电力电子技术课程设计报告

合集下载

电力电子技术课程设计总结

电力电子技术课程设计总结

电力电子技术课程设计总结篇一:电力电子技术课程设计报告成都理工大学工程技术学院TheEngineering&TechnicalcollegeofchengduUniversityofTechnology力电子技术课程设计报告姓名学号年级专业系(院)指导教师电三相半波整流电路的设计1设计意义及要求1.1设计意义整流电路是出现最早的电力电子电路,将交流电变为直流电,电路形式多种多样。

当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。

其交流侧由三相电源供电。

三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。

1.2初始条件设计一三相半波整流电路,直流电动机负载,电机技术数据如下:Unom?220V,inom=308a,nnom=1000r/min,ce=0.196Vmin/r,Ra?0.18。

1.3要求完成的主要任务1)方案设计2)完成主电路的原理分析3)触发电路、保护电路的设计4)利用maTLaB仿真软件建模并仿真,获取电压电流波形,对结果进行分析5)撰写设计说明书2方案设计分析本文主要完成三相半波整流电路的设计,通过maTLaB软件的SimULinK模块建模并仿真,进而得到仿真电压电流波形。

分析采用三相半波整流电路反电动势负载电路,如图1所示。

为了得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波流入电网。

三个晶闸管分别接入a、b、c三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。

图1三相半波整流电路共阴极接法反电动势负载原理图直流电(:电力电子技术课程设计总结)动机负载除本身有电阻、电感外,还有一个反电动势E。

如果暂不考虑电动机的电枢电感时,则只有当晶闸管导通相的变压器二次电压瞬时值大于反电动势时才有电流输出。

电力电子课程设计报告

电力电子课程设计报告

电力电子课程设计报告本文将介绍关于“电力电子课程设计报告”的内容。

首先,该课程设计报告要求完成一项电力电子领域中的具体工程项目,包括设计、仿真和实现。

本报告将以一个模拟摇摆调制电路设计为例进行介绍。

1. 设计目标本项目的设计目标是设计和实现一种基于模拟摇摆调制技术的开关电源。

该电源必须满足以下规格:输出电压:±15V额定输出电流:1A输出纹波:小于10mV 输入电压:24V直流电源2. 设计原理模拟摇摆调制(SIM) 调制技术是一种实用的用于开关电源和驱动电路的高效模拟调制技术。

在SIM调制中,参考波形是一个摇摆波形,它的幅度和频率都会变化。

在每一个时刻,该摇摆波形用来自适应地控制开关器件的导通和截止,以提供所需的输出电压。

在这个项目中,我们使用了一个基于SIM调制技术的开关电源设计方案。

该方案主要涉及到以下模块:输入滤波器、摇摆调制电路、开关电源步进电路和输出滤波器。

3. 电路设计我们首先设计了输入滤波器,以消除输入电源中的AC噪声和杂波。

在本项目中,我们使用了一个简单的低通滤波器来实现这个目标。

接下来,我们设计了模拟摇摆调制电路。

这个电路使用了一个简单的双稳态多谐振荡器作为摇摆信号发生器,并使用一个运算放大器来计算峰值电平。

运算放大器输出被馈入到一个比较器中,用来驱动开关电源的控制信号。

在此之后,我们设计了开关电源步进电路。

这个电路包括一个供电开关管和一个电感器,用来实现从输入电源到输出负载的能量转移。

最后,我们设计了一个输出滤波器。

该输出滤波器使电源输出的纹波降到接受范围之内,在这个项目中,我们使用了一个简单的Pi型低通滤波器来实现这个目标。

4. 仿真结果在我们完成设计之后,我们使用了LTSpice 仿真工具来模拟我们的设计。

下面是我们的仿真结果:输出电压:±15V额定输出电流:1A输出纹波:小于10mV 输入电压:24V直流电源通过仿真结果,我们可以看到output voltage,output current 和environmental temperature 的图表,证明了电路能够满足我们的规格要求。

电力电子技术课程设计报告

电力电子技术课程设计报告

电力电子技术课程设计报告书专业班级:16电气2班姓名:王浩淞学号:2016330301054指导教师:雷美珍目录1、webench电路设计1.1设计任务要求输入电压为(8V-10V),输出电压为5V,负载电流为1A 1.2设计方案分析图1.3.1主电路原理图图1.3.2元器件参数图1.3.3额定负载时工作值图1.3.4输出电流和系统效率间的关系如图1.3.4所示,在输出电流相同的情况下,输入电压越小,系统的稳态效率越高,因此提高效率的最直接方式就是降低系统的输入电压,其次在输入电压相同的情况下,我们可以调节输出电压的大小,使系统效率达到最大,例如当输入电压为9.0V时,根据图像输出电流为0.40A的时候效率最高。

