整式的乘法平方差公式完全平方公式整式的除法B卷

合集下载

(完整版)平方差、完全平方公式专项练习题(精品)

(完整版)平方差、完全平方公式专项练习题(精品)

平方差公式专项练习题A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,泰安,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,海南,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

七年级数学下---平方差、完全平方公式专项练习题

七年级数学下---平方差、完全平方公式专项练习题

七年级数学下---平方差、完全平方公式专项练习题平方差:一、选择题1.平方差公式〔a+b〕〔a-b〕=a2-b2中字母a,b表示〔〕A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.以下多项式的乘法中,可以用平方差公式计算的是〔〕A.〔a+b〕〔b+a〕 B.〔-a+b〕〔a-b C.〔13a+b〕〔b-13a〕 D.〔a2-b〕〔b2+a〕3.以下计算中,错误的有〔〕 A.1个 B.2个 C.3个 D.4个①〔3a+4〕〔3a-4〕=9a2-4;②〔2a2-b〕〔2a2+b〕=4a2-b2;③〔3-x〕〔x+3〕=x2-9;④〔-x+y〕·〔x+y〕=-〔x-y〕〔x+y〕=-x2-y2.4.假设x2-y2=30,且x-y=-5,那么x+y的值是〔〕A.5 B.6 C.-6 D.-5 二、填空题: 5、〔a+b-1〕〔a-b+1〕=〔_____〕2-〔_____〕2.6.〔-2x+y〕〔-2x-y〕=______.7.〔-3x2+2y2〕〔______〕=9x4-4y4.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:〔a+2〕〔a2+4〕〔a4+16〕〔a-2〕.B卷:提高题1.计算:〔1〕〔2+1〕〔22+1〕〔24+1〕…〔22n+1〕+1〔n是正整数〕;〔2〕〔3+1〕〔32+1〕〔34+1〕…〔32021+1〕-401632.2.式计算:2021×2007-20212.3.解方程:x〔x+2〕+〔2x+1〕〔2x-1〕=5〔x2+3〕.〔1〕计算:22007200720082006-⨯.〔2〕计算:22007200820061⨯+.4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,那么改造后的长方形草坪的面积是多少?5.以下运算正确的选项是〔〕 A.a3+a3=3a6 B.〔-a〕3·〔-a〕5=-a8C.〔-2a2b〕·4a=-24a6b3 D.〔-13a-4b〕〔13a-4b〕=16b2-19a26.计算:〔a+1〕〔a-1〕=______.C卷:课标新型题1.〔规律探究题〕x≠1,计算〔1+x〕〔1-x〕=1-x2,〔1-x〕〔1+x+x2〕=1-x3,〔1-x〕〔•1+x+x2+x3〕=1-x4.〔1〕观察以上各式并猜想:〔1-x〕〔1+x+x2+…+x n〕=______.〔n为正整数〕〔2〕根据你的猜想计算:①〔1-2〕〔1+2+22+23+24+25〕=______.②2+22+23+…+2n=______〔n为正整数〕.③〔x-1〕〔x99+x98+x97+…+x2+x+1〕=_______.〔3〕通过以上规律请你进展下面的探索:①〔a -b 〕〔a+b 〕=_______. ②〔a -b 〕〔a 2+ab+b 2〕=______. ③〔a -b 〕〔a 3+a 2b+ab 2+b 3〕=______.2.〔结论开放题〕请写出一个平方差公式,使其中含有字母m ,n 和数字4.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+;ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(;bc ac ab c b a c b a 222)(2222---++=++1、m 2+n 2-6m+10n+34=0,求m+n 的值2、0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题完全平方式常见的变形有:ab b a b a 2)(222-+=+ ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1.已知()5,3a b ab -==求2()a b +与223()a b +的值。

2.已知6,4a b a b +=-=求ab 与22a b +的值。

3.已知224,4a b a b +=+=求22a b 与2()a b -的值。

4.已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值5.已知6,4a b ab +==,求22223a b a b ab ++的值。

6.已知 2()16,4,a b ab +==求223a b+与2()a b -的值。

7.已知16x x -=,求221x x+的值 8.0132=++x x ,求(1)221x x +(2)441x x +9.已知m 2+n 2-6m+10n+34=0,求m+n 的值10.已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

