公式法(1)-
公式法第一课时参考课件

(3a+2b)(3a-2b)
y(x+2)(x-2)
(4+a2)(2+a)(2-a)
思维延伸 1. 观察下列各式: 32-12=8=8×1; 52-32=16=8×2; 72-52=24=8×3; …… 把你发现的规律用含n的等式表示出来. 2. 对于任意的自然数n,(n+7)2-(n-5)2能被24整除吗? 为什么?
(2)(x+p)2-(x+q)2
=(2x+p+q)(p-q).
05
这里可用到了整体思想喽!
03
解:(2)(x+p)2 – (x+q) 2 = [ (x+p) +(x+q)] [(x+p) –(x+q)]
01
把(x+p)和(x+q)看着了 一个整体,分别相当于 公式中的a和b。
04
把(x+p)和 (x+q)各看成一个整体,设x+p=m,x+p=n,则原式化为m2-n2.
01
a2-b2 =(a+b)(a-b)
(a+b)(a-b) = a2-b2
02
a2-b2 =(a+b)(a-b)
这就是用平方差公式进行因式分解。
四、应用新知,尝试练习
例1、因式分解(口答): ① x2-4=________ ②9-t2=_________
例2、下列多项式能用平方差公式因式分解吗? ①x2+y2 ②x2-y2 ③-x2+y2 ④-x2-y2
(2n+1)2-(2n-1)2=8n
五、小结
式,再看能否用公式法进行因式分解。 例如:①x2+y2 ②x2-y2 ③-x2+y2 ④-x2-y2 比如:①a3b – ab=ab(a2-1)=ab(a+1)(a-1) x(x-y)2-x=x[(x-y)2-1]=x(x-y+1)(x-y-1)
人教版数学八年级上册 公式法(第1课时)

探究新知
素养考点 3 利用因式分解求整式的值
例3 已知x2–y2=–2,x+y=1,求x–y,x,y的值.
解:∵x2–y2=(x+y)(x–y)=–2,
x+y=1①,
∴x–y=–2②. 联立①②组成二元一次方程组,
方法总结:在与x2–y2, x±y有关的求代数式
或未知数的值的问题中,
x
解得:
y
A.a2+(–b)2
B.5m2–20mn
C.–x2–y2
D.–x2+9
2. 将多项式x–x3因式分解正确的是( D )
A.x(x2–1)
B.x(1–x2)
C.x(x+1)(x–1)
D.x(1+x)(1–x)
3.若a+b=3,a–b=7,则b2–a2的值为(A )
A.–21 B.21 D.10
C.–10
巩固练习
用平方差公式进行简便计算:
(1)38²–37²
(2)213²–
87²
解(:3)(12)293²8–²–13771²² =((348)+9317×)(389–37)
=75
(2) 213²–87² =(213+87)(213–87) =300×126=37800
(3) 229²–171²
=(229+171)(229–171) =400×58=23200
课堂检测
拓广探索题
(1)992–1能否被100整除吗? (2)n为整数,(2n+1)2–25能否被4整除?
解:(1)因为 992–1=(99+1)(99–1)=100×98,
所以992–1能被100整除.
(2)原式=(2n+1+5)(2n+1–5) =(2n+6)(2n–4) =2(n+3) ×2(n–2)=4(n+3)(n–2).