第二种方法是改变元器件的参数,通过使用DCR(直流电阻)小的电感元件来实现输出纹波电压降低。

1.3主芯片介绍TPS561201和TPS561208采用SOT-23封装,是一款简单易用的1A同步降压转换器。

这些器件经过优化,可以在最少的外部元件数量下工作,并且还经过优化以实现低待机电流。

这些开关模式电源(SMPS)器件采用D-CAP2模式控制,可提供快速瞬态响应,并支持低等效串联电阻(ESR)输出电容,如特种聚合物和超低ESR陶瓷电容,无需外部补偿元件。

TPS561201以脉冲跳跃模式工作,在轻负载操作期间保持高效率。

TPS561201和TPS561208采用6引脚1.6×2.9(mm)SOT(DDC)封装,工作在-40°C至125°C的结温范围内。

1.4电气仿真结果分析图1.4.1启动仿真图1.4.2稳态仿真图1.4.3暂态仿真图1.4.4 负载暂态仿真二、基于电力系统工具箱的电力电子电路仿真2.1 设计要求和方案分析本课程设计主要应用了MATLAB软件及其组件之一Simulink,进行系统的设计与仿真系统主要包括:Boost升压斩波主电路部分、PWM控制部分和负载。

电力电子技术课程设计报告

电力电子技术课程设计报告

电力电子技术课程设计报告一、引言电力电子技术是现代电力系统中不可或缺的一部分。

它涉及到将电能转换为不同形式以满足不同需求的技术。

本文将介绍一个基于电力电子技术的课程设计报告,旨在帮助读者了解该设计的步骤和思考过程。

二、设计目标我们的设计目标是实现一个具有高效能转换和可靠性的电力电子系统。

该系统能够将直流电能转换为交流电能,并能够在不同负载条件下提供稳定的电力输出。

三、系统设计1. 选取合适的电力电子器件为了实现电能的转换,我们需要选取合适的电力电子器件。

在这个设计中,我们选择使用开关管作为主要的电力电子器件。

开关管具有快速开关和可控的特性,适合用于电能转换。

2. 设计电力电子控制电路为了控制开关管的工作,我们需要设计一个电力电子控制电路。

这个电路主要由控制芯片、传感器和驱动电路组成。

控制芯片用于生成控制信号,传感器用于监测电流和电压等参数,驱动电路用于控制开关管的导通和关断。

3. 进行系统建模和仿真在进行实际电路设计之前,我们需要对系统进行建模和仿真。

这可以帮助我们验证设计的正确性,并且可以提前发现潜在的问题和改进的空间。

我们可以使用电路仿真软件来进行系统建模和仿真。

4. PCB设计和元器件选型在完成系统建模和仿真后,我们需要进行PCB设计和元器件选型。

PCB设计是将电路设计转化为实际电路板的过程。

在PCB设计中,我们需要考虑电路的布局和走线,以及选择适当的元器件。

5. 制作和调试电路板在完成PCB设计后,我们可以开始制作电路板。

制作电路板可以通过将电路设计转移到电路板上,并使用电路板制作设备进行制作。

制作完成后,我们需要进行电路板的调试,以确保电路的正常工作。

6. 测试和优化系统性能在完成电路板的制作和调试后,我们需要对系统进行测试和优化。

测试可以帮助我们评估系统的性能,并发现潜在的问题。

根据测试结果,我们可以进行优化,以提高系统的效率和可靠性。

四、总结本文介绍了一个基于电力电子技术的课程设计报告的步骤和思考过程。

电力电子技术课程设计报告

电力电子技术课程设计报告

(一)课程设计的目的1、掌握三相全桥相控整流电路的结构及其工作原理,明确触发脉冲的相位关系,熟悉整流电路交流侧与直流侧电流,电压关系;2、掌握三相电压型逆变电路的结构及其工作原理,明确触发脉冲的相位关系,熟悉逆变电路交流测与直流侧电压电流的关系;3、熟悉电力电子电路的计算机仿真方法。

(二)课程设计内容与要求1、使用Matlab仿真软件实现“三相桥式全控整流电路仿真模型”,构建触发延时角为0°,30°,60°的三相全桥整流波,电感10mH,电阻负载1Ω。

