17,18平面图及图的着色
图解塑料着色用有机颜料品种和性能(二)

图解塑料着色用有机颜料品种和性能(二)陈信华上海金泰色母粒有限公司201800中图分类号:TQ619.6文献标识码:C文章编号:DOI10.3969/j.issn.1008-1348.2015.06.008 1.2有机颜料十七系列产品品种和性能1.2.1双偶氮颜料双偶氮颜料是指颜料分子中含有两个偶氮基的颜料,一般是以二芳胺的重氮盐(3,3二氯联苯胺)与偶合组份(乙酰乙酰苯胺及其衍生物或双吡唑啉酮及其衍生物)偶合,就是著名的联苯胺系列颜料。
其色谱在强绿光黄色(颜料黄81,颜料黄17),中黄色(颜料黄14,颜料黄13)与红光黄色(颜料黄83)及橙色(颜料橙13,颜料橙34),几乎遍及黄色到橙色全色谱,见图2。
图2联苯胺系双偶氮颜料色度图双偶氮联苯胺颜料以着色力高,色泽鲜艳,价格经济而大量用于塑料着色,但性能一般,见表4,位于有机颜料结构和性能图最左边。
表4联苯胺系双偶氮有机颜料品种和性能联苯胺黄橙颜料用于聚合物加工温度超过200℃时会发生热分解,分解的产物是双氯联苯胺,双氯联苯胺是属于对动物有致癌性、对人体可能有致癌性的芳香胺.需注意颜料对人体和环境影响。
1.2.2单偶氮金属色淀黄为了改进单偶氮黄类颜料的耐热性和耐迁移性,在分子上引入磺酸基,再转化成色淀类颜料,其性能要比非色淀颜料要高得多。
单偶氮金属色淀黄类产品从绿光黄(颜料黄168),中黄(颜料黄62)到红光黄(颜料黄191,颜料黄191:1,颜料黄183)见图3。
单偶氮金属色淀黄颜料位于有机颜料结构和性能图左偏中,性能也要比联苯胺系列颜料好的多,有些品种耐热性达280-300℃,耐候性达到3级以上见表5,是双偶氮联苯胺系列颜料代用品。
但该类颜料缺点着色力较低,有严重水渗性,价格也要比双偶氮系列颜料高。
图3单偶氮金属色淀黄颜料色度图表5单偶氮金属色淀黄色颜料性能1.2.3β类萘酚色淀红β类萘酚色淀颜料就是著名金光红C,是个鲜明黄光红,较优良耐热性,较经济价格,大量应用在塑料上,但耐光性,耐迁移性就差强人意,见表6表6β类萘酚色淀红颜料性能1.2.42B色淀红以磺酸基芳胺(俗称2B酸)重氮盐与2羟基-3萘甲酸(俗称2,3酸)偶合组份反应后金属色淀化,可有多种红色谱颜料,就是在塑料中大量应用的著名的2B红,以及宝红4B红颜料。
简单连通平面图

v3 u3 u4 v4 (b)是(c) (a)
v1
的细分图
v3 u3 u4 v4
(b)
v1
v4
v3
v6
v2
v5 同构
v3
v4
(c)
2019/11/30
计算机学院
v2
v5 K3,3
(d)
v6
14
对偶图
定义12.3 若图G=<V,E>是一个平面图,构造
图 G*=<V*,E*>如下:
①
G的面F1,F2,‥‥,Ff与V*中的结点v1*
推论12.5.1 任何简单连通平面图中,至少存在 一个其度不超过5的结点
2019/11/30
计算机学院
9
围长:一个图的围长为它包含的最短圈的长度。 一个图若不含圈,则规定其围长为无穷大。
定理12.6 设G是一个(n,m)简单连通平面 图,其围长k>2,则有
m k (n - 2) k-2
2019/11/30
2019/11/30
计算机学院
8
定理12.5
设G是一个(n,m)简单连通平面图,若m>1,则有
m≤3n-6 证明 设G有k个面,因为G是平面图,所以G的每
个面至少由3条边围成,而G中各面度之和是边
数的二倍,所以
2m≥3k,即k≤2m/3,代入欧拉公式有
整理得
2nmk nm 2m 3
m≤3n-6
2019/11/30
计算机学院
23
1890年,Heawood 建立了“五色定理” ( Heawood定理)。 定理12.15
任何连通平面图都是可以五着色的。
