多自由度系统的运动方程
第二章(多自由度系统的运动微分方程)详解

k11 k 21 kN1
k1 j k2 j k Nj
k1N k2 N k NN
刚度影响系数 kij :第 j 个自由度产生单位位移,其他自由度位移为零时, 需要在第i 自由度处沿着位移方向施加的力。
用影响系数法建立系统的运动微分方程
【例】用影响系数法写出图示系统的刚度矩阵。
多自由度振动系统
Piezoelectric actuator
基于压电作动器的垂尾抖振主动抑制 (此系统有一、两千个自由度(3D实体单元) )
Z Y
X
第二章: 多自由度系统的运动 微分方程
第二章:多自由度系统的运动微分方程
第一讲:
1.建立多自由度系统运动微分方程的 各种方法的概述 2.用牛顿第二定律列写系统的运动微 分方程 3.用影响系数法建立系统的运动微分 方程
F1 1
k3
m2
k2 (d11 d21 )
m1
k2 (d11 d21 ) k1d11 1
d 21 k2 (d11 d21 )
F2 0
d11
k3d21
k2 k3 k1k2 k1k3 k2 k3 k2 k1k2 k1k3 k2 k3
m2
d 21
k2 (d11 d21 ) k3d21 0
上次课内容回顾
3.刚度影响系数
刚度影响系数 kij :第 j 个自由度产生单位位移,其他自由度位移为零时, 需要在第 i 自由度处沿着位移方向施加的力。
4.柔度影响系数
柔度影响系数 dij :第 j 个自由度上作用单位力,其他自由度作用力为零时,
在第 自由度上产生的位移。 i
5.刚度矩阵和柔度矩阵的关系
第06课 多自由度系统的运动方程

m2x1 k2 x1 x2 c2x1 x2 k3x2 c3x2 F2 (t)
将方程(1)、(2)整理可得
(1) (2)
m1x1 c1 c2 x1 c2x2 k1 k2 x1 k2x2 F1(t)
n
1
kn2
k1n
k2n
k
n
n
刚度影响系数 作用力方程
现分析求出图所示的三自由度系统的刚度矩阵。
首先令 x1 1 x2 x3 0 在此条件下系统保持平衡,按定义需加于三物块的力 k11、k21、k31
画出各物块的受力图根据平衡条件,有
k11 k1 k2,k21 k2,k31 0
机械振动(Mechanical Vibration)
第七课 多自由度系统的运动方程
交通与车辆工程学院 刚宪约
2019年9月15日
单自由度系统回顾
单自由度系统运动方程的建模
• 牛顿第二定律(向量方法),达朗伯原理 • 能量方法d(U+T)=0 • 虚位移原理(虚功原理)
单自由度系统固有频率计算方法
T
对于图所示的系统,也可用柔度影响系数来建立其运动微分方程。
应用叠加原理可得到 x1 (F1)11 (F2 )12 (F3 )13 x2 (F1) 21 (F2 ) 22 (F3 ) 23 x3 (F1) 31 (F2 ) 32 (F3 ) 33
0
k2 k1 k3
k3
0
k
3
k3
kij k ji
刚度矩阵一般是对称的。 实际上任何多自由度线性系统都具有这个性质。即
动力学与控制-多自由度系统数值计算(2)振型叠加法

则有
} [C p ]{ } [ K ]{} {Q(t )} [ M p ]{ {Q(t )} [ ]T {F (t )}
(0)} [ M p ]1[ ]T {x 0 } { (0)} [ M p ]1[ ]T {x0 }, {
由于系统已经解耦,可以逐方程根据前述直接积分 法求出主坐标下的响应,然后换算出物理响应。这 种基于模态变换的响应算法,称为振型叠加法(模态 叠加法)。
i 1 s
1
于是
} {x} [ F ]{P (t )} [ F ][ M ]{ x
2 i
i {i }
s
如果以[L]确定的变换仅用于计算加速度,即 L } } [ L ]{ { x 则
L } {x} [ F ]{P (t )} [ F ][ M ][ L ]{ s 1 i [ F ]{P (t )} 2 {i }
10
(k )
小组练习
• 4组:设计自由度数目较多的算例,用模态叠
加法计算系统的响应(考虑全部模态、部分模 态的模态位移法以及部分模态的模态加速度法 三种情形)。 时间:第周上课前完成
11
2
振型叠加法
振型截断法就是仅使用[L]近似地计算响应,一般可 分为振型位移法和振型加速度法两类。 • 振型位移法 假定已经求得系统的前s阶固有频率i及其对应的主 振型{i}(i=1,2,…,s),引入变换 {x} [ L ]{ L } 代入作用力方程,有
L } [C pL ]{ L } [ K pL ]{ L } [ L ]T {P(t )} [ M pL ]{
i 1
i
7
8
单自由度系统的线性力法
对于单自由度振动系统
3.3多自由度系统的固有频率和模态