采用宽脉冲触发方式。

观测电网电压波形、触发脉冲波形、直流侧电压波形及负载电流波形。

2、使用Matlab仿真软件实现“三相电压型逆变电路仿真”,构建合适的触发延时角,设定合适的元器件值。

观测交流测电压电流波形。

(三)Matlab原理应用以及Simulink仿真时至今日,Matlab以矩阵运算为基础,把科学计算、绘图及动态系统仿真等功能有机地融合在一起。

同时,它又具有程序设计语言的基本特征,所以也可以称之为一种编程语言。

它已成为一种广泛应用于工程计算及数值分析领域的新型高级语言,在工程计算与数值分析、动态系统设计和仿真、金融建模设计与分析等许多科学领域都有着十分广泛的应用。

Simulink仿真是一种以Matlab为基础,对动态系统进行建模、仿真和分析的软件包。

在该软件环境下,用户可以在屏幕上调用现成的模块,并将它们适当连接起来以构成系统的的模型。

以该模型为对象运行Simulink中的仿真程序,可以对模型进行仿真,并可以随时观察仿真结果和干预仿真过程。

根据仿真结果,用户可以调整系统参数,观察分析仿真结果的变化,从而获得更加理想的仿真结果。

(四)主电路设计及仿真1、三相全桥相控整流电路基本工作原理在三相桥式全控整流电路中,习惯上将阴极连接在一起的三个晶闸管(VT1,VT3,VT5)称为共阴极组,阳极连接在一起的三个晶闸管(VT4,VT6,VT2)称为共阳极组。

电力电子技术应用课程设计报告

电力电子技术应用课程设计报告

一.高压直流输电基本原理1.主要元件及功能○1换流器换流器由阀桥和带载抽头切换器的整流变压器构成。

阀桥为高压阀构成的6脉波或12脉波的整流器或逆变器。

换流器的任务是完成交—直或直—交转换。

○2滤波器换流器在交流和直流两侧均产生谐波,会导致电容器和附近电机过热,并且会干扰通信系统。

因此,在交流侧和直流侧都装有滤波装置。

○3平波电抗器平波电抗器电感值很大,在直流输电中有着非常重要的作用:1)降低直流线路中的谐波电压和电流。

2)限制直流线路短路期间的峰值电流。

3)防止逆变器换相失败。

4)防止负荷电流不连续。

○4无功功率源在稳态条件下,换流器所消耗的无功功率是传输功率50%左右,在暂态情况下,无功功率的消耗更大。

所以,必须在换流器附近提供无功电源。

○5直流输电线○6电极大多数的直流联络线设计采用大地作为中性导线,与大地相连接的导体(即电极)需要有较大的表面积,以便使电流密度和表面电压梯度较小。

○7交流断路器为了排除变压器故障和使直流联络线停运,在交流侧装有断路器。

图1.双极HVDC系统2.换流器结构及计算公式功能是实现交流—直流或直流—交流的变换,是直流输电系统的关键设备。

换流器的主要原件是阀桥和换流变压器。

在直流输电系统中,为实现换流所需的三相桥式换流器的桥臂,称为换流阀,它是换流器的基本单元设备。

换流阀除了具有整流和逆变功能外,还具有开关的功能,可利用其快速可控性对直流输电的启动和停运进行快速操作。

可分为汞弧阀和半导体阀。

晶闸管阀是由晶闸管元件及其相应的电子电路、阻尼电路、阳极电抗器、均压元件等通过某种形式的电气连接后组装而成的换流桥的桥臂。

现代高压直流输电换流阀主要由晶闸管元件串联组成。

下图为阀的电气连接示意图。

图2.阀的电气连接示意图目前直流输电工程上所采用的换流器有6脉动和12脉动两种。

为了简化滤波装置、减小换流站占地面积、降低换流站造价,绝大多数直流输电工程采用12脉动换流器。

在大功率、远距离直流输电工程中,为了减小滤波影响,常把两个或两个以上换流桥的直流端串联起来,组成多桥换流器。

电力电子技术课程设计报告

电力电子技术课程设计报告

前言电力电子技术又称为功率电子技术,他是用于电能变换和功率控制的电子技术。

电力电子技术是弱电控制强电的方法和手段,是当代高新技术发展的重要内容,也是支持电力系统技术革命发展的重要基础,并节能降耗、增产节约提高生产效能的重要技术手段。

微电子技术、计算机技术以及大功率电力电子技术的快速发展,极大地推动了电工技术、电气工程和电力系统的技术发展和进步。

电力电子器件是电力电子技术发展的基础。

正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。

而二十世纪九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。

电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。

功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。

电力电子技术在电力系统中的应用中也有了长足的发展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵活的特点,能够显著地改善电力系统的特性,在提高系统稳定、降低运行风险、节约运行成本方面有很大潜力。