2019/11/30
计算机学院
17平面图及图的着色

17.1 平面图的基本概念一、平面图及平面嵌入定义17.1如果图G能以这样的方式画在曲面S上,即除顶点处外无边相交,则称G可嵌入曲面S.若G可嵌入平面,则称G是可平面图或平面图。
画出的无边相交的图称为G的平面嵌入。
无平面嵌入的图称为非平面图。
K1(平凡图),K2,K3,K4都是平面图,其中,K1,K2,K3本身就已经是平面嵌入,K4的平面嵌入为图17.1中(4)所示。
K5-e (K5删除任意一条边)也是平面图,它的平面嵌入可表示为图17.1中(5).完全二部图K1,n(n≥1), K2,n(n≥2),也都是平面图,其中标准画法画出的K1,n已经是平面嵌入,K2,3的平面嵌入可由图17.1中(6)给出。
图17.1中(1),(2),(3)分别为K4, K5-e, K2,3的标准画法。
请观看演示动画:(1)变(4)(2)变(5)(3)变(6)图17.1下文中所谈平面图,有时是指平面嵌入,有时则不是,这要看是研究平面图什么性质而定,请读者根据上下文加以区分。
当然有时也特别指出平面嵌入。
现在就应该指出,在研究平面图理论中居重要地位的两个图,这就是完全图K5和完全二部图K3,3,它们都不是平面图(将由定理17.10的推论得到证明)。
还有两个非常显然的事实,用下面定理给出。
定理17.1若图G是平面图,则G的任何子图都是平面图。
由定理17.1立刻可知,K n(n≤4)和K1,n(n≥1)的所有子图都是平面图。
定理17.2若图G是非平面图,则G的任何母图也都是非平面图。
推论K(n≥5)和K3,n(n≥3)都是非平面图。
n本推论由K5,K3,3不是平面图及定理17.2得证。
还有一个明显的事实也用定理给出。
定理17.3设G是平面图,则在G中加平行边或环后所得图还是平面图。
本定理说明平行边和环不影响图的平面性,因而在研究一个图是否为平面图时可不考虑平行边和环。
二、平面图的面与次数定义17.2设G是平面图(且已是平面嵌入),由G的边将G所在的平面划分成若干个区域,每个区域都称为G的一个面。
离散数学着色基础知识

离散数学着色基础知识离散数学是数学的一个重要分支,它关注离散的数学结构和对象。
在离散数学中,图论作为一个重要的研究领域,着色问题受到广泛的关注。
着色问题是指给定一个图的顶点或边,用不同的颜色给它们进行标记的问题。
本文将介绍离散数学中的着色基础知识,包括图的着色、四色定理以及一些常见的着色应用。
1. 图的着色在图的着色问题中,我们通常要求相邻的顶点或边不能使用相同的颜色。
对于给定的图,我们可以用一个函数来为每个顶点或边赋予一个颜色。
这个函数被称为着色函数。
如果对于每个相邻的顶点或边,它们被赋予了不同的颜色,那么这个着色函数就满足着色条件。
图的着色问题可以分为顶点着色和边着色两种情况。
在顶点着色中,我们使用不同的颜色为图中的每个顶点上色;而在边着色中,我们使用不同的颜色为图中的每条边上色。
通常情况下,我们更关注的是顶点着色问题。
2. 四色定理四色定理是图论中的一个著名的定理,它指出任意一个平面图都可以用四种颜色给其顶点进行着色,使得任意相邻的顶点使用不同的颜色。
具体地说,对于任意一个平面图,我们可以用四种颜色对其顶点进行着色,并且一定能够满足着色条件。
这个定理的证明非常复杂,涉及到大量的数学推理和计算。
它的证明分为两个步骤:首先,通过对所有可能的情况进行穷举和排除,证明了五种颜色是充分的;然后,通过反证法证明了四种颜色就足够了。
四色定理在实际应用中具有重要的意义。
它可以用来解决地图着色问题,即给定一幅地图,用尽可能少的颜色对每个行政区域进行着色,使得相邻的行政区域颜色不同。
四色定理的证明为解决这个问题提供了理论支持。
3. 着色的应用着色问题在现实生活中有许多应用。
