《待定系数法》习题
待定系数法练习题及答案

待定系数法练习题及答案一、选择题1. 下列关于待定系数法的说法,正确的是()。
A. 待定系数法适用于求解一阶线性微分方程B. 待定系数法适用于求解二阶线性微分方程C. 待定系数法适用于求解非线性微分方程D. 待定系数法适用于求解所有类型的微分方程2. 在使用待定系数法求解非齐次线性微分方程时,假设特解形式为()。
A. y = eaxB. y = ebxC. y = ax + bD. y = x^2 + ax + b3. 对于二阶线性非齐次微分方程 y'' + py' + qy = f(x),其中f(x)为已知的函数,下列关于特解形式的说法,正确的是()。
A. 当f(x) = eax时,特解形式为y = AeaxB. 当f(x) = cosbx时,特解形式为y = Acosbx + BsinbxC. 当f(x) = e^(x)时,特解形式为y = Ax + BD. 当f(x) = x^2时,特解形式为y = x^2 + ax + b二、填空题1. 使用待定系数法求解非齐次线性微分方程时,需要求出其______(通解/特解)。
2. 对于一阶线性非齐次微分方程 y' + py = f(x),当f(x) = eax时,其特解形式为______。
3. 对于二阶线性非齐次微分方程 y'' + py' + qy = f(x),当f(x) = cosbx时,其特解形式为______。
三、解答题1. 使用待定系数法求解下列微分方程的特解:y' y = 2x2. 使用待定系数法求解下列微分方程的特解:y'' + y = sinx3. 使用待定系数法求解下列微分方程的特解:y''' 3y'' + 3y' y = e^(x)4. 使用待定系数法求解下列微分方程的特解:y'' + 4y = 4x^2 + 3x + 25. 使用待定系数法求解下列微分方程的特解:y'' 2y' + y = e^x cosx四、应用题1. 某物体在直线运动中,其加速度a(t)与时间t的关系为a(t) = 4 t^2,初始速度为v(0) = 0,求物体在t时刻的速度v(t)。
待定系数法习题训练

待定系数法 习题训练Ⅰ、再现性题组:1. 设f(x)=x 2+m ,f(x)的反函数f -1(x)=nx -5,那么m 、n 的值依次为_____。
A. 52 , -2 B. -52 , 2 C. 52 , 2 D. -52,-2 2. 二次不等式ax 2+bx +2>0的解集是(-12,13),则a +b 的值是_____。
A. 10 B. -10 C. 14 D. -143. 在(1-x 3)(1+x )10的展开式中,x 5的系数是_____。
A. -297B.-252C. 297D. 2074. 函数y =a -bcos3x (b<0)的最大值为32,最小值为-12,则y =-4asin3bx 的最小正周期是_____。
5. 与直线L :2x +3y +5=0平行且过点A(1,-4)的直线L ’的方程是_______________。
6. 与双曲线x 2-y 24=1有共同的渐近线,且过点(2,2)的双曲线的方程是____________。
【简解】1小题:由f(x)=x 2+m 求出f -1(x)=2x -2m ,比较系数易求,选C ; 2小题:由不等式解集(-12,13),可知-12、13是方程ax 2+bx +2=0的两根,代入两根,列出关于系数a 、b 的方程组,易求得a +b ,选D ;3小题:分析x 5的系数由C 105与(-1)C 102两项组成,相加后得x 5的系数,选D ;4小题:由已知最大值和最小值列出a 、b 的方程组求出a 、b 的值,再代入求得答案23π; 5小题:设直线L ’方程2x +3y +c =0,点A(1,-4)代入求得C =10,即得2x +3y +10=0;6小题:设双曲线方程x 2-y 24=λ,点(2,2)代入求得λ=3,即得方程x 23-y 212=1。
Ⅱ、示范性题组:例1. 已知函数y =mx x n x 22431+++的最大值为7,最小值为-1,求此函数式。
待定系数法练习题初二

待定系数法练习题初二待定系数法是解一元二次方程的常用方法之一,通过构造一个满足方程的特定形式的二次方程,然后求解该二次方程得到原方程的解。
下面将介绍一些初中二年级学生可以进行练习的待定系数法习题。
题目一:已知方程x^2 - 6x + k = 0(式1)有两个相等的实根,求实数k的值。