目录1.设计任务说明 (3)2.方案选择 (4)2.1器件的介绍 (4)2.2单相可控整流电路的比较 (6)3.辅助电路的设计 (12)3.1驱动电路的设计 (12)3.2保护电路的设计 (13)3.3过流保护 (14)3.4过压保护 (14)3.5 电流上升率、电压上升率的抑制保护 (14)4.主体电路的设计 (15)4.1主要电路原理及说明 (15)4.2主电路的设计 (16)4.3主要元器件的说明 (16)4.4元器件清单 (19)5.性能指标分析 (19)6. 设计心得 (21)7. 参考文献 (22)1、设计任务书一、课程设计的目的:1、培养学生文献检索的能力,特别是如何利用 Internet 检索需要的文献资料。

电力电子技术课程设计报告

电力电子技术课程设计报告

电力电子技术课程设计报告.doc本次课程设计的主题是电力电子技术,旨在通过实践操作及深入研究,掌握电力电子器件和系统的运行原理、设计与控制方法。

本报告将详细介绍本次课程设计的内容、目的及实施过程,并对结果进行总结与展望。

一、课程设计的内容及目的本次课程设计的主要内容为电力电子器件模块的设计及控制,具体包括以下内容:(1)电力电子器件模块的设计:本次课程设计的目标是实现一个电力电子器件模块,该模块采用的器件是MOSFET,要求能够实现输入电压与输出电压的变化控制,并具有良好的稳定性和可靠性。

(2)控制电力电子器件模块:本次课程设计还要求实现对电力电子器件模块的控制,包括输出电压的变化控制和保护性措施的设计等。

通过本次课程设计,学生可以了解电力电子器件的工作原理、性能特点和设计方法,掌握电力电子器件的调节和控制技术,提高学生的综合实践能力和创新能力。

二、课程设计的实施过程本次课程设计主要分为设计、制作及测试三个阶段。

1、设计阶段在设计阶段,学生需按照要求完成电力电子器件模块的设计,具体包括以下内容:(1)设计输入输出电压的大小和变化范围。

(2)选择合适的电力电子器件,确定电路拓扑结构。

(3)设计电力电路的关键参数,包括电流、电压、功率等。

(4)根据设计参数选择合适的控制电路,包括开关电路、反馈电路等。

(5)通过电路仿真软件进行仿真分析,调整电路参数,保证各项参数性能合理、稳定、可靠。

2、制作阶段在设计阶段完成电路模块的主要参数设定后,开始实际制作电路模块。

具体操作流程如下:(1)选购相关器件,如MOSFET、电容、电感等。

(2)通过电路图纸完成电路板原理图和PCB布局设计。

(3)利用PCB设计软件进行图纸制作,并进行打样检验。

(4)进行电路元器件焊接。

(5)检查焊接后电路元器件的连接情况是否正确。

(6)测试电路模块的基本性能,包括输入输出电压的测试、开关信号测试等。

3、测试阶段在电路模块制作完成后,需要进行测试,以检验电路的性能是否满足要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都理工大学工程技术学院T h e E n g i n e e r i n g&T e c h n i c a l C o l l e g e o f C h e n g d u U n i v e r s i t y o f T e c h n o l o g y电力电子技术课程设计报告姓名学号年级专业系(院)指导教师三相半波整流电路的设计1设计意义及要求1.1设计意义整流电路是出现最早的电力电子电路,将交流电变为直流电,电路形式多种多样。

当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路。

其交流侧由三相电源供电。

三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路、以及双反星形可控整流电路、十二脉波可控整流电路等,均可在三相半波的基础上进行分析。

1.2初始条件设计一三相半波整流电路,直流电动机负载,电机技术数据如下:220nom U V =,I =308A nom ,=1000r/min nom n ,C =0.196V min/r e ,0.18a R =。

1.3要求完成的主要任务1)方案设计2)完成主电路的原理分析 3)触发电路、保护电路的设计4)利用MATLAB 仿真软件建模并仿真,获取电压电流波形,对结果进行分析 5)撰写设计说明书2方案设计分析本文主要完成三相半波整流电路的设计,通过MATLAB软件的SIMULINK模块建模并仿真,进而得到仿真电压电流波形。