2021/4/24
《机械动力学》
10
多自由度系统振动 / 固有频率和模态
• 多自由度系统的固有频率
作用力方程: MX KX P(t) X Rn
固有振动方程: MX KX 0
(自由振动方程)
和单自由度系统一样,自 由振动时系统将以固有频 率为振动频率
同步振动:系统在各个坐标上除了运动幅值不相同外,
建立动力学方程的影响系数法
2021/4/24
《机械动力学》
1
多自由度系统振动 / 固有频率和模态
小结:
• 多自由度系统的位移方程: DMX X DF
• 柔度矩阵:
位移的量纲
柔度矩阵dij的含义为系统仅在第 j 个坐标受到单位 力作用时相应于第 i 个坐标上产生的位移
柔度矩阵和刚度矩阵互为逆阵
DK I
• 多自由度系统的自由振动
• 固有频率 • 模态 • 模态的正交性 • 主质量和主刚度 • 模态叠加法
2021/4/24
《机械动力学》
8
多自由度系统振动 / 固有频率和模态
• 多自由度系统的固有频率
作用力方程: MX KX P(t) X Rn
固有振动方程:
(自由振动方程)
MX KX 0
和单自由度系统一样,自由振动时系统将以固有频率 为振动频率
方程解耦,变成了两个单自由度问题
使系统运动微分方程不存在耦合,成为相互独立方程的坐标 称为主坐标
2021/4/24
《机械动力学》
5
多自由度系统振动 / 固有频率和模态
结论:
假设对同一个系统所选择的两种不同的坐标X 和Y 有如下的变
换关系:
X TY
其中T 是非奇异矩阵,如果在坐标X下系统的运动微分方程为:
第2章——多自由度系统的振动——运动方程建立方法0425

船体振动基础1第章多自由度系统的振第2章多自由度系统的振动一、引言二、两自由度系统的振动三、多自由度系统的振动四、振动方程建立的其他方法2有阻尼的多自由度系统振动1、拉格朗日方程式1、拉格朗日方程式P38拉格朗日法是建立微分方程一种简单的方法:先求出系统的动能、势能,进而得出质量矩阵和刚度矩阵.优点:系统的动能和势能都是标量,无需考虑力的方向。
141、拉格朗日方程式P38拉格朗日第二类方程式适用于完整约束的系统。
完整约束完整约束:当约束方程本身或约束方程通过积分后可以下式所示的形式表示时,称为完整约束。
不完整约束:当约束方程本含有不能积分的速度项时,系统的约束称为不完整约束。
具有不完整约束的系统,系统的自由度不等于广义坐标数自由度数小于广义坐标数于广义坐标数,自由度数小于广义坐标数。
151、拉格朗日方程式P3811•位移方程和柔度矩阵P40对于静定结构,有时通过柔度矩阵建立位移方程比通过对于静定结构有时通过m1x1x2以准静态方式作用在梁上。
梁只产生位移(即挠度),不产生加速度。
的静平衡位置为坐标P1=1 f11 f21 f12P2=1 f22(1)P1 = 1、P2 = 0 时 m1 位移:x1 = f11 m2 位移:x2 = f 21 (3)P1、P2 同时作用 m1 位移: 位移 x1 = f11 P 1 + f12 P 2 m2 位移:x2 = f 21 P 1 + f 22 P 2(2)P1 = 0、P2 = 1 时 m1 位移:x1 = f12 m2 位移:x2 = f 22P1 m1 x1 x2 P2 m2P1=1 f11 f21 f12 P1 m1 x1P2=1 f22 P2 m2 x2P 同时作用时 1、P 2 同时作用时:x1 = f11P 1 + f12 P 2 x2 = f 21P 1 + f 22 P 2矩阵形式 X = FP 矩阵形式:⎡ x1 ⎤ X =⎢ ⎥ ⎣ x2 ⎦f ij 柔度影响系数f12 ⎤ f 22 ⎥ ⎦⎡ f11 F=⎢ ⎣ f 21⎡P 1⎤ P=⎢ ⎥ ⎣ P2 ⎦物理意义: 系统仅在第 j 个坐标受到 单位力作用时相应于第 i 个坐标上产生的位移柔度矩阵P1 m1 x1P2 m2 x2P1(t) m1 m2P2(t)&1 m1 & x&2 m2 & xX = FP⎡ x1 ⎤ ⎡ f11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21 f12 ⎤ ⎡ P 1⎤ ⎢P ⎥ f 22 ⎥ ⎦⎣ 2 ⎦当P 1、P 2 是动载荷时 集中质量上有惯性力存在⎡ x1 ⎤ ⎡ f11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21 f12 ⎤ ⎡ P && 1 (t ) − m1 x1 ⎤ ⎢ P (t ) − m & ⎥ f 22 ⎥ & x 2 2⎦ ⎦⎣ 2⎡ x1 ⎤ ⎡ f 11 ⎢x ⎥ = ⎢ f ⎣ 2 ⎦ ⎣ 21位移方程:f 12 ⎤⎛ ⎡ P1 (t ) ⎤ ⎡m1 ⎜⎢ −⎢ ⎥ ⎥ ⎜ f 22 ⎦⎝ ⎣ P2 (t ) ⎦ ⎣ 0&1 ⎤ ⎞ 0 ⎤⎡ & x ⎟ ⎥ ⎢ ⎥ &2 ⎦ ⎟ m2 ⎦ ⎣ & x ⎠&& ) X = F ( P − MXP1(t) m1 m2P2(t)⎡ x1 ⎤ X =⎢ ⎥ ⎣ x2 ⎦⎡P 1 (t ) ⎤ P=⎢ ⎥ P ( t ) ⎣ 2 ⎦&1 m1 & x&2 m2 & x位移方程 位移方程:&& ) X = F ( P − MX也可按作用力方程建立方程:&& + KX = P MX刚度矩阵&& + X = FP FMX柔度矩阵与刚度矩阵的关系 柔度矩阵与刚度矩阵的关系:&& KX = P − MX若K非奇异F=K−1FK = I&& ) X = K −1 ( P − MX应当注意:对于允许刚体运动产生的系统(即具有刚体自由度的系统) , 柔度矩阵不存在。
多自由度体系在地面运动作用下的振动方程

