机械振动学习题解答大全
机械振动习题及答案完整版.docx

1.1试举出振动设计'系统识别和环境预测的实例。
1.2如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?1.3设有两个刚度分别为心,心的线性弹簧如图T-1.3所示,试证明:1)它们并联时的总刚度k eq为:k eq = k x+ k22)它们串联时的总刚度匕满足:丿-畔+ 土keq & k2解:1)对系统施加力P,则两个弹簧的变形相同为X,但受力不同,分别为: P x = k x x<由力的平衡有:P = ^ + P,=(k1+k2)xp故等效刚度为:k eq^- = k1+k2x2)对系统施加力P,则两个弹簧的变形为:P%i=r 111,弹簧的总变形为:x = x}+x2= P(——I ---- )故等效刚度为:k =—Xk x k2k,2+ k、1 1=—l-------k、k21.4求图所示扭转系统的总刚度。
两个串联的轴的扭转刚度分别为心, 解:对系统施加扭矩T,则两轴的转角为:VTrx系统的总转角为:0 = G + g = Hy- + T-)褊k,i故等效刚度为:犒=二+二1.5两只减振器的粘性阻尼系数分别为q, C2,试计算总粘性阻尼系数"在两只减振器并联时,2)在两只减振器串联时。
解:1)对系统施加力P,则两个减振器的速度同为厂受力分别为:P{ - c x x<P2=C2X由力的平衡有:P=£ + E =(q+C2)Xp故等效刚度为:c eq=- = c]+c2X2)对系统施加力P,则两个减振器的速度为:p 1 1故等效刚度为:c eq=- = - + -1.6 一简谐运动,振幅为0. 5cm,周期为0.15s,求最大速度和加速度。
解:简谐运动的a>n= — = /5),振幅为5x10 3m ;= 5x10-cos(^_ 2/r即:—5x10'丽fsin(丽血/s)*610=(話讥。
机械振动现象练习题(含答案)

机械振动现象练习题(含答案)1. 一个弹簧常数为3000 N/m, 质量为0.2 kg的物体,在弹簧下端受到一个向下的力2 sin(10t) N,其中t为时间(秒)。
求物体的振动方程。
根据牛顿第二定律,可以得到物体的振动方程为:m * x'' + k * x = F(t)其中,m是物体的质量,x是物体的位移,x''是位移对时间的二阶导数,k是弹簧的常数,F(t)是作用在物体上的外力。
根据题目中给出的数据,代入上述公式,我们可以得到:0.2 * x'' + 3000 * x = 2 sin(10t)这就是物体的振动方程。
2. 一个质点在受到一个力F(t) = 0.1 cos(3t) N的作用下进行振动,已知质点的质量为0.5 kg。
求质点的角频率和振动周期。
根据振动方程的形式,我们可以知道物体的振动频率和周期与力的形式有关。
在这个题目中,我们可以看出力的形式为cos(3t),它是一个正弦函数。
如果将cos(3t)函数展开,我们可以得到下面的表达式:F(t) = a cos(wt)其中,a是振幅,w是角频率。
根据题目中给出的数据,我们可以得到:a = 0.1 N,w = 3 rad/s由于振动的频率与角频率之间是有关联的,振动的周期T可以表示为:T = 2π/w代入上述数据,我们可以得到:T = 2π/3 s这就是质点的振动周期。
3. 一个质点质量为0.3 kg,在一竖直方向上的弹簧中振动,弹簧的劲度系数为2000 N/m。
当质点受到一个外力F(t) = 0.5 cos(5t) N时,求质点的振动方程。
根据题目中给出的数据,我们可以得到:m = 0.3 kg,k = 2000 N/m,F(t) = 0.5 cos(5t)代入振动方程的一般形式,我们可以得到:0.3 * x'' + 2000 * x = 0.5 cos(5t)这就是质点的振动方程。
机械振动 习题解答

©物理系_2015_09《大学物理AII 》作业 No.01 机械振动班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、 判断题:(用“T ”表示正确和“F ”表示错误)1/3/5 2 4[ F ] 1.只有受弹性力作用的物体才能做简谐振动。
解:如单摆在作小角度摆动的时候也是简谐振动,其回复力为重力的分力。
[ F ] 2.简谐振动系统的角频率由振动系统的初始条件决定。
解:P5. 根据简谐振子角频率公式mk=ω,可知角频率是一个完全由振动系统本身性质决定的常量,与初始条件无关。
我们也将角频率称为固有角频率。
[ F ] 3.单摆的运动就是简谐振动。
解:P14-15 单摆小角度的摆动才可看做是简谐振动。
[ T ] 4.孤立简谐振动系统的动能与势能反相变化。
解:P9 孤立的谐振系统 机械能守恒,动能势能反相变化。
[ F ] 5.两个简谐振动的合成振动一定是简谐振动。
解: 同向不同频率的简谐振动的合成结果就不一定是简谐振动。
总结:1、3、5小题均为简谐振动的定义性判断.简谐运动是最基本也是最简单的一种机械振动。
当某物体进行简谐运动时,物体所受的力跟位移成正比,并且力总是指向平衡位置。
二、选择题:1. 把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相位为[ C ] (A) θ; (B) π23; (C) 0; (D) π21。
解:对于小角度摆动的单摆,可以视为简谐振动,其运动方程为:()()0cos ϕωθθ+=t t m ,根据题意,t = 0时,摆角处于正最大处,θθ=m,即:01cos cos 0000=⇒=⇒==ϕϕθϕθθ。
类似公式: ()()0cos ϕω+=t A t x2.一个简谐振动系统,如果振子质量和振幅都加倍,振动周期将是原来的 [D] (A) 4倍(B) 8倍(C) 2倍(D)2倍解: P5 公式(12.1.8) m T k m T m k T ∝⇒=⇒⎪⎭⎪⎬⎫==/2/2πωωπ,所以选D 。
完整版机械振动习题答案