解题思路:由题意可知,方程只有一个实根时,其判别式D=0。
将方程1带入判别式公式中,得到D=(-6)^2 - 4(1)(k) = 36 - 4k。
根据方程只有一个实根时的判别式为0,我们可以得到36 - 4k = 0,解方程得k = 9。
题目二:求方程x^2 - 4x - 5 = 0(式2)的根。
解题思路:我们可以利用待定系数法解这个方程。
设方程的两个根为α和β,那么方程可以写成(x - α)(x - β) = 0。
根据展开得到x^2 - (α + β)x + αβ = 0(式3)。
由方程2可知,系数 a = 1,b = -4,c = -5。
比较式3与方程2的系数,可以得到:α + β = -(-4) = 4,即α + β = 4(式4);αβ = -5(式5)。
根据式4可以得到α = 4 - β(式6),将式6代入式5,得到(4 - β)β = -5,将等式转化为二次方程,β^2 - 4β - 5 = 0,通过求解这个二次方程得到β的值,再将β代入式6求出α的值,即得到方程的两个根。
题目三:已知方程x^2 + px + q = 0的两个根的和为7,积为12,求实数p和q的值。
解题思路:由题意可知,方程的两个根的和是7,即α + β = 7(式7);方程的两个根的积是12,即αβ = 12(式8)。
我们可以利用待定系数法解这个方程。
设方程的两个根为α和β,那么方程可以写成(x - α)(x - β) = 0。
根据展开得到x^2 - (α + β)x + αβ = 0。
根据式7和式8可以得到方程为x^2 - 7x + 12 = 0(式9)。
根据待定系数法求对数函数的解析式练习题

根据待定系数法求对数函数的解析式练习题本文档将提供一些根据待定系数法求解对数函数的练题。
在解析式练题中,我们将给定对数函数的性质和一些已知条件,然后通过使用待定系数法来求解对数函数的解析式。
下面是一些练题和解答示例:练题一已知对数函数 $f(x)$ 满足以下条件:- $f(1) = 2$- $f(2) = 4$求解对数函数 $f(x)$ 的解析式。
解答示例:我们设对数函数的解析式为 $f(x) = a \log_b x + c$,其中 $a$、$b$ 和 $c$ 是待定系数。
由已知条件得:1. $f(1) = a \log_b 1 + c = 2$2. $f(2) = a \log_b 2 + c = 4$由于 $\log_b 1 = 0$,我们可以得到 $c = 2$。
将 $c = 2$ 代入第二个条件中得:$a \log_b 2 + 2 = 4$由于 $\log_b 2$ 是一个常数,我们可以将上式简化为:$a + 2 = 4$解得 $a = 2$。
因此,对数函数 $f(x)$ 的解析式为:$$f(x) = 2 \log_b x + 2$$练题二已知对数函数 $g(x)$ 满足以下条件:- $g(1) = 3$- $g(2) = 6$- $g(3) = 9$求解对数函数 $g(x)$ 的解析式。
解答示例:同样地,我们设对数函数的解析式为 $g(x) = a \log_b x + c$,其中 $a$、$b$ 和 $c$ 是待定系数。
由已知条件得:1. $g(1) = a \log_b 1 + c = 3$2. $g(2) = a \log_b 2 + c = 6$3. $g(3) = a \log_b 3 + c = 9$由于 $\log_b 1 = 0$,我们可以得到 $c = 3$。
将 $c = 3$ 代入第二个条件中得:$a \log_b 2 + 3 = 6$由于 $\log_b 2$ 是一个常数,我们可以将上式简化为:$a + 3 = 6$解得 $a = 3$。
(完整版)待定系数法求余弦函数的解析式练习题

(完整版)待定系数法求余弦函数的解析式练习题待定系数法是一种求解余弦函数解析式的常用方法。
在使用待定系数法时,我们假设所求解析式的形式,并通过求解未知系数得到最终结果。
下面是几道练题,帮助你练使用待定系数法求解余弦函数的解析式。
1. 求解以下余弦函数的解析式:cos(x) = a + b * cos(2x) + c * cos(4x)2. 求解以下余弦函数的解析式:cos(x) = m * cos(2x) + n * cos(3x)3. 求解以下余弦函数的解析式:cos(x) = a + b * cos(2x) + c * cos(3x) + d * cos(4x)4. 求解以下余弦函数的解析式:cos(x) = a + b * cos(2x) + c * cos(3x) + d * cos(4x) + e * cos(5x)在每个练题中,待定系数分别为a、b、c、d、e、m和n。