《公式法》教案 (公开课)2022年(1)

公式法(一)教学目标(一)教学知识点1.一元二次方程的求根公式的推导2.会用求根公式解一元二次方程(二)能力训练要求1.通过公式推导,加强推理技能训练,进一步开展逻辑思维能力.2.会用公式法解简单的数字系数的一元二次方程.教学重点一元二次方程的求根公式.教学难点求根公式的条件:b 2-4ac ≥0教学方法讲练相结合教学过程Ⅰ.出示自学指导:小组讨论以下一元二次方程的解法,5分钟后交流解法.1.用配方法解方程2x 2-7x+3=0.解:2x 2-7x+3=0,两边都除以2,得x 2-2327+x =0. 移项,得 x 2-2327-=x . 配方,得x 2-,)47(23)47(2722-+-=-+x (x-1625)472=x . 两边分别开平方,得 x-4547±=, 即x- 4547=或x-4547-=. ∴x 1=3,x 2=21. 接下来大家来试着做一做下面的练习.1.用配方法解以下关于x 的方程:(1)x 2+ax =1;(2)x 2+2bx+4ac =0.(1)解x 2+ax =1, 配方得x 2+ax+(2a )2=1+(2a)2,(x+2a )2=442a +.两边都开平方,得 x+2a =±242a +, 即x+2a =242a +,x+2a =-242a +. ∴x 1=242a a ++-, x 2=242a a +-- (2)解x 2-2bx+4ac =0,移项,得x 2+2bx =-4ac .配方,得x 2-2bx+b 2=-4ac+b 2,(x+b)2=b 2-4ac .两边同时开平方,得x+b =±ac b 42-,即 x+b =ac b 42-,x+b =-ac b 42-∴x 1=-b+ac b 42-,x 2=-b-ac b 42-〔是否正确?〕根据平方根的性质知道:只有正数和零才有平方根,即只有在b 2-4ac ≥0时,才可以用开平方法解出x 来.所以,在这里应该加一个条件:b 2-4ac ≥0.同学们来想一想,讨论讨论, 有道理吗?从以上解题过程中,我们发现:利用配方法解一元二次方程的根本步骤是相同的.因此,如果能用配方法解一般的一元二次方程ax 2+bx+c =0(a ≠0),得到根的一般表达式,那么再解一元二次方程时,就会方便简捷得多.这节课我们就来探讨一元二次方程的求根公式.Ⅱ.解决问题刚刚我们已经利用配方法求解了几个一元二次方程,那你能否利用配方法的根本步骤解方程ax 2+bx+c =0(a ≠0)呢?大家可参照解方程2x 2-7x+3=0的步骤进行.因为方程的二次项系数不为1,所以首先应把方程的二次项系数变为1,即方程两边都除以二次项系数a ,得 x 2+ ac x a b +=0. 因为这里的二次项系数不为0,所以,方程ax 2+bx+c =0(a ≠0)的两边都除以a 时,需要说明a ≠0.以前我们解的方程都是数字系数,显然就可以看到:二次项系数不为0,所以无需特殊说明,而方程ax 2+bx+c =0(a ≠0)的两边都除以a 时,必须说明a ≠0.好,接下来该如何呢?移项,得x 2+ac x a b -= 配方,得x 2+22)2()2(a b a c a b x a b +-=+, (x+22244)2aac b a b -=. 这时,可以直接开平方求解吗?因为a ≠0,所以4a 2>0.当b 2-4ac ≥0时,就可以开平方.在进行开方运算时,被开方数必须是非负数,即要求2244aac b -≥0.因为4a 2>0恒成立,所以只需b 2-4ac 是非负数即可. 因此,方程(x+a b 2)2=2244a ac b -的两边同时开方,得x+a b 2=±2244aac b -. 大家来想一想,讨论讨论:±2244a ac b -=±a ac b 242-吗? ……当b 2-4ac ≥0时, x+a b 2=±2244a ac b -=±||242a ac b - 因为式子前面有双重符号“±〞,所以无论a>0还是a<0,都不影响最终的结果:±aac b 242- 所以x+a b 2=±aac b 242-, x=-a b 2±aac b 242- =aac b b 242-±-−−−−→−a 两边都除以 −−→−配方x=aac b b 242-±- (b 2-4ac ≥0), 一般地,对于一元二次方程ax 2+bx+c =0(a ≠0),当b 2-4ac ≥0时,它的根是 x=aac b b 242-±- 用求根公式解一元二次方程的方法称为公式法.(Solving by formular)由此我们可以看到:一元二次方程ax 2+bx+c =0(a ≠0)的根是由方程的系数a 、b 、c 确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b 2-4ac ≥0的前提条件下,把各项系数a 、b 、c 的值代入,就可以求得方程的根.注:(1)在运用求根公式求解时,应先计算b 2-4ac 的值;当b 2-4ac ≥0时,可以用公式求出两个不相等的实数解;当b 2-4ac <0时,方程没有实数解.就不必再代入公式计算了.(2)把方程化为一般形式后,在确定a 、b 、c 时,需注意符号.接下来,我们来看一例题. [例题]解方程x 2-7x-18=0.分析:要求方程x 2-7x-18=0的解,需先确定a 、b 、c 的值.注意a 、b 、c 带有符号.解:这里a =1,b =-7,c =-18.∵b 2-4ac=(-7)2-4×1×(-18)=121>0,∴x=2117121217±=⨯±, x 1=9,x 2=-2.我们来共同总结一下用公式法解一元二次方程的一般步骤.(1)把方程化为一般形式,进而确定a 、b ,c 的值.(注意符号)(2)求出b 2-4ac 的值.(先判别方程是否有根)(3)在b 2-4ac ≥0的前提下,把a 、b 、c 的直代入求根公式,求出a ac b b 242-±-的值,最后写出方程的根.接下来我们通过练习来稳固用公式法求解一元二次方程的方法.Ⅲ.课堂练习课本P 51随堂练习 1、2Ⅳ.课时小结−−→−≥-如果042ac b这节课我们探讨了一元二次方程的另一种解法——公式法.(1)求根公式的推导,实际上是“配方〞与“开平方〞的综合应用.对于a ≠0,b 2-4ac≥0。
公式法1

4
二、自主交流 探究新知
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0, 当b2-4ac≥0时,• 将a、b、c代入式子 x=
就可求出方程的根.