多自由度体系在地面运动作用下的振动方程我们要找出多自由度体系在地面运动作用下的振动方程。
首先,我们需要了解多自由度体系的振动方程的基本形式。
多自由度体系的振动方程通常由以下形式给出:
M{ddot x} + C{dot x} + Kx = F(t)
其中:
M 是质量矩阵,
C 是阻尼矩阵,
K 是刚度矩阵,
x 是位移向量,
{dot x} 是速度向量,
{ddot x} 是加速度向量,
F(t) 是外部作用力向量。
对于地面运动作用下的振动,我们需要考虑地面的运动对体系的影响。
假设地面以速度 v 和加速度 a 运动,那么地面的运动可以表示为:
x_ground = vt + at^2
其中 x_ground 是地面的位移。
由于地面和体系是相互作用的,我们需要将地面的位移和加速度引入到振动方程中。
具体来说,我们需要将地面的位移和加速度作为外部作用力加入到方程的右边。
因此,多自由度体系在地面运动作用下的振动方程为:
M{ddot x} + C{dot x} + Kx = -Kx_ground
其中 x_ground 是地面的位移,由地面的速度和加速度决定。
结构力学专题十三(多自由度体系的动力计算)

FP1
m1
l
EI
l
FP 2
m2
l
二、任意荷载作用*
运动方程: M y(t) Ky(t) FP (t) (a)
1、主振型矩阵
1 2 n
2、广义质量、广义刚度
} M * T M 对角阵
K* T K
3、正则坐标
y(t) (t)
(b)
M y(t) Ky(t) FP(t) (a)
4、振型迭加法分析强迫振动
例1:求图示结构的动位移幅值和动内力幅值。
k1 k,k2 2k,
m1
m1 m,m2 2m;
P0 sin t
EI1
k1 m2
h
已知:
2
k m
EI1
k2
h
A
P0 k
1 0
1
1
I
F
0P0
P0
P0
P0 k
动位移幅值图
动荷载图(虚拟)
例2:求图示结构的动位移幅值和动内力幅值。
已知:
i
(t
)
i
(0)
cos
it
i (0) i
sin
it
(i 1, 2)
l
0E.I041
P0 L3 EI
sinP0 stin
m
t
EI
从以上例题的计算中可看出,一般情况下 1l 〉2 〉l〉n
故在振型迭加法中,一般是前几阶振型起主要作用。
思考:用振型叠加法求例1所示结构的位移幅值。
2
k m
2
1 3
k m
2 5 k 3m
2
k m
P0 sin t
P0 sin t
结构动力学-多自由度系统振动

k 2k
y1 y2
0 0
m
M
0
0
k
m, K k
k
2k
解:①由频率方程求固有频率
K 2M 0 k m2
k 0
k 2k m2
展开上式得:(k m2 )(2k m2 ) k 2 0
2 1, 2
3k m
9k 2m2 4k 2m2 2m2
1 0.62
k, m
2 1.62
M20 0
M 21
y2 0
M1y1
M11
列力平衡方程为:M11 M1y1 0 M11 M1 M 21 0, M 31 0
同样的分析可以求得:M12 0, M 22 M 2 , M 23 0; M13 0, M 23 0, M 33 M 3;
所以,得到质量矩阵为: M1 0 0
k2
k3
P
p1 (t) p2 (t)
二、柔度矩阵法 用柔度矩阵法或者刚度矩阵建立方程本质上也是基于力的 动平衡来建立方程,关键在于求柔度系数或刚度系数。
例题 3-2 梁的跨长为 l ,梁上有两个集中质量 M1 和 M 2 ,分别受 到集中力 p1 (t) 和 p2 (t) 的作用。不计梁自身的质量和阻尼,建立 系统的垂向振动方程.
上面的方程为惯性解耦,刚度耦合方程。
kij 的物理意义:j 坐标发生单位位移,其余坐标位移全部为
零时, i 坐标引起的恢复力。
mij 的物理意义:仅在 j 坐标发生单位加速度时,在第 i 坐标所产生 的惯性力.
用柔度矩阵法建立的一般方程:
Y (P MY)
两边同乘以 1
1Y 1(P MY)
例题:针对下图给出的系统,建立振动微分方程。