你需要通过整理方程组并求解未知系数,得到余弦函数的解析式。
请注意,在实际应用中,待定系数法求解余弦函数的解析式可能涉及到更复杂的求解方法和技巧。
以上练题仅为了初步练待定系数法的使用,帮助你熟悉该方法的基本步骤。
练题的答案如下:1. 解析式:a = 1b = -1/2c = 0所以,cos(x) = 1 - 1/2 * cos(2x)2. 解析式:m = 1/4n = 1/2所以,cos(x) = 1/4 * cos(2x) + 1/2 * cos(3x)3. 解析式:a = 1b = -3/2c = 1/2所以,cos(x) = 1 - 3/2 * cos(2x) + 1/2 * cos(3x)4. 解析式:a = 1b = -3/2c = 0d = 1/2所以,cos(x) = 1 - 3/2 * cos(2x) + 1/2 * cos(4x)希望这些练题能帮助你提高求解余弦函数解析式的能力。
如果你还有其他问题,请随时向我提问!。
待定系数法的练习题

待定系数法的练习题一、基础题1. 已知函数f(x) = ax^2 + bx + c,且f(1) = 3,f(1) = 5,f(2) = 10,求a、b、c的值。
2. 设函数g(x) = mx^3 + nx^2 + px + q,已知g(0) = 4,g(1) = 7,g(1) = 0,g(2) = 26,求m、n、p、q的值。
3. 已知函数h(x) = kx^4 + lx^3 + rx^2 + sx + t,且h(0) = 1,h(1) = 2,h(1) = 3,h(2) = 8,h(2) = 16,求k、l、r、s、t的值。
二、进阶题1. 已知函数p(x) = ax^3 + bx^2 + cx + d,且p(0) = 2,p(1) = 0,p(2) = 3,p(3) = 4,求a、b、c、d的值。
2. 设函数q(x) = ex^4 + fx^3 + gx^2 + hx + i,已知q(0) = 1,q(1) = 2,q(1) = 3,q(2) = 4,q(2) = 5,求e、f、g、h、i的值。
3. 已知函数r(x) = jx^5 + kx^4 + lx^3 + mx^2 + nx + o,且r(0) = 6,r(1) = 5,r(1) = 4,r(2) = 3,r(2) = 2,求j、k、l、m、n、o的值。
三、应用题1. 某企业生产一种产品,每件产品的成本为C(x) = 200x + 1000,其中x为生产数量。
已知当生产10件产品时,总成本为3000元;当生产20件产品时,总成本为5000元。
求C(x)中的系数。
2. 一辆汽车行驶的距离S(t)与时间t的关系为S(t) = at^2 + bt,已知汽车从静止出发,2秒后行驶了20米,4秒后行驶了80米,求a、b的值。
3. 某城市的人口增长模型为P(t) = ct^2 + dt + e,其中t为年份,P(t)为人口数量。
已知该城市在t=0时人口为100万,t=5时人口为150万,t=10时人口为200万,求c、d、e的值。
待定系数法求指数增长函数解析式练习题

待定系数法求指数增长函数解析式练习题介绍:本文档将为您提供一些练题,通过待定系数法求解指数增长函数的解析式。
待定系数法是求解函数解析式的一种常用方法,通过设定未知系数,然后通过对方程进行代入计算,最终求得解析式的系数。
练题:1. 求解以下指数增长函数的解析式:- $y = ab^x$,其中a和b为待定系数。
2. 已知当x = 2时,y为10,当x = 4时,y为40,求解以下指数增长函数的解析式:- $y = ab^x$,其中a和b为待定系数。
3. 某项指数增长函数的解析式为$y = ab^x$,已知当x = -1时,y为5,当x = 2时,y为20,求解a和b的值。
4. 已知一项指数增长函数的解析式为$y = ab^x$,其中a和b为待定系数,且当x = 0时,y为3,当x = 1时,y为9,当x = 2时,y为27,求解a和b的值。
注意事项:- 求解时,可以根据已知条件设立方程,并代入计算,得到待定系数的值。