11.已知222450x y x y +--+=,求21(1)2x xy --的值。

12.试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。

13、已知三角形 ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?整式的乘法、平方差公式、完全平方公式、整式的除法一、填空1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.2、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________.4.要使式子0.36x 2+41y 2成为一个完全平方式,则应加上________. 5.(4a m+1-6a m )÷2a m -1=________.6.29×31×(302+1)=________.7.已知x 2-5x +1=0,则x 2+21x=________. 8.已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________.二、相信你的选择9.若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于A.-1B.0C.1D.210.(x +q )与(x +51)的积不含x 的一次项,猜测q 应是 A.5 B.51 C.-51 D.-5 11.下列四个算式:①4x 2y 4÷41xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 2b 2c ;③9x 8y 2÷3x 3y =3x 5y ; ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m +2,其中正确的有A.0个B.1个C.2个D.3个12.设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为A.1B.-1C.3D.-313.计算[(a 2-b 2)(a 2+b 2)]2等于A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 814.已知(a +b )2=11,ab =2,则(a -b )2的值是A.11B.3C.5D.1915.若x 2-7xy +M 是一个完全平方式,那么M 是 A.27y 2 B.249y 2 C.449y 2 D.49y 2 16.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是A.x n 、y n 一定是互为相反数B.(x1)n 、(y 1)n 一定是互为相反数 C.x 2n 、y 2n 一定是互为相反数 D.x 2n -1、-y 2n -1一定相等1.下列多项式乘法,能用平方差公式进行计算的是( )A.(x+y)(-x -y)B.(2x+3y)(2x -3z)C.(-a -b)(a -b)D.(m -n)(n -m)2.下列计算正确的是( )A.(2x+3)(2x -3)=2x 2-9B.(x+4)(x -4)=x 2-4C.(5+x)(x -6)=x 2-30 D.(-1+4b)(-1-4b)=1-16b 23.下列多项式乘法,不能用平方差公式计算的是( )A.(-a -b)(-b+a)B.(xy+z)(xy -z)C.(-2a -b)(2a+b)D.(0.5x -y)(-y -0.5x)4.(4x 2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算( )A.-4x 2-5yB.-4x 2+5yC.(4x 2-5y)2D.(4x+5y)25.a 4+(1-a)(1+a)(1+a 2)的计算结果是( )A.-1B.1C.2a 4-1D.1-2a 46.下列各式运算结果是x 2-25y 2的是( )A.(x+5y)(-x+5y)B.(-x -5y)(-x+5y)C.(x -y)(x+25y)D.(x -5y)(5y -x)三、考查你的基本功17.计算(1)(a -2b +3c )2-(a +2b -3c )2;(2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3);(3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .18.(6分)解方程x (9x -5)-(3x -1)(3x +1)=5.五、探究拓展与应用20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).根据上式的计算方法,请计算(3+1)(32+1)(34+1)…(332+1)-2364的值. 1.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2.已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。

