于学生更好的理解直线斜率的概念,可以借助几何画板设计:(1)α变化一直线变化一中的系数变化(同时注意的变化(2)中的系数变化一直线变化一Q变化(同时注意的变化〕.运用上述正反两种变化的动态演示充分揭示直线方程中系数与倾斜角正切的内在关系,这对援助学生理解斜率概念是极有好处的.③在进行过两点的斜率公式推导的教学中要注意与前后知识的联系,课前要对平面向量,三角函数等有关内容作肯定的复习打算.④在学习直线方程的概念时要通过举例清楚地指出两个条件,最好能用充要条件表达直线方程的概念,强化直线与相应方程的对应关系.为将来学习曲线方程做好打算.(2)本节内容在教学中宜采纳启发引导法和商量法,设计为启发、引导、探究、评价的教学模式.学生在积极思维的根底上,进行充分的商量、争辩、交流、和评价.倾斜角如何定义、为什么斜率定义为倾斜角的正切和斜率公式的建立,这三项教学任务都是在商量、交流、评价中完成的.在此过程中学生的思维和能力得到充分的开展.教师的任务是创设问题情境,引发争论,组织交流,参与评价.教学设计例如直线的倾斜角和斜率教学目标:(1)了解直线方程的概念,正确理解直线倾斜角和斜率概念,(2)理解公式的推导过程,掌握过两点的直线的斜率公式.(3)培养学生观察、探究能力,运用数学言语表达能力,数学交流与评价能力.(4)援助学生进一步理解数形结合思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.教学重点、难点:直线斜率的概念和公式教学用具:计算机教学方法:启发引导法,商量法教学过程:(一)直线方程的概念如图1,对于一次函数,和它的图像一一直线有下面关系:(1)有序数对(0,1)满足函数,则直线上就有一点A,它的坐标是(0,1).(2)反过来,直线上点B(1,3),则有序实数对(1,3)就满足.一般地,满足函数式的每一对,的值,都是直线上的点的坐标(,);反之,直线上每一点的坐标都满足函数式,因此,一次函数的图象是一条直线,它是以满足的每一对X,y的值为坐标的点构成的.从方程的角度看,函数也可以看作是二元一次方程,这样满足一次函数的每一对,的值“变成了〃二元一次方程的解,使方程和直线建立了联系.定义:以一个方程的解为坐标的点都是某条直线上的点,反过来,这条直线上的全部点坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线就叫做这个方程的直线.以上定义改用集合表述:,的二元一次方程的解为坐标的集合,记作.假设(1) (2),则.问:你能用充要条件表达吗?答:一条直线是一个方程的直线,或者说这个方程是这条直线的方程的充要条件是…….(问题1)请画出以下三个方程所表示的直线,并观察它们的异同.99过定点,方向不同.如何确定一条直线?两点确定一条直线.还有其他方法吗?或者说如果只给出一点,要确定这条直线还应增加什么条件?学生:思考、回忆、答复:这条直线的方向,或者说倾斜程度.(导入)今天我们就共同来研究如何刻画直线的方向.(问题2)在坐标系中的一条直线,我们用怎样的角来刻画直线的方向呢?商量之前我们可以设想这个角应该是怎样的呢?它不仅能解决我们的问题,同时还应该是简单的、自然的.学生:展开商量.学生商量过程中会有错误和不严谨之处,教师注意引导.通过商量认为:应选择α角来刻画直线的方向.依据三角函数的知识,说明一个方向可以有无穷多个角,这里只需一个角即可(开始时可能有学生认为有四个角或两个角),当然用最小的正角.从而得到直线倾斜角的概念.(板书)定义:一条直线1向上的方向与轴的正方向所成的最小正角叫做直线的倾斜角.(教师强调三点:(1)直线向上的方向,(2)轴的正方向,(3)最小正角.)特别地,当与轴平行或重合时,规定倾斜角为0。
直线的倾斜角与斜率教学设计

2.1直线的倾斜角与斜率第一课时:倾斜角与斜率教学设计教学目标:1.初步了解直线的倾斜角和斜率的概念.2.初步掌握过两点的直线斜率的计算公式,会求直线的倾斜角和斜率.3.通过斜率概念的建立和斜率公式的推导,经历几何问题代数化的过程,经历从特殊到一般,从感性到理性的认知过程,体会数形结合和化归转化思想.教学重点:理解直线的倾斜角和斜率概念,初步掌握过两点的直线斜率的计算公式教学难点:直线的倾斜角、斜率概念的形成,两点斜率公式的建构。