- 需要注意方程的一致性,确保方程能够同时满足已知条件。
- 求得的待定系数为解析式的系数值。
解答示例:1. 解答:设 $y = ab^x$,代入已知条件 $x = 0$ 时,$y = 1$,得到方程$1 = ab^0 = a$,所以 $a = 1$。
代入已知条件 $x = 1$ 时,$y = 2$,得到方程 $2 = ab^1 = ab$,代入 $a = 1$,解得 $b = 2$。
所以解析式为 $y = 2^x$。
2. 解答:设 $y = ab^x$,代入已知条件 $x = 2$ 时,$y = 10$,得到方程$10 = ab^2$。
代入已知条件 $x = 4$ 时,$y = 40$,得到方程 $40 = ab^4$。
联立以上两个方程,可以求解a和b的值。
解答过程略。
3. 解答:设 $y = ab^x$,代入已知条件 $x = -1$ 时,$y = 5$,得到方程$5 = ab^{-1} = \frac{a}{b}$。
待定系数法练习题及答案

待定系数法练习题及答案待定系数法是一种常用的解决代数方程的方法,它可以帮助我们求解一些复杂的方程,尤其是含有未知系数的方程。
在本文中,我们将通过一些练习题来探讨待定系数法的应用,并给出相应的答案。
1. 求解方程:3x + 4 = 2x - 1首先,我们需要将方程转化为标准形式,即将所有项移到等号的一侧。
将方程重新排列得到:3x - 2x = -1 - 4,简化得到 x = -5。
2. 求解方程:2x^2 - 5x + 2 = 0这是一个二次方程,我们需要找到它的根。
首先,我们可以尝试因式分解,但很明显这个方程不能被因式分解。
因此,我们可以使用待定系数法来解决。
假设方程的解为 x = a 和 x = b,那么我们可以将方程表示为 (x - a)(x - b) = 0。
将方程展开得到 x^2 - (a + b)x + ab = 0。
与原方程进行比较,我们可以得到以下等式:a + b = 5,ab = 2。
根据这两个等式,我们可以列出一个二元一次方程组:a + b = 5,ab = 2。
解这个方程组,我们可以得到 a = 2,b = 3。
因此,方程的解为 x = 2 和 x = 3。
3. 求解方程:x^3 + 3x^2 + 3x + 1 = 0这是一个三次方程,我们同样可以使用待定系数法来解决。
假设方程的解为 x = a,那么我们可以将方程表示为 (x - a)(x^2 + (a + 3)x + (a^2 + 3a + 1)) = 0。
展开方程得到 x^3 + (3a + 1)x^2 + (3a^2 + 6a + 1)x + (a^3 + 3a^2 + 3a + 1) = 0。
与原方程进行比较,我们可以得到以下等式:3a + 1 = 3,3a^2 + 6a + 1 = 3,a^3 + 3a^2 + 3a + 1 = 0。
解这个方程组,我们可以得到 a = 1。
因此,方程的解为 x = 1。
通过以上几个练习题,我们可以看到待定系数法在解决代数方程中的重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《待定系数法》习题
一、基础过关
1.将二次函数y =x 2的图象沿y 轴向下平移h 个单位,沿x 轴向左平移k 个单位得到y =x 2-2x +3的图象,则h ,k 的值分别为
( ) A .-2,-1
B .2,-1
C .-2,1
D .2,1
2.已知()()2231x x x ax b +-=-+,则a ,b 的值分别为
( ) A .2,3
B .2,-3
C .-2,3
D .-2,-3
3.已知二次函数的图象顶点为(2,-1),且过点(3,1),则函数的解析式为 ( ) A .()2221y x =--
B .()2221y x =+-
C .()2221y x =++
D .()2221y x =-+ 4.已知二次函数221y x ax =-+在区间(2,3)内是单调函数,则实数a 的取值范围是( )
A .a≤2或a≥3
B .2≤a≤3
C .a≤-3或a≥-2
D .-3≤a≤-2 5.二次函数的图象与x 轴交于A (-2,0),B (2,0), 并且在y 轴上的截距为4,则函数的解析式为________________________________________________________________________.