b b2 4ac 2a
(b2-4ac≥0)
当成一个具体数字,根据上面的解题步骤就可以一直推下去。
解:移项,得: ax2+bx=-c
b 2a
配方,得:(x+
b ∴x+ 2 a =±
) 2=
b 2 4ac 4a 2
2a
b 2 4ac 2a
即x= b b2 4ac
b b2 4ac 2a
∴x1= b b2 4ac , x2= 2a
(2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 【强调】用公式法解一元二次方程时,必须注意两点:⑴将a、b、c的值代入 公式时,一定要注意符号不能出错。⑵式子b2-4ac≥0是公式的一部分。
5
三、自主应用 巩固新知
【例1】用公式法解下列方程. (1)
2x 3x 4 0
2
(2)
x 3x 4 0
2
【分析】用公式法解一元二次方程,需先确定a、b、c的值、再 算出b2-4ac的值、最后代入求根公式求解.
解:
6
三、自主应用 巩固新知
【例2】用公式法解下列方程. (1) x2-4x-7=0 (2) x2 2 2x 2 0 (3)5x2-3x=x+1 (4) x2+17=8x
人教版数学八年级上册《因式分解公式法》(一)课件

(3)0.16x2-0.09y2z2 (4)16(x-1)2-9(x+2)2
(5)–16x4+81y4 (6)3x3y–12xy
(a+b)(a-b)=a2-b2 (整式乘法)
a2-b2 =(a+b)(a-b)ቤተ መጻሕፍቲ ባይዱ因式分解)
想一想
(1)下列多项式中,他们有什么共同特征?
①x2-25 ②9x2-y2
□2 -△2
(2)尝试将它们分别写成两个因式的乘积,并与同伴交流.
①x2-25=(x+5)(x-5)
②9x2-y2=(3x+y)(3x-y)
□2-△2=(□+△)(□-△)
议一议
平方差公式有哪些特点?
a2−b2= (a+b)(a−b)
左边:有两项;每一项都是平方项;两项符号相反 右边:两数的和与差的积
关键:确定公式中的a和b
火眼金睛
下列多项式可不可以用平方差公式因式分解?
①x2+y2
②-x2+y2
③-x2-y2
④x2-(-y)2
例题讲解
公式法因式分解(1)
回顾与思考
1、把下列各式分解因式:
(1)3a3b2-12ab3 关键:确定公因式 =3ab2(a2-4b)
(2)a(m-2)+b(2-m) =(m-2)(a-b)
一 看系数 二 看字母 三 看指数
最大公约数 相同字母最低次幂
回顾与思考
2、填空: ①25x2=(__5_x__)2
名言警句
严谨性之于数学 犹如道德之于人
自我检测
1、判断正误:
(1)x2+y2=(x+y)(x–y) (2)–x2+y2=–(x+y)(x–y) (3)x2–y2=(x+y)(x–y) (4)–x2–y2=–(x+y)(x–y)
解一元二次方程——公式法(1)

例1 用公式法解下列方程:
(1)x2-4x-7=0
22x2 2 2x 1 0
(3)5x2-3x=x+1
(4)x2+17=8x
注意: 用公式法解一元二次方程的前提是: 1、先化成一般形式ax2+bx+c=0(a≠0). 2、b2-4ac≥0.
10Байду номын сангаас
拓展延伸
2、已知关于x的方程mx2-(m+2)x+2=0. (1)证明:无论m为何值时,方程总有实
数根. (2)m为何整数时,方程有两个不相等 的正整数根.