七年级数学下---平方差、完全平方公式专项练习题

七年级数学下---平方差、完全平方公式专项练习题

A .(a+b )(b+a )B .(-a+b )(a -bC .( a+b )(b - a )D .(a 2-b )(b 2+a ) ×21 . 10.计算:(a+2)(a 2+4)(a 4+16)(a -2).(2)(3+1)(32+1)(34+1)…(32008+1)-. 七年级数学下---平方差、完全平方公式专项练习题平方差:一、选择题1.平方差公式(a+b )(a -b )=a 2-b 2 中字母 a ,b 表示()A .只能是数B .只能是单项式C .只能是多项式D .以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()1 13 33.下列计算中,错误的有( ) A .1 个B .2 个C .3 个D .4 个①(3a+4)(3a -4)=9a 2-4; ②(2a 2-b )(2a 2+b )=4a 2-b 2;③(3-x )(x+3)=x 2-9;④(-x+y )·(x+y )=-(x -y )(x+y )=-x 2-y 2.4.若 x 2-y 2=30,且 x -y=-5,则 x+y 的值是( )A .5B .6C .-6D .-5二、填空题:5、(a+b -1)(a -b+1)=(_____)2-(_____)2.6.(-2x+y )(-2x -y )=______.7.(-3x 2+2y 2)(______)=9x 4-4y 4.8.两个正方形的边长之和为 5,边长之差为 2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题 9.利用平方差公式计算:20 2 13 3B 卷:提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n +1)+1(n 是正整数);340162(1)计算: .(2)计算: .C .(-2a 2b )·4a=-24a 6b3D .(- a -4b )( a -4b )=16b 2- a 22 2.式计算:2009×2007-20082.3.解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).2007200722007 2 - 2008 ⨯ 20062008 ⨯ 2006 + 14.广场内有一块边长为 2a 米的正方形草坪,经统一规划后,南北方向要缩短 3 米,东西方向要加长 3 米,则改造后的长方形草坪的面积是多少?5.下列运算正确的是( ) A .a 3+a 3=3a 6B .(-a )3·(-a )5=-a 81 1 1 3 3 96.计算:(a+1)(a -1)=______.C 卷:课标新型题1.(规律探究题)已知 x≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x +x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=_____ _.(n 为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+…+2n =______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索:2 3、已知 (a + b )2 = 16, a b = 4, 求 与 (a - b )2 的值。

整式的乘除知识点

整式的乘除知识点

整式的乘除知识点整式的乘除是代数运算中的重要内容,它为解决各种数学问题提供了基础工具。

下面咱们就来详细说一说整式乘除的相关知识点。

首先,咱们聊聊整式的乘法。

单项式乘以单项式,就把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

比如说,3x²乘以 2x³,系数 3 和 2 相乘得 6,相同字母 x 分别相乘,指数2 和3 相加得 5,所以结果就是 6x^5 。

单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加。

例如,2x(3x² 4x + 5),那就是 2x 乘以 3x²得 6x³,2x 乘以-4x 得-8x²,2x 乘以 5 得 10x ,最后相加就是 6x³ 8x²+ 10x 。

多项式乘以多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

举个例子,(x + 2)(x 3),就是 x 乘以 x得 x²,x 乘以-3 得-3x ,2 乘以 x 得 2x ,2 乘以-3 得-6 ,然后相加,结果就是 x² x 6 。

接下来,咱们再看看整式的除法。

单项式除以单项式,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

比如说,12x³y² ÷ 3x²y ,系数 12 除以 3 得 4,同底数幂 x³除以 x²得 x ,y²除以 y 得 y ,所以结果就是 4xy 。

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。

例如,(6x³ 9x²+ 3x) ÷ 3x ,6x³除以 3x 得 2x²,-9x²除以 3x 得-3x ,3x 除以 3x 得 1 ,所以结果就是 2x² 3x + 1 。

整式乘除知识点

整式乘除知识点

整式乘除知识点在数学的学习中,整式乘除是一个重要的部分,它不仅是后续学习代数运算的基础,也在解决实际问题中有着广泛的应用。

下面就让我们一起来深入了解整式乘除的相关知识点。

一、整式的乘法(一)单项式乘以单项式法则:把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

例如:3x²y × 5xy³= 15x³y⁴(二)单项式乘以多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。

例如:2x(3x² 5x + 1) = 6x³ 10x²+ 2x(三)多项式乘以多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

例如:(x + 2)(x 3) = x² 3x + 2x 6 = x² x 6二、整式的除法(一)单项式除以单项式法则:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。

例如:18x⁴y³z² ÷ 3x²y²z = 6x²yz(二)多项式除以单项式法则:先把这个多项式的每一项分别除以这个单项式,然后把所得的商相加。

例如:(9x³y 18x²y²+ 3xy³) ÷ 3xy = 3x² 6xy + y²三、乘法公式(一)平方差公式(a + b)(a b) = a² b²例如:(3x + 2)(3x 2) = 9x² 4(二)完全平方公式(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²例如:(x + 5)²= x²+ 10x + 25四、整式乘除的应用(一)几何图形中的应用在求解长方形、正方形等图形的面积和周长时,经常会用到整式的乘除。