教学过程:新课引入:在以往的几何学习中,我们常常通过直观感知、操作确认、思辨论证、度量计算等方法研究几何图形的形状、大小和位置关系,这种方法通常称为综合法.本章我们采用一种新的方法——坐标法研究几何图形的性质.坐标法是解析几何中最基本的研究方法.解析几何是17世纪法国数学家笛卡儿和费马创立的,它的基本内涵和方法是:通过坐标系,把几何的基本元素——点和代数的基本对象——数(有序数对)对应起来,在此基础上建立曲线(点的轨迹)的方程,从而把几何问题转化为代数问题,通过代数方法研究几何图形的性质.解析几何的创立是数学发展史上的一个里程碑,数学从此进入变量数学时期,它为微积分的创建奠定了基础.本章我们将在平面直角坐标系中,探索确定直线位置的几何要素,建立直线的方程,并通过直线的方程研究两条直线的位置关系、交点坐标以及点到直线的距离等.探究新知:我们知道,点是构成直线的基本元素. 在平面直角坐标系中,点用坐标表示,那么,直线如何表示呢?自主学习:阅读课本51-52页探究上方问题1确定一条直线位置的几何要素是什么?对于平面直角坐标系中的一条直线l,如何利用坐标系确定它的位置?教师讲解:两点以及一点和一个方向可以确定一条直线,由方向向量我们可以知道,两点确定一条直线可以归结为一点和一个方向确定一条直线.问题2如何表示直线的方向?教师讲解:在平面直角坐标系中,我们规定一条直线向上的方向为这条直线的方向. 因此,这些直线的区别在于它们的方向不同. 如何表示这些直线的方向?我们看到,这些直线相对于x 轴的倾斜程度不同,也就是它们与x 轴所成的角不同. 因此,我们可以利用这样的角来表示这些直线的方向.新知:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角问题3 当直线l 与x 轴平行或重合时,其倾斜角大小为多少?直线的倾斜角的取值范围是什么?当直线l 与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,直线的倾斜角α的取值范围为0°≤α<180°.这样,平面直角坐标系中,每一条直线都有一个确定的倾斜角,而且方向相同的直线,其倾斜程度相同,倾斜角相等;方向不同的直线,其倾斜程度不同,倾斜角不相等. 因此,我们可以用倾斜角表示平面直角坐标系中一条直线的倾斜程度,也就表示了直线的方向. 探究: (1)已知直线l 经过点O (0,0),P (√3,1),α与点O ,P 的坐标有什么关系? (2)类似地,如果直线l 经过点P 1(-1,1),P 2(√2,0),α与点P 1,P 2的坐标又有什么关系?对于问题(1),如图,向量OP ⃗⃗⃗⃗⃗ =(√3,1),且直线OP 的倾斜角也为α.由正切函数的定义,有tan α=√3=√33. 对于问题(2),如图,P 2P 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−1−√2,1−0)=(−1−√2,1).平移向量P 2P 1⃗⃗⃗⃗⃗⃗⃗⃗ 到OP ⃗⃗⃗⃗⃗ ,则点P 的坐标为(−1−√2,1),且直线OP 的倾斜角也是α.由正切函数的定义,有tan α=−1−√2=1−√2.1)0)一般地,如图,当向量21P P 的方向向上时,),(121221y y x x P P --=.平移向量21P P 到OP ,则点P 的坐标为,且直线OP 的倾斜角也是α,由正切函数的定义,有tan α=.同样,当向量12P P 的方向向上时,如图,),(212112y y x x P P --=,也有tan α==.新知:直线l 的倾斜角α与直线l 上的两点P 1(x 1,y 1), P 2(x 2,y 2)(x 1≠x 2)的坐标有如下关系:tan α=y 2−y 1x 2−x 1.我们把一条直线的倾斜角α的正切值叫做这条直线的斜率(slope ),斜率常用小写字母k 表示,即k =tan α.日常生活中常用“坡度”表示倾斜面的倾斜程度:坡度=铅直高度水平宽度.问题3 当直线的倾斜角由0o 逐渐增大到180o 时,其斜率如何变化?为什么? 当倾斜角α满足0o ≤α<90o 且逐渐增大时,斜率k 逐渐增大; 当倾斜角α=90o ,斜率不存在;当倾斜角α满足90o <α<180o 且逐渐增大时,斜率k 逐渐增大.由正切函数的单调性,倾斜角不同的直线其斜率也不同.因此,我们可以用斜率表示倾斜角不等于90o 的直线相对于x 轴的倾斜程度,进而表示直线的方向.由tan α=y 2−y1x 2−x 1及k =tan α知,k = y 2−y1x 2−x 1.2121(,)--x x y y 2121y y x x --1212y y x x --2121y y x x --问题4 直线的方向向量与斜率k 有什么关系?我们知道,直线P 1P 2上的向量21P P 及与它平行的向量都是直线的方向向量. 直线P 1P 2的方向向量21P P 的坐标为2121(,)--x x y y , 当直线P 1P 2与x 轴不垂直时,12≠x x . 