11
2. 某数学兴趣小组对关于x的方程
m 1xm21 m 2x 1 0
提出了下列问题.
(1)若使方程为一元二次方程,m是否 存在?若存在,求出m,并解此方程. (2)若使方程为一元一次方程,m是否 存在?若存在,请求出m.
你能解决这个问题吗?
13
(1)求根公式的概念及其推导过程; (2)公式法的概念; (3)应用公式法解一元二次方程;
配方后可得
x
b
2
b2
4ac
2a
4a 2
方程根的情况: 记作:判别式∆=b2-4ac
当 b2 4ac 0 时,方程有两个不相等的实
数根;
当b2 4ac 0时,方程有两个相等的实数根;
当 b2 4ac 0 时,方程无实数根.
1、不解方程,判定方程根的情况:
用公式法解下列方程:
1x2 x 6 0; 33x2 6x 2 0
2x2 3x 1 0;
4
公式法(一)教学设计
第四章 因式分解3.公式法(一)胶州市第二十三中学 田芳【教学目标】:1.知识与技能:(1)理解平方差公式的本质:即结构的不变性,字母的可变性;(2)会用平方差公式进行因式分解;(3)使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解2.过程与方法:经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,渗透数学的“互逆”、换元、整体的思想,感受数学知识的完整性.3.情感与态度:在探究的过程中培养学生独立思考的习惯,在交流的过程中学会向别人清晰地表达自己的思维和想法,在解决问题的过程中让学生深刻感受到“数学是有用的”。
【教学重点、难点】重点:会用平方差公式进行因式分解。
难点:如何根据一个多项式的形式和特点灵活地选择一个公式。
【教学方法】小组合作、知识类比。
【教学过程】一、 复习回顾 小组合作解决活动内容:填空:(1)(x+5)(x –5) = ;(2)(3x+y )(3x –y )= ;(3)(3m +2n )(3m –2n )= .它们的结果有什么共同特征?尝试将它们的结果分别写成两个因式的乘积:活动目的:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生.____________________49_;____________________9__;____________________2522222=-=-=-n m y x x的观察能力与逆向思维能力.二、 探究新知(一)活动内容:谈谈你的感受。
结论:整式乘法公式的逆向变形得到分解因式的方法。
这种分解因式的方法称为运用公式法。
活动目的:引导学生从第一环节的感性认识上升到理性认识,区别整式乘法与分解因式的同时,认识学习新的分解因式的方法——公式法。
(二)活动内容:说一说 找特征))((22b a b a b a -+=-(1)公式左边:(是一个将要被分解因式的多项式)★被分解的多项式含有两项,且这两项异号,并且能写成( )2-( )2的形式。
公式法(一)
3.3 公式法(一)马田中学年级数学备课组主备:林国芳序号41学习目标:使学生了解运用公式法分解因式的意义;掌握用平方差公式分解因式。
重点:掌握运用平方差公式分解因式.难点:将单项式化为平方形式,再用平方差公式分解因式;教学过程一、创设问题情境,引入新课在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法——公式法。
二、新课讲解1.请看乘法公式(a+b)(a-b)=a2-b2 (1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是a2-b2=___________________(2)左边是一个多项式,右边是整式的乘积。
大家判断一下,第二个式子从左边到右边是否是因式分解?利用平方差公式进行的因式分解。
第(1)个等式可以看作是整式乘法中的__________公式,第(2)个等式可以看作是因式分解中的____________公式。
2.公式讲解如x2-16=(x)2-42=(x+4)(x-4)a2- b2= (a+b) (a-b)9 m 2-4n2=(3 m )2-(2n)2=(3 m +2n)(3 m -2n)3.例题例1把下列各式分解因式:(1)25 x2-16y2(2)9a2-b2.例2把下列各式分解因式:(1)(x+y)2-(x-y)2; (2)2x3-8x.补充例题:判断下列分解因式是否正确.(1)(a+b)2-c2=a2+2ab+b2-c2.(2)a4-1=(a2)2-1=(a2+1)(a2-1).三、课堂练习p64页第1、2、3题反思归纳。
公式法(一)范文