平方差、完全平方公式专项练习题

平方差、完全平方公式专项练习题

公式变形一、基础题1.(-2x+y)(-2x-y)=______.2.(-3x2+2y2)(______)=9x4-4y4.3.(a+b-1)(a-b+1)=(_____)2-(_____)2.4.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.5.利用平方差公式计算:2023×2113.2009×2007-20082.6.计算:(a+2)(a2+4)(a4+16)(a-2).(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(3+1)(32+1)(34+1)…(32008+1)-401632.22007200720082006-⨯.22007200820061⨯+.7.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).8(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.完全平方式常见的变形有:1、已知m2+n2-6m+10n+34=0,求m+n的值2、已知0136422=+-++yxyx,yx、都是有理数,求y x的值。

3.已知2()16,4,a b ab+==求223a b+与2()a b-的值。

练习:()5,3a b ab-==求2()a b+与223()a b+的值。

七年级数学下---平方差、完全平方公式专项练习题

七年级数学下---平方差、完全平方公式专项练习题

七年级数学下-—-平方差、完全平方公式专项练习题平方差:一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b C.(13a+b)(b-13a) D.(a2-b)(b2+a)3.下列计算中,错误的有() A.1个 B.2个 C.3个 D.4个①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.4.若x2-y2=30,且x-y=-5,则x+y的值是( )A.5 B.6 C.-6 D.-5二、填空题: 5、(a+b-1)(a-b+1)=(_____)2-(_____)2.6.(-2x+y)(-2x-y)=______.7.(-3x2+2y2)(______)=9x4-4y4.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113. 10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.式计算:2009×2007-20082. 3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).(1)计算:22007200720082006-⨯.(2)计算:22007200820061⨯+.4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?5.下列运算正确的是( ) A.a3+a3=3a6 B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=_____ _.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.①(a -b )(a+b )=_______ . ②(a -b )(a 2+ab+b 2)=_____ _. ③(a -b)(a 3+a 2b+ab 2+b 3)=____ __.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n 和数字4.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+;ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(; bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2—6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.6~1.9 整式的乘法、平方差公式、完全平方公式、整式的除法(B卷)
班级:_______姓名:_______得分:_______发展性评语:___________
一、请准确填空(每小题3分,共24分)
2220042005=________. +则ab-2a+21.若ab+b+2=0,答案: 0
22-2a+2b提示:∵a+2=0,
+b2222=0.∴a=1,b+(b+1)=2a+1)+(b-+2b+1)=(a-1)∴(a1.
-2.一个长方形的长为(2a+3b),宽为(2a-3b),则长方形的面积为________.
22 b-9答案: 4a22取最大值时,a与ba-b)ba-)的关的最大值是________,当5-(3.5-(系是________.
答案: 5 a=b
122成为一个完全平方式,则应加上________.
+4.要使式子0.36xy4122)
y或-(或-0.36x答案: 0.6xy4m+1mm1-=________. aa)5.(4a÷2-62-3a答案: 2a 2+1)=________. ×(306.29×314-: 301
答案提示:把29×31转化为(30-1)(30+1).
122+x=________.
x+1=0,7.已知x则-52x112-5x+1=0,∴x-5+=0,即x示:∵x+=5.两边平方得: 答案23 提xx12+=23.
x2x22=________. )--a)a+(2003已知(2005-a)(2003-a)=1000,请你猜想(20058.22 a-a))+(2003答案: 2004 提示:(2005-2+2(2005-a)(2003-a) )-(2003-a)〕a=〔(2005-=4+2×1000=2004.
二、相信你的选择(每小题3分,共24分)
2-x-m=(x-m)(x+1)9.若x且x≠0,则m等于
A.-1
B.0
C.1
D.2
答案:D
110.(x+q)与(x+)的积不含x的一次项,猜测q应是51A.5 B. 51 C.- D.-5
5答案:C
1 / 4
136432228224÷y:①4。