此时向量21121P P x x -也是直线P 1P 2的方向向量,且它的坐标为2121211(,),---x x y y x x 即21211y y x x --(,)=(1,),k 其中k 是直线P 1P 2的斜率.因此,若直线l 的斜率为k ,它的一个方向向量的坐标为(x ,y ),则=y k x. 例1、 如图,已知A (3,2),B (-4,1),C (0,-1),求直线AB ,BC ,CA 的斜率,并判断这些直线的倾斜角是锐角还是钝角.解:直线AB 的斜率k AB =1243---=17; 直线BC 的斜率k BC =1104----()=24-=-12;直线CA 的斜率k CA =2-(-1)30-=33=1.由k AB >0及k CA >0可知,直线AB 与CA 的倾斜角均为锐角; 由k BC <0可知,直线BC 的倾斜角为钝角. 随堂练习:1.已知坐标平面内三点A(-1,1)、B(1,1)、C(2,3+1). 求直线AB 、BC 的斜率和倾斜角;2.若A(1,0),B(-3,m),直线AB 的斜率为-12,则m =( ) A .-8 B .-2 C .2D .8CBAxyO3、若直线过点(1,3),(4,3+3),则此直线的倾斜角是 ( ) A .π6 B .π4 C .π3D .2π34、已知点M(0,b)与点N(-3,1)连成直线的倾斜角为120°,则b =_______. 课堂小结本节课,我们在平面直角坐标系中,讨论了确定直线位置的几何要素,即两点确定一条直线以及一点和一个方向确定一条直线. 并从形和数的角度利用倾斜角和斜率来刻画直线的倾斜程度,即表示了直线的方向,并探讨了倾斜角、斜率与直线上两点坐标的关系,探讨了直线的方向向量与斜率的关系.在此过程中体会到了数形结合数学思想以及将几何问题转化为代数问题的化归转化思想.知识点回顾:(1)倾斜角的定义:当直线l 与x 轴相交时,我们以x 轴为基准,x 轴正向与直线l 向上的方向之间所成的角α叫做直线l 的倾斜角.直线的倾斜角α的取值范围为 0°≤α<180°.(2)k=tan α k=y 2−y 1x 2−x 1.(3)若直线l 的斜率为k ,它的一个方向向量的坐标为(x ,y ),则=yk x. 作业:课本55页练习。
直线的倾斜角与斜率教案

直线的倾斜角与斜率教案直线的倾斜角与斜率教案一、教学目标:1. 知识目标:了解直线的倾斜角和斜率的概念;2. 能力目标:能够计算直线的倾斜角和斜率;3. 情感目标:培养学生对数学知识的兴趣和自信心。
二、教学重难点:1. 重点:直线的倾斜角和斜率的概念;2. 难点:直线的斜率的计算方式。
三、教学过程:1. 导入(5分钟):通过给学生出示两条不同斜率的直线,让学生观察并思考,引导学生讨论直线的倾斜角和斜率的关系,激发学生学习的兴趣。
2. 了解直线的倾斜角和斜率(10分钟):通过简单直观的图形,引导学生理解直线的倾斜角和斜率的概念。
并且给出直线的斜率公式:k = tanθ,其中k为直线的斜率,θ为直线的倾斜角。
3. 计算直线的倾斜角和斜率(25分钟):(1)通过给出两个点的坐标,引导学生计算直线的斜率的计算方法:k = (y2 - y1) / (x2 - x1);(2)通过给出直线方程,引导学生计算直线的倾斜角的计算方法:θ = arctank。
4. 练习与巩固(15分钟):让学生进行相关的计算练习,巩固和加深对直线的倾斜角和斜率的理解。
通过多种情况的练习,让学生熟练掌握计算直线斜率和倾斜角的方法。
5. 拓展(10分钟):通过给学生展示各种曲线的斜率和倾斜角的计算方法,引导学生思考如何计算曲线的斜率和倾斜角。
通过观察各种曲线的特点,引导学生发现曲线斜率和倾斜角的规律。
6. 总结(5分钟):对刚才的学习内容进行总结,帮助学生回顾和巩固所学知识。
引导学生思考直线斜率和倾斜角的重要性以及实际应用。
四、教学反思:本节课通过以具体的图形为例,引导学生理解直线倾斜角和斜率的概念,通过具体的计算方法,让学生能够实际计算直线的斜率和倾斜角。
同时,通过拓展的内容引导学生思考更加复杂形状的曲线的斜率和倾斜角的计算方法,培养学生的综合应用能力。
针对学生的不同水平,提供了多种练习,巩固学生对知识的掌握,创设了有利于学生自主思考和交流的氛围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《直线的倾斜角和斜率》教案
教学目的:
1.了解“坐标法”
2.理解直线的倾斜角和斜率概念,掌握过两点的直线的斜率
公式并牢记斜率公式的特点及适用范围;
3.已知直线的倾斜角,求直线的斜率
4.已知直线的斜率,求直线的倾斜角
5.培养学生“数形结合”的数学思想.