分析采用三相半波整流电路反电动势负载电路,如图1所示。

为了得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波流入电网。

三个晶闸管分别接入b ca、、三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。

图1 三相半波整流电路共阴极接法反电动势负载原理图直流电动机负载除本身有电阻、电感外,还有一个反电动势E。

如果暂不考虑电动机的电枢电感时,则只有当晶闸管导通相的变压器二次电压瞬时值大于反电动势时才有电流输出。

此时负载电流时断续的,这对整流电路和电动机负载的工作都是不利的,实际应用中要尽量避免出现负载电流断续的工作情况。

3主电路原理分析及主要元器件选择3.1主电路原理分析主电路理论图如图1所示。

假设将电路中的晶闸管换作二极管,并用VD表示,该电路就成为三相半波不可控整流电路。

此时,三个二极管对应的相电压中哪一个的值最大,则该相对应的二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压。

在相电压的交点处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。

自然换相点是各相晶闸管能触发导通的最早时刻,将其作α=。

,要改变触发角只能是在此基础上增大它,即为计算各晶闸管触发角α的起点,即0沿时间坐标轴向右移。

当三个晶闸管的触发角为0°时,相当于三相半波不可控整流电路的情况。

增大α值,将脉冲后移,整流电路的工作情况相应的发生变化。

设变压器二次侧电压有效值为220V 2sin30=155.54V ︒。

若反电动势小于155.54V 时,整流电路相当于工作在阻感负载情况下=1000r/min nom n (因为在自然换相点处晶闸管导通,负载电压等于相电压)。

根据任务书所给电机参数,当电机空载转速为,且稳定运行时,反电动势为E 196nom e n C V =⨯=。

晶闸管的触发角为0°时,波形图如图2所示,从上到下波形依次是三相交流电压波形,触发脉冲波形,负载电压波形,晶闸管电压波形。

图2 触发角为0°时的波形触发角较小时,在触发脉冲发出时交流电压还没有达到196V ,晶闸管不导通,到196V 以后在触发脉冲的作用下晶闸管导通;换相后1VT 关断,在2VT 导通期间,1uvt ua ub uab =-=;3VT 导通期间,1uvt ua uc uac =-=。

触发角变大后,可以实现在触发脉冲发出时电压达到196V ,晶闸管直接导通,如图3所示,触发角为60°,从上到下波形依次是三相交流电压波形,触发脉冲波形,负载电压波形,晶闸管电压波形。

图3 触发角为60°时的波形触发角为当60°时,当2U 过零时,由于电感的存在,阻止了电流的下降,因而1VT 继续导通,直到下一相晶闸管2VT 的触发脉冲到来,才发生换流,由2VT 导通向负载供电,同时向1VT 施加反相电压使其关断。

这种情况下d U 波形中出现负的部分,若2/d U U d U 波形中负的部分将增多,至90α=︒ d U 波形中正负面积相等,d U 的平均值为零。

由此可见阻感负载时的移相范围为90°。

由于负载电流连续,d U 可由式(3-1)求出,即56222861sin ()cos 1.17cos 223d U wtd wt U ππππ++==∂=∂⎰(3-1)2/d U U 与α成余弦关系,如图4中曲线2所示。

如果负载中的电感量不是很大,则当30α>︒后,与电感量足够大的情况相比较,ud 中负的部分可能减少,整流电压平均值ud 略为增加,2/d U U 与α的关系将介于图4中的曲线1和2之间,曲线3给出了这种情况的一个例子。

变压器二次电流即晶闸管电流的有效值I2可由式(3-2)求出,即20.577VT d d I I I === (3-2) 由此晶闸管的额定电流IVT(AV)可由式(3-3)求出,即()0.3681.57dVT AV VT I I I == (3-3) 晶闸管两端电压波形如图3所示,由于负载电流连续,晶闸管最大正反向电压峰值均为变压器二次线电压峰值,即22.45FM RM U U U == (3-4)图4 三相半波可控整流电路2/d U U 与α的关系id 波形有一定的脉动,这是电路工作的实际情况,因为负载中电感量不可能也不必非常大,往往只要能保证负载电流连续即可,这样id 是有波动的,不是完全平直的水平线。