公式法(一)范文第二章分解因式3.运用公式法(一)总体说明本节是因式分解的第3小节,占两个课时,这是第一课时,它主要让学生经历通过整式乘法的平方差公式的逆向运用得出因式分解的平方差公式的过程,发展学生的观察能力和逆向思维能力,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系.一、学生知识状况分析学生的技能基础:学生在上几节课的基础上,已经基本了解整式乘法运算与因式分解之间的互逆关系,在七年级的整式的乘法运算的学习过程中,学生已经学习了平方差公式,这为今天的深入学习提供了必要的基础.学生活动经验基础:通过前几节课的活动和探索,学生对类比思想、数学对象之间的对比、观察等活动形式有了一定的认识与基础,本节课采用的活动方法是学生较为熟悉的观察、对比、讨论等方法,学生有较好的活动经验.二、教学任务分析学生在学习了用提取公因式法进行因式分解的基础上,本节课又安排了用公式法进行因式分解,旨在让学生能熟练地应对各种形式的多项式的因式分解,为下一章分式的运算以及今后的方程、函数等知识的学习奠定一个良好的基础。
因此,本课时的教学目标是:知识与技能:(1)使学生了解运用公式法分解因式的意义;(2)会用平方差公式进行因式分解;(3)使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式.数学能力:(1)发展学生的观察能力和逆向思维能力;(2)培养学生对平方差公式的运用能力.情感与态度:在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法.三、教学过程分析本节课设计了六个教学环节:练一练,想一想,做一做,议一议,反馈练习,学生反思.第一环节练一练活动内容:填空:(1)(某+3)(某–3)=;(2)(4某+y)(4某–y)=;(3)(1+2某)(1–2某)=;(4)(3m+2n)(3m–2n)=.根据上面式子填空:(1)9m2–4n2=;(2)16某2–y2=;(3)某2–9=;(4)1–4某2=.活动目的:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生的观察能力与逆向思维能力.注意事项:由于学生对乘法公式中的平方差公式比较熟悉,学生通过观察与对比,能很快得出第一组式子与第二组式子之间的对应关系.第二环节想一想活动内容:观察上述第二组式子的左边有什么共同特征?把它们写成乘积形式以后又有什么共同特征?结论:a2–b2=(a+b)(a–b)活动目的:引导学生从第一环节的感性认识上升到理性认识,通过自己的归纳能找到因式分解中平方差公式的特征.注意事项:学生对平方差公式的正确使用掌握的比较快,但用语言叙述第二组式子的左右两边的共同特征有一定的困难,必须在老师的指导下才能完成.第三环节做一做活动内容:把下列各式因式分解:1(1)25–16某2(2)9a2–b24活动目的:培养学生对平方差公式的应用能力.注意事项:学生对含有分数的平方差公式应用起来有一定的困难,有的学生由于受解方程的影响,习惯首先去分母,再因式分解,这是很多学生经常犯的一个错误.第四环节议一议活动内容:将下列各式因式分解:(1)9(某–y)2–(某+y)2(2)2某3–8某活动目的:(1)让学生理解在平方差公式a2–b2=(a+b)(a–b)中的a与b 不仅可以表示单项式,也可以表示多项式,向学生渗透换元的思想方法;(2)使学生清楚地知道提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式.注意事项:在教师的引导下,学生能逐步理解平方差公式中的a与b 不仅可以表示单项式,也可以表示多项式.第五环节反馈练习活动内容:1、判断正误:(1)某2+y2=(某+y)(某–y)()(2)–某2+y2=–(某+y)(某–y)()。
公式法PPT课件(1)
例7 把a4+2a2b+b2因式分解.
解 a4+2a2b+b2 = (a2)2 + 2 ·a2 ·b + b2 = (a2+ 因式分解.
本课节内容 3.3
公式法
动脑筋
如何把 x2-25 因式分解? 我们学过平方差公式(a+b)(a-b)= a2-b2, 把这个乘法公式从右到左地使用, 得 a2-b2=(a+b)(a-b) . 因此 x2-25 = x2-52 = (x+5)(x-5) .
a2-b2= (a+b)(a-b) .
像上面那样,把乘法公式从右到左地使用, 就可以把某些情势的多项式进行因式分解,这 种因式分解的方法叫做公式法.
结束
(2)m2 1 n2 mn 4
m2 2 • m • 1 n (1 n)2 (m 1 n)2.
22
2
小结与复习
1. 什么叫多项式的因式分解?因式分解与 多项式的乘法有什么关系? 2. 什么叫公因式?怎样确定公因式? 3. 因式分解有哪些方法?写出公式法分解 因式时所用的公式.
本章知识结构
动脑筋
你能将多项式a2+2ab+b2 或a2-2ab + b2 进行因式分解吗?