除了地图着色问题外,还有课程表着色问题、时间表着色问题等等。
在课程表着色问题中,我们需要为学校的每个班级安排一个课程表,并且要求相邻时间段的课程使用不同的颜色。
这个问题可以转化为图的着色问题,其中图的每个顶点代表一个时间段,边代表时间段的相邻关系。
图的着色问题

问题来源
图的着色
通常所说的着色问题是指下述两类问题: 通常所说的着色问题是指下述两类问题: 1.给定无环图G=(V,E),用m种颜色为图中 的每条边着色,要求每条边着一种颜色, 的每条边着色,要求每条边着一种颜色,并 使相邻两条边有着不同的颜色, 使相邻两条边有着不同的颜色,这个问题称 为图的边着色问题。 为图的边着色问题。 2.给定无向图G=(V,E),用m种颜色为图中 的每个顶点着色,要求每个顶点着一种颜色, 的每个顶点着色,要求每个顶点着一种颜色, 并使相邻两顶点之间有着不同的颜色, 并使相邻两顶点之间有着不同的颜色,这个 问题称为图的顶着色问题。 问题称为图的顶着色问题。
化简得
( a + bd )(b + aceg )(c + bdef )( d + aceg )(e + bcdf )( f + ceg )( g + bdf )
求极小覆盖法- 求极小覆盖法-布尔代数法
Step3:从中挑选所用极大独立集个数最小者, Step3:从中挑选所用极大独立集个数最小者, 即为X 即为X(G) 但上述子集的颜色数都不是X ),正确的应 但上述子集的颜色数都不是X(G),正确的应 该是X =3,该子集为: {b,d,f}中的 该是X(G)=3,该子集为:给{b,d,f}中的 b,d,f涂颜色 涂颜色1 {a,e,g}中a,e,g涂颜色 涂颜色2 b,d,f涂颜色1,为{a,e,g}中a,e,g涂颜色2为 {a,c,g}中的 涂颜色3 中的c {a,c,g}中的c涂颜色3。 由此可见, 由此可见,求色数其需要求极大独立集以 及一切若干极大独立集的和含所有顶点的子 对于大图, 集,对于大图,因为图计算量过大而成为实 际上难以凑效的算法,所以不是一个好算法, 际上难以凑效的算法,所以不是一个好算法, 一般我们采用贪心法等近似算法来求解 。
第九章-平面图与图的着色课件

部面。
单连通区域是指能够收缩到一个点的区域
5
2、平面图的面数、顶点数、边数之间的关系。
f3
f2 v
f1
u
f4
0
1
3
2
4
5
平面图的每个内部面都是G的某个圈围成的单连通区 域。
没有圈的图没有内部面,只有一个外部面。
6
2、平面图的面数、顶点数、边数之间的关系。
如果用V表示多面体的顶点,用E表示棱,用F表示 面数。
定理9.1.1(欧拉公式) 如果一个平面连通图 有p个顶点、q条边、f个面,则:p-q+f=2
11
3、最大(极大)可平面图
一个图称为最大可平面图,如果这个可平面图再 加入一条边,新图必然是不可平面的。
观察下面两个图,他1不是最大可平面图 图2是最大可平面图
12
4、最大(极大)平面图的性质
q=10≤3p-6=9,这是不成立的
所以K5不是可平面图。
最大可平面图
17
4、最大(极大)平面图的性质
如果K3,3是平面图 在偶图中每个圈的长至少为4
如果K3,3是平面图 K3,3应满足q≤2p-4 K3,3中p=6,q=9 9≤8
K3,3不是平面图
K33
18
4、最大(极大)平面图的性质
推论9.1.6 每个平面图G中顶点度的最小值不超过5,即 (G)≤5
图1 推论9.1.4 若G是任一有p个顶点q条边的可平面图 p≥3,则q≤3p-6,若G是2-连通的且没有三角形,则 q≤2p-4
15
4、最大(极大)平面图的性质
推论9.1.4 若G是任一有p个顶点q条边的可平面图 p≥3,则q≤3p-6,若G是2-连通的且没有三角形,则 q≤2p-4