③9x。

②16axbyc÷8a11.b÷=2a下列四个算式bxy=xyc422353 +4m+2+8m(-4m)÷-2m)=-63xmy=3xy。

④(12m,其中正确的有A.0个B.1个 C.2个
D.3个
:B
答案nm253m1n+25--)=xymy)·(x的值为,y则(12.设x C.3 B.-1 A.1
3
- D.:A
答案22222 )]13.计算[(a+-bb)(a等于24 42bb2aA.a+-6 644 +bB.ab+2a8 6446 -aD.ba+C.ab-2844 +bb2a:D
答案22 =11,ab=2,则(a-的值是b14.已知(a+b)) A.11 B.3
D.19
C.5
:B
答案2 M是是一个完全平方式,那么-7xy+15.若xM497492 2 2 yA.yyC.B.
4222 yD.49:C
答案你认为正确的是的相反数,n为正整数,16.若x,y互为不等于0nn一定是互为相反数、xA.y11nn B.())一定是互为相反数、(xy n22n一定是互为相反数、C.xy12n2n1--D.x一定相等、-y:D
答案) 分三、考查你的基本功(共24) 分17.计算(每小题3分,共1222 )3c。

(a+2b -a(1)(-2b+3c)-1322 a)b--(2)[ab(3b)-2a(b。

b()]-3251001002005-(3)-2。

×0.5×(-1)-÷(1)2. y2)+4(x-y)6-x]÷6x)(((4)[x+2yx-答案: (1)。

-8ab 原式=12ac3222) b--(2)原式=(3abab2-ab+ab)·(3a4233 a-b)=3。

b3(ab=·-a100 0.5)(2=(3)原式-××(1)=-÷1)-(1-。

2 / 4
2222-6x〕÷+4y6-4yx+4x -8(4)原式=〔xxy54=x-y-1. 6318.(6分)解方程
x(9x-5)-(3x-1)(3x+1)=5.
答案: 原方程可化为
22-x1)=5, 5x-(99x-22+1=5, 9x-5x9x-5x=-4,
4x=-,
54∴原方程的解为x=-.
52的值,喜欢数学的小亮举手数学课上老师出了一道题:计算29619.(6分)做出这道题,他的解题过程如下:
2222 4)+4-300×=300(-2296×=(300-4)=90000+2400+16=92416
老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.
答案: 错在“-2×300×(-4)”,
应为“-2×300×4”,公式用错.
222242×300∴
296=(300-4)×=300+4-=90000-2400+16=87616.
四、生活中的数学(共14分)
20.(6分)如果运载人造星球的火箭的速度超过11.2 km/s(俗称第二宇宙速度),则人造星球将会挣脱地球的束缚,成为绕太阳运行的恒星.一架喷气式飞机6 m/h,请你推算一下第二宇宙速度是飞机速度的多少倍?的速度为1.8×10答案: 飞机的速度为
6108?1.6 km/s=0.5 km/s,
10m/h=1.8×3600?100011.2÷0.5=22.4.
答:第二宇宙速度是喷气式飞机速度的22.4倍.
21.(8分)商店经营一种产品,定价为12元/件,每天能售出8件,而每降价x元,则每天可多售(x+2)件.
(1)试写出降价x元后,每天的销售总收入是多少元?
(2)当x取何值时,商家的总收入最多?
答案: (1)每天销售总收入为
(12-x)(8+x+2)=(12-x)(10+x)
2)(元)。

=(120+2x-x2-x120+2(2)∵x2-2xx+1) (=121-2,
-1)-=121(x当x=1时,即降价 1 元时,商家的总收入最多.
3 / 4
)
分(共14五、探究拓展与应用为各边的长,a所示、b22.(8分)小明做了四个正方形或长方形纸板如图1.
小明用这四个纸板拼成图2图形,验证了完全平方公式小明说他还能用这四个纸板通过拼接、遮盖,组成新的图形,来验证平方如没有道理、.他说的是否有道理?如有道理,请你帮他画出拼成的图形.差公式.
不能验证,请说明理由.并与同伴交流b
a
b
a
a
a
a
a
b
图1
b 222b
+b=a+2aba (+b)b
b
a
b
2
图答案: 如下图折叠(参考)阴影部分面积.
a b a
(a-b) (a-b) a a22b a- b , 两阴影部分面积相等 b b22.
)=a-bab-)((∴a+a-b. 23.(6分计42+1)
(2+1)(2+1)(244222+1) +1)(2-=(21)(2+1)(2+1)(2+1)=(21)(2-8441).
-=(21)(2-+1)=(2 根据上式的计算方法,请计算6433242.
(3+1)+1)(3…+1)的值-(3+1)(32答案:
4 / 4。

相关文档
最新文档