6.如图所示,抛物线()2
213y x m x m =-++++与x 轴交于A 、B 两点,且OA =3OB ,则m =________.
7.已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,求此二次函数的解析式.
二、能力提升
8.已知函数2
y ax bx c =++,如果a>b>c ,且a +b +c =0,则它的图象可能是图中的( )
9.设函数()()()2020x bx c,x f x ,x ⎛++≤= >⎝
若f(-4)=f (0),f(-2)=-2,则关于x 的方程f (x )=x 的解的个数为
( ) A .1 B .2 C .3 D .4
10.若一次函数y =f (x )在区间[-1,3]上的最小值为1,最大值为3,则f (x )的解析式为
__________.
11.已知二次函数f (x )对一切x ∈R ,有f(2-x)=f(x),f(-1)=0,且f(x) ≥-1.
(1)求二次函数的解析式;
(2)若直线l 过(1)中抛物线的顶点和抛物线与x 轴左侧的交点,求l 在y 轴上的截距.
三、探究与拓展
12.若二次函数满足f(x +1)-f(x)=2x 且f(0)=1.
(1)求f (x )的解析式;
(2)若在区间[-1,1]上不等式f(x)>2x +m 恒成立,求实数m 的取值范围.
答案
1.A 2.A 3.A 4.A
5.y =-x2+4
6.0
7.解 方法一 设f(x)=ax2+bx +c (a≠0),依题意有⎩⎪⎨⎪⎧ 4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解之,得
⎩⎪⎨⎪⎧ a =-4,b =4,
c =7,
∴所求二次函数的解析式为y =-4x2+4x +7.
方法二 设f(x)=a(x -m)2+n ,∵f(2)=f(-1),
∴抛物线的对称轴为x =2+-2
=12.∴m =12. 又根据题意函数有最大值为n =8,
∴y =f(x)=a(x -12
)2+8. ∵f(2)=-1,∴a(2-12)2+8=-1,解之,得a =-4. ()2
21484472f x x x x .⎛⎫=--+=-++ ⎪⎝
⎭ 方法三 依题意知:f(x)+1=0的两根为x 1=2,x 2=-1,
故可设()()()21f x a x x ,-+=即()221f x ax ax a .---= 又函数有最大值8,
即()2
42184a a a ,a
---= 解之,得a =-4或a =0(舍去).
∴函数解析式为f (x )=-4x 2+4x +7.
8.D
9.C
10()1
322f x x +=或()1522
f x x += 11.解 (1)由f (2-x )=f (x ),得二次函数图象的对称轴为x =1,由f (x )≥-1对一切x ∈R 成立,
得二次函数的最小值为-1.
设二次函数的解析式为
()()211f x x --=a
∵f(-1)=0,∴4a -1=0,∴14
a =, ()()221113114424
f x x x x ∴--=--= (2)设直线l 的解析式为g(x)=kx +b.
由(1)知,抛物线顶点为C (1,-1), 由21130424
x x ,--=,解得x 1=-1,x 2=3, ∴l 过点A (-1,0),
∴⎩⎪⎨⎪⎧ k +b =-1-k +b =0,解得⎩⎨⎧ k =-12b =-12,
∴一次函数为y =-12x -12
. 在y 轴上的截距为b =-12
. 12.解 (1)设()()20f x ax bx c a ≠=++,由f (0)=1,∴c =1,()2
1f x a x bx .∴+=+ ()()12f x f x x +-=,
22ax a b x,∴++= ∴⎩⎪⎨⎪⎧ 2a =2a +b =0,∴⎩⎪⎨⎪⎧
a =1
b =-1 (2)由题意:212x x x m -+>+在[-1,1]上恒成立,即2
310x x m -+->在[-1,1]上恒成立. 令()2
2343125g x x x m x m,⎛⎫=-+-=--- ⎪⎝
⎭ 其对称轴为x =32
, ∴g (x )在区间[-1,1]上是减函数, ()()11310min g x g m ,==-+->
∴m<-1.。