九章节图

a 8
c 30 5
d 6
32
13 b
97
g
2
f 17
e
13 8 30 32
9 7
5
w 6
2
17
LT’(x)=min{LT(x), LT(t1)+W({t1,x})}。 把T’代为T,把P’代为P,把LT’(x)代为LT(x), 重复步骤(2)。
例 求图9.9中从a到z的最短通路的长
b
1
a
2
4
c
7
d
2
5
3
z
6
1
e
b
1
a
2
4
d 2
3T(x)
abcdez
T={a}
1 4 ∞∞∞
T={a,b}
带权图中的最短通路
设G=(V,E,W)是一个带权图, 其W是边集E 到R+={x∊R│x>0} 的一个函数。 通常称 W(e)为边e的长度, 图G中一个通路的长度定义为通路中所经过的边的 长度之和。 设 v0,z∊V, 要求从 v0到z的最短通路的长。
Dijkstra算法的基本思想
先把V分成两个子集,
a b c d e fg L 13 8 13 19 21 20
狄克斯瑞 (Edsger Wybe Dijkstra, 1930-2002.08.02)
计算机编程艺术与科学创建人之一. 1930年出生在荷兰鹿特丹市,于 2002年8月6日在荷兰家中与世长辞 。他在欧洲和美国曾从事首次航空 和结构计算机模拟的工作。曾是开 发Algol的委员会成员。他编写了第 一个Algol 60编译器。 1972年,荣获 美国计算机协会的图灵奖。
图论课件第七章图的着色

平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)设m=k(k≥1)时成立,当m=k+1时,对G进行如下讨论。 设 = 时成立, 进行如下讨论。 时成立 = 时 进行如下讨论 是树, 是非平凡的, 中至少有两片树叶。 若G是树,则G是非平凡的,因而 中至少有两片树叶。 是树 是非平凡的 因而G中至少有两片树叶 为树叶, 仍然是连通图, 设v为树叶,令G'=G-v,则G'仍然是连通图,且G'的边数 为树叶 , 仍然是连通图 的边数 m'=m-1=k,n'=n-1,r'=r。 , , 。 由假设可知 n'-m'+r'=2,式中n',m',r'分别为 的顶点数, ,式中 , , 分别为G'的顶点数, 分别为 的顶点数 边数和面数。 边数和面数。 于是n-m+r=(n'+1)-(m'+1)+r'=n'-m'+r'=2 于是 不是树, 中含圈。 若G不是树,则G中含圈。 不是树 中含圈 设边e在 中某个圈上 中某个圈上, 仍连通且m'=m-1=k 设边 在G中某个圈上,令G'=G-e,则G'仍连通且 , 仍连通且 , n'=n,r'=r-1。 , 。 由假设有 n'-m'+r'=2。 。 于是 n-m+r=n'-(m'+1)-(r'+1)=n'-m'+r'=2
定理16.9 对于具有k(k≥2)个连通分支的平面图 ,有 个连通分支的平面图G, 定理16.9 对于具有 个连通分支的平面图 n-m+r = k+1 其中n, 分别为G的顶点数 其中 ,m,r分别为 的顶点数,边数和面数。 分别为 的顶点数,边数和面数。
证明
的连通分支分别为G 并设G 的顶点数、 设G的连通分支分别为 1、G2、…、Gk,并设 i的顶点数、 的连通分支分别为 、 边数、面数分别为n 边数、面数分别为 i、mi、ri、i=1,2,…,k。 , , , 。 由欧拉公式可知: 由欧拉公式可知 ni-mi+ri = 2,i=1,2,…,k , , , , 易知, m = ∑ mi,n = ∑ ni 易知,
i =1 i =1 k k
(161)
由于每个G 有一个外部面, 只有一个外部面, 由于每个 i 有一个外部面,而G只有一个外部面,所以 的面数 只有一个外部面 所以G的面数 k r = ∑ ri − k + 1