通常,为简化分析及定量计算,可以将id 近似为一条水平线,这与的近似对分析和计算的准确性并不产生很大影响。

三相半波整流电路的主要缺点在于其变压器二次电流中含有直流分量,因此其应用较少。

3.2主要元器件选择设变压器原边电压1380U V =,副边电压2220U V =,根据要求电机的额定电压为220nom U V =,由三相半波整流电路的工作原理知21.17d U U cos =∂,故可得31.3α=︒。

即当触发角为31.3°时,三相半波整流电路输出的电压即为电机的额定电压。

1)变压器参数选择:如图1所示,为了得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波流入电网。

变压器采用三角形星形连接,一次侧二次侧变比1.73:1。

电机正常运行时电流220196133.30.18nom e nom d a U C n V VI A R --===Ω故可知,10.47262.9d I I A ==276.8d I A ==11141.398S I KW = 222350.688S U I KW == 1246.0432S S S KW +== 故得变压器原边电压为380V ,副边电压为220V ,容量46.043KW 。

2)晶闸管参数选择:电动机正常工作时,220nom U V =,308nom I A =。

由式(3-4)知晶闸管峰值电压 2.45220539FM U V =⨯=,晶闸管电流安全裕量需是额定值的2~3倍,故(2~3)5391078~1617U V V =⨯=,由式(3-2)知晶闸管电流有效值177.8VT I A ===,晶闸管电流安全裕量需是额定值的1.5~2倍,故(1.5~2)/1.57170~226.7I IVT A =⨯=。

故晶闸管的电压范围1078~1617V ,电流范围170~226.7A 。

3)平波电抗器参数选择:电抗值可由得到,min d I 为最小电流,即电动机空载时的电流,此2min1.46d U L I =时可得min 220196133.30.18de nom d a U C n V V I A R --===Ω进而得到 1.46220/133.3 2.4L V A mH =⨯=4触发电路与保护电路的设计 4.1触发电路的设计如图5所示为触发电路。

由三片集成触发电路芯片KJ004和一片集成双脉冲发生器芯片KJ041形成六路双脉冲,再由六个晶体管进行脉冲放大,即构成完整的。

触发电路产生的触发信号用接插线与主电路各晶闸管相连接。

该电路可分为同步、锯齿波形成、移相、脉冲形成、脉冲分选及脉冲放大几个环节。

图5 三相半波整流电路触发电路VT 1u scVT 2VT 3VT 4VT 5VT 64.2保护电路的设计电力电子电路中保护电路包括过电压保护和过电流保护。

过电压保护一般采用RC过电压抑制电路,RC过电压抑制电路可接于供电变压器的两端或电力电子电路的直流侧。

过电流保护分为过载和短路两种情况,一般过电流保护措施常采用快速熔断器、直流快速熔断器和电流继电器。

在本设计的保护电路中对变压器一次侧和二次侧分别加上熔断器对其进行保护,对电机加上一个过载保护熔断器,如图6所示。

图6 保护电路的设计5通过MATLAB仿真MATLAB仿真电路图如图7所示。

图7 三相半波整流电路MATLAB仿真图设置三相交流电压为225.6V ,触发角为31.3°,电抗值为2.4mH ,反电动势为196V 。

得到仿真波形如图8所示,从上到下波形依次是三相交流电压波形,触发脉冲波形,负载电压波形,晶闸管电压波形。

图8 MATLAB 仿真波形图所得波形基本与理论分析相符,触发脉冲发出时,电压已经达到196V ,在触发脉冲的作用下晶闸管导通;换相后1VT 关断,在2VT 导通期间,1uvt ua ub uab =-=;3VT 导通期间,1uvt ua uc uac =-=。

心得体会通过本次课程设计三相半波整流电路,让我有很多感受和体会,深切的感受到了电子技术在日常生活中的广泛应用,更加理解理论联系实际的意义,为以后的工作、学习奠定了基础。

本次课程设计中主要还是通过查阅课本、图书馆相关资料并上网查有关芯片的引脚图才得以顺利完成。

在同学的帮助下设计出了电路,通过MATLAB 仿真成功,同时也意识到了自己的一些不足之处,对课本非重点知识理解不够深入,比如KJ004,不知道具体如何使用,以后应该加强对课本知识的理解,不能局限于考试的内容。

设计过程中不仅要参考书本上知识,还要有些自己的东西加进去,设计出电路以后可以考虑从另一个方面着手再设计一个方案,看可行性如何,尽可能的将各种方案的优点集中到一个方案上来。

相关文档
最新文档