我们学过完全平方公式 (a+b)2=a2+2ab+b2,(a-b)2= a2-2ab+b2 . 将完全平方公式从右到左地使用,就可以 把形如这样的多项式进行因式分解. 例如, x2+4x+4 = x2+2·x·2+22 = (x+2)2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我想在这个夏末寄给你一封信,托一只洁白的信鸽,穿越十年的时空,送
到你的窗前。 我亲爱的你,虽然现在距离秋天还很遥远,但是已经冷了不少,我可以看见窗外的叶子被萧瑟的风儿拂起,或许它们还不知道,在不久的将来,它们就 会像蒲公英一样,相忘于自然的荒漠。 现在的我你还记得吗,一个不引人注目的傻姑娘,不知未来的你会不会成为一个袅袅婷婷的女子,会不会在安闲的午后穿着你最爱的长裙,让柔和阳光 和着时间偷偷顺着你的肩胛流走?会不会在古老的江南,用带有淡香的墨水在羊皮卷上写上祝福的东巴文字,赠予过往的有缘人?会不会在茶马古道的驿站, 用你的巧手去弹家传的古筝琵琶? 我很好奇,你会是怎样的一个女子?是如花木兰的巾帼不让须眉,亦或是李清照的婉约秀丽?是 我很好奇,未来的你会不会选择我喜欢的设计?会不会在我喜欢的地方开 如秋瑾的坚韧不屈,还是蔡文姬的才华横溢? 一家咖啡馆?那个店里会不会有一个文艺的名字,里面的设计是不是我喜欢的——房顶是淡淡的咖啡色,桌椅是木制的,总是不经意间散发出淡淡清香?阳 台上的植物会不会有我喜欢的山茶花——似朝霞,艳丽却不失温馨。那些桌上 的桌布会不会是我喜欢的淡蓝色?是不是会有几个知心朋友在一旁陪你侃侃家 常?
15.5.2 公式法
的环境,那幸福的生活,那日新月异的国与家
我想在这个夏末寄给你一封信,托一只洁白的信鸽,穿越十年的时空,送 到你的窗前。 我亲爱的你,虽然现在距离秋天还很遥远,但是已经冷了不少,我可以看见窗外的叶子被萧瑟的风儿拂起,或许它们还不知道,在不久的将来,它们就 会像蒲公英一样,相忘于自然的荒漠。
把(x+p)和 (x+q)各
看成分一个析整:在体,(设1)中,4x2 = (2x)2,9=32,4x2-9 = x+p=m(2,xx+p)=2n–,则3 原2,即可用平方差公式分解因式.
式化为m2-n2.
(1)4x2 – 9
(2)(x+p)2 – (x+q) 2
= (2x)2 – 3 2 = [ (x+p) +(x+q)] [(x+p) –(x+q)]
15.5.2 公式法 思考
你能将多项式x2-4与多项式y2-25分解因式吗? 这两个多项式有什么共同 a2-b2
a2-b2 =(a+b)(a-b)
两个数的平方差,等于这两个数的和与这 两个数的差的积.
例3 分解因式: (1) 4x2 – 9 ; (2) (x+p)2 – (x+q)2.
= (2x+3)(2x-3). =(2x+p+q)(p-q).
例4 分解因式:
分解因式, 必须进行
到每一个
(1)x4-y4; (2) a3b – ab. 多项式都
不能再分
分析:(1)x4-y4可以写成(x2)2-(y2)2的形解为式止,这. 样
就可以利用平方差公式进行因式分解
了.(2)a3b-ab有公因式ab,应先提出公因式,再
2.分解因式: (1)a2- 1 b2; (2)9a2-4b2;
25
(3) x2y – 4y ; (4) –a4 +16.
思维延伸
1. 观察下列各式: 32-12=8=8×1; 52-32=16=8×2; 72-52=24=8×3; …… 把你发现的规律用含n的等式表示出来.
2. 对于任意的自然数n,(n+7)2-(n-5)2能被24整除吗? 为什么?
进一步分解.
解:(1) x4-y4
(2) a3b-ab
= (x2+y2)(x2-y2)
=ab(a2-1)
= (x2+y2)(x+y)(x-y)
=ab(a+1)(a-1).
练习
1.下列多项式能否用平方差公式来分解因 式?为什么? (1) x2+y2 ; (2) x2-y2; (3)-x2+y2; (4)-x2-y2.