i =1
于是, 于是,对(161)的两边同时求和得 的两边同时求和得
2k = ∑ (ni − mi + ri ) = ∑ ni − ∑ mi + ∑ ri = n − m + r + k − 1
只有右边的图为极大平面图。 只有右边的图为极大平面图。 因为只有该图每个面的次数都为3。 因为只有该图每个面的次数都为 。
四、极小非平面图 定义16. 若在非平面图G中任意删除一条边 所得图G′为平面 中任意删除一条边, 定义16.4 若在非平面图 中任意删除一条边,所得图 为平面 16 则称G为极小非平面图 为极小非平面图。 图,则称 为极小非平面图。 由定义不难看出: 由定义不难看出: K5, K3,3都是极小非平面图。 都是极小非平面图。 极小非平面图必为简单图。 极小非平面图必为简单图。 例如:以下各图均为极小非平面图。 例如:以下各图均为极小非平面图。
(2)是(1)的平面嵌入,(4)是(3)的平面嵌入。 ) )的平面嵌入, ) )的平面嵌入。
2、 几点说明及一些简单结论 、 一般所谈平面图不一定是指平面嵌入,但讨论某些性质时, 一般所谈平面图不一定是指平面嵌入,但讨论某些性质时,一定是指平 面嵌入。 面嵌入。 K5和K3,3都不是平面图。 都不是平面图。 定理16. ′⊆G, 为平面图, 定理16.1 设G′⊆ ,若G为平面图,则G′也是平面图。 16 ′⊆ 为平面图 ′也是平面图。 定理16. ′⊆G, 也是非平面图。 定理16.2 设G′⊆ ,若G′为非平面图,则G也是非平面图。 16 ′⊆ ′为非平面图, 也是非平面图 都是非平面图。 推论 Kn(n≥5)和K3,n(n≥3)都是非平面图。 ≥ 和 ≥ 都是非平面图 定理16.3 若G为平面图,则在G中加平行边或环所得图还是平面图。 定理16.3 为平面图,则在 中加平行边或环所得图还是平面图。 为平面图 中加平行边或环所得图还是平面图 即平行边和环不影响图的平面性。 即平行边和环不影响图的平面性。
16 平面图
一、关于平面图的一些基本概念 1、 平面图的定义 、 定义16. 定义16.1 16 G可嵌入曲面 可嵌入曲面S——如果图 能以这样的方式画在曲面 上 如果图G能以这样的方式画在曲面 可嵌入曲面 如果图 能以这样的方式画在曲面S上 即除顶点处外无边相交。 ,即除顶点处外无边相交。 G是可平面图或平面图 是可平面图或平面图——若G可嵌入平面。 若 可嵌入平面。 是可平面图或平面图 可嵌入平面 G的平面嵌入 的平面嵌入——画出的无边相交的平面图。 画出的无边相交的平面图。 的平面嵌入 画出的无边相交的平面图 非平面图——无平面嵌入的图。 无平面嵌入的图。 非平面图 无平面嵌入的图
i =1 i =1 i =1 i =1 k k k k
经整理得 n-m+r = k+1。 。
2、 与欧拉公式有关的定理 、 定理16. 为连通的平面图, 定理 16.10 设 G为连通的平面图 , 且每个面的次数至少为 16 为连通的平面图 l(l 3),则 G的边数与顶点数有如下关系: 的边数与顶点数有如下关系: , 的边数与顶点公式 、 定理16.8 对于任意的连通的平面图G, 定理16.8 对于任意的连通的平面图 ,有 n-m+r=2 其中, 、 、 分别为 的顶点数、边数和面数。 分别为G的顶点数 其中,n、m、r分别为 的顶点数、边数和面数。
证明
对边数m作归纳法。 对边数 作归纳法。 作归纳法 (1) m=0时,由于 为连通图,所以 只能是由一个孤立顶 为连通图, = 时 由于G为连通图 所以G只能是由一个孤立顶 点组成的平凡图, 点组成的平凡图,即n=1,m=0,r=1,结论显然成立。 ,结论显然成立。 (2) m=1时,由于 为连通图,所以 为连通图, = 时 由于G为连通图 所以n=2,m=1,r=1,结论 , 显然成立。 显然成立。