教学重点:斜率概念,用代数方法刻画直线斜率的过程.
教学难点:1直线的斜率与它的倾斜角之间的关系.
2运用两点坐标计算直线的斜率
授课类型:新授课
课时安排:1课时
教具:多媒体
教学过程:
一.知识背景与课题的引入
1.从本章起,我们研究什么?怎样研究?
解析几何是17世纪法国数学家笛卡尔和费马创立的,解析几何的创立是数学发展史上的一个里程碑,数学从此由常量数学进入变量数学时期.解析几何由此成为近代数学的基础之一.
在解析几何学中,我们常常用一种方法:坐标法. 研究几何图形的性质。
坐标法是以坐标系为基础,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法,它是解析几何中最基本的研究方法.
本章首先在平面直角坐标系中,建立直线的方程.然后通过方程,研究直线的交点、点到直线的距离等.
2.课题的引入
下面就让我们就一起踏着前人的足迹去学习和体会这一门科学的思想方法,用坐标法研究几何问题时,我们首先研究最简单的几何对象——直线,学习直线的倾斜角和斜率.
二.新课
1问题1
对于平面直角坐标系内的一条直线它的位置由哪些条件可以确定呢?一个点可以确定一条直线的位置吗?
分析:对,两点可以确定一条直线,过一个点可以画出无数条直线,这些直线都与轴正向成一定的角度,我们把直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,于是可以这样确定一条直线,过个定点,确定一个倾斜角便可以确定一条直线;这种方法与两点确定一条直线的方法是一致的.先固定个点,再确定另外一点相当于确定这条直线的方向,确定了方向也就等同于确定了该直线的倾斜角.
注:平行于轴或于轴重合的直线的倾斜角为0°
问题2
直线倾斜角的范围是多少?
这样在平面直角坐标系内每一条直线都有一个确定的倾斜角 ,倾斜角刻画了直线倾斜的程度,且倾斜程度相同的直线,其倾斜角相等, 倾斜程度不相同的直线,其倾斜角也不相等.
问题3(斜率的概念)日常生活中我们可以用一个比值表示倾斜程度的量: 例如:坡度(比)= 升高量/前进量
能否用一个比值刻画斜率呢?
如果 是一条直线的倾斜角,我们把倾斜角的正切值叫做这条直线的斜率(slop) 记作:tan
k
问题4
(1)是不是所有的直线都有倾斜角?是
(2)是不是直线都有斜率?倾斜角为90°时没有斜率, 因为90°的正切不存在. ( 是锐角时为正,倾斜角是钝角时为负)反映了直线向右或向左倾斜的程度,特别是倾斜角 是锐角时,斜率的值越大倾斜角也越大,倾斜角是钝角时也同样. 探究:由两点确定的直线的斜率
111222(,),(,),l P x y P x y 设直线经过两点求此直线的斜率. 由相似三角形,我们有2121y y k x x
(1)当倾斜角为0°时,此公式适用吗?
(2)当倾斜角为90°时,此公式使用吗?不适用
综上讨论,我们得到经过两点
111222(,),(,)P x y P x y 12()x x 的直线的斜率为2121y y k x x 三.练习
l l 1(2)已知直线经过点A(0,1),B(,2),求的倾斜角的取值范围sin
2:l O 例已知直线过原点,且与线段MN 相交,又
M(-2,4),N(3,2)
(1),OM ON MN 求直线,的斜率.
(2),,(4,),.M N P a a 设三点共线求的值
(3).l 求直线的斜率的取值范围 11,.l l l l l 11212例:
(1)直线的倾斜角=30直线与垂直,求与的斜率
(4).MN l P y 若与交与点(x,y ),求的取值范围x
(5)(,)3.l MN P x y l k P 若与交与点,且的斜率 求点坐标
,,,.a c a a b c R a b b c b
思考:
+已知且,求证
四.小结
1、填表:
2、强调斜率公式的应用,能解决哪些类型的问题?
五.课后作业:P 练习题1、2、3、4
六.教学后记。