∑ deg( R ) = 2m
证 明
i =1 i
r
其中r为G的面数
本定理中所说平面图是指平面嵌入。 本定理中所说平面图是指平面嵌入。 ∀e∈E(G), e∈E(G), 为面R 的公共边界上的边时, 1当e为面 i和Rj(i≠j)的公共边界上的边时,在计算 i和Rj的次 为面 的公共边界上的边时 在计算R 数时, 各提供 各提供1。 数时,e各提供 。 只在某一个面的边界上出现时, 2当e只在某一个面的边界上出现时,则在计算该面的次数时 只在某一个面的边界上出现时 提供2。 ,e提供 。 提供 于是每条边在计算总次数时,都提供 ,因而deg(Ri)=2m。 于是每条边在计算总次数时,都提供2,因而 。
定理16. 阶简单连通的平面图, 为极大平面图 定理16.7 设G为n(n≥3) )阶简单连通的平面图,G为极大平面图 16 为 ≥ 阶简单连通的平面图 当且仅当G的每个面的次数均为 。 当且仅当 的每个面的次数均为3。 的每个面的次数均为
证 明 思 路
本节只证明必要性,即设G为n(n≥3) )阶简单连通的平面图,G 阶简单连通的平面图, 本节只证明必要性,即设 为 ≥ 阶简单连通的平面图 为极大平面图, 的每个面的次数均为3。 为极大平面图,则G的每个面的次数均为 。 的每个面的次数均为 由于n≥ 必为简单平面图, 每个面的次数均≥ 由于 ≥3, 又G必为简单平面图,可知,G每个面的次数均≥3。 必为简单平面图 可知, 每个面的次数均 。 因为G为平面图,又为极大平面图。可证G不可能存在次数 不可能存在次数>3 因为 为平面图,又为极大平面图。可证 不可能存在次数 为平面图 的面。 的面。
2、几点说明 、 若平面图G有 个面 可笼统地用R 个面, 表示, 若平面图 有k个面,可笼统地用 1, R2, …, Rk表示,不需 要指出外部面。 要指出外部面。 回路组是指:边界可能是初级回路( 回路组是指:边界可能是初级回路(圈),可能是简单回 也可能是复杂回路。特别地, 路,也可能是复杂回路。特别地,还可能是非连通的回路 之并。 之并。
R1
R0 R2
R3
平面图有4个面, 平面图有 个面,deg(R1)=1, deg(R2)=3, deg(R3)=2, deg(R0)=8。 个面 。
定理16.4 平面图G中所有面的次数之和等于边数 的两倍, 中所有面的次数之和等于边数m的两倍 定理16.4 平面图 中所有面的次数之和等于边数 的两倍,即
三、极大平面图 1、 定义 、 定义16. 若在简单平面图G中的任意两个不相邻的顶点之 定义16.3 若在简单平面图 中的任意两个不相邻的顶点之 16 间加一条新边所得图为非平面图,则称G为极大平面图 为极大平面图。 间加一条新边所得图为非平面图,则称 为极大平面图。 注意:若简单平面图G中已无不相邻顶点, G显然是极大平 注意: 若简单平面图 中已无不相邻顶点, 显然是极大平 中已无不相邻顶点 面图, 平凡图) 都是极大平面图。 面图,如K1(平凡图), K2, K3, K4都是极大平面图。 2、极大平面图的主要性质 、 定理165 极大平面图是连通的。 定理165 极大平面图是连通的。 定理166 阶极大平面图中不可能有割点和桥。 定理166 n(n≥3)阶极大平面图中不可能有割点和桥。 ≥ 阶极大平面图中不可能有割点和桥
本节说明
本节的主要内容
–平面图的基本概念 平面图的基本概念 –欧拉公式 欧拉公式 –平面图的判断 平面图的判断 –平面图的对偶图 平面图的对偶图 –顶点着色及点色数 顶点着色及点色数 –地图的着色与平面图的点着色 地图的着色与平面图的点着色 –边着色及边色数 边着色及边色数