机械振动测验填空题1、所谓振动,广义地讲,指一个物理量在它的①平均值附近不停地经过②极大值和③极小值而往复变化。
2、一般来说,任何具有④弹性和⑤惯性的力学系统均可能产生机械振动。
3、XXXX在机械振动中,把外界对振动系统的激励或作用,①激励或输入;而系统对外界影响的反应,称为振动系统的⑦响应或输出。
4、常见的振动问题可以分成下面几种基本课题:1、振动设计2、系统识别3、环境预测5、按激励情况分类,振动分为:①自由振动和②强迫振动;按响应情况分类,振动分为:③简谐振动、④周期振动和⑤瞬态振动。
6、①惯性元件、②弹性元件和③阻尼元件是离散振动系统三个最基本的元件。
7、在系统振动过程中惯性元件储存和释放①动能,弹性元件储存和释放②势能,阻尼元件③耗散振动能量。
8如果振动时系统的物理量随时间的变化为简谐函数,称此振动为①简谐振动。
9、常用的度量振动幅值的参数有:1、峰值2、平均值3、均方值4、均方根值。
10、系统的固有频率只与系统的①质量和②刚度有关,与系统受到的激励无关。
试证明:对数衰减率也可以用下式表示,式中x n是经过n个循环后的振幅。
利用前面给山的解A = Ae~^,f sing, Jl -鬥 + 0)可得到哀减率为A."=1 =无十1_心4■ m识(“厂对数哀减率为1血〃=“d = In —-3.有阻尼自山振动•画衰薜•测定阻尼口山振动的扳皿衰减率是计算系统阻尼比的一个常用的易行方法自•在振动试验中,可以测出系统阻尼自山振动时的响应,求出对数衰减率*进而得到系统的阻尼比’W 2.5-2证明对裁恁械率也町用F式表示匚—2比丄式中耳是经过岸牛循环后的并画出不同C值下撮輛诫小时50%的循环数耶。
frl任意苗相邻撮恻tt是*0 M 和%、」"■ J J °-^― * ** * 1* = 1 ——™ P如利驹%比值外/牝可以写成:d二」S旦n和求图示振动系统的固有频率和振型。
机械振动总结复习习题及解答

1、某测量低频振动用的测振仪(倒置摆)如下图所示。
试根据能量原理推导系统静平衡稳定条件。
若已知整个系统的转动惯量23010725.1m kg I ⋅⨯=-,弹簧刚度m N k /5.24=,小球质量kg m 0856.0=,直角折杆的一边cm l 4=。
另一边cm b 5=。
试求固有频率。
解:弹性势能 2)(21θb k U k =, 重力势能 )cos (θl l mg U g --=总势能 mgl mgl kb U U U g k -+=+=θθcos 2122 代入0==i x x dxdU可得 可求得0=θ满足上式。
再根据公式022>=i x x dx U d 判别0=θ位置是否稳定及其条件:即满足mgl kb >2条件时,振动系统方可在0=θ位置附近作微幅振动。
系统的动能为 2210θ•=I T代入0)(=+dtU T d 可得 由0=θ为稳定位置,则在微振动时0sin ≈θ,可得线性振动方程为: 固有频率代入已知数据,可得2、用能量法解此题:一个质量为均匀半圆柱体在水平面上做无滑动的往复滚动,如上图所示,设圆柱体半径为R ,重心在c 点,oc=r,,物体对重心的回转体半径为L ,试导出运动微分方程。
解:如图所示,在任意角度θ(t )时,重心c 的升高量为∆=r (1-cos θ)=2rsin 22θ取重心c 的最低位置为势能零点,并进行线性化处理,则柱体势能为 V=mg ∆=2mg r sin 22θ≈ 21mgr 2θ (a )I b =I c +m bc 2=m(L 2+bc 2) (b )bc 2=r 2+R 2-2rRcos θ(t) (c )而柱体的动能为 T=21I b •θ2 把(b )式,(c )式两式代入,并线性化有 T=21m[L 2+(R -r )2]•θ2 (d ) 根据能量守恒定理,有21m[L 2+(R -r )2]•θ2+21mgr 2θ=E=const 对上式求导并化简,得运动微分方程为 [L 2+(R -r )2]••θ+gr θ=0 (e ) 3、一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。
机械振动学(参考答案).docx

机械振动学试题(参考答案)一、判断题:(对以下论述,正确的打“J”,错误的打“X”,每题2 分,共20分)1、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。
(丁)2、一个单盘的轴盘系统,在高速旋转时,由于盘的偏心质量使轴盘做弓形回旋时,引起轴内产生交变应力,这是导致在临界转速时,感到剧烈振动的原因。
(X)3、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。
(丁)4、当激振力的频率等于单自由度线性阻尼系统的固有频率时,其振幅最大值。
(X)5、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。
(X)6、当初始条件为零,即*产;=0时,系统不会有自由振动项。
(X)7、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。
(丁)8、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。
(X )9、隔振系统的阻尼愈大,则隔振效果愈好。
(X)10、当自激振动被激发后,若其振幅上升到一定程度并稳定下来,形成一种稳定的周期振动,则这种振幅自稳定性,是由于系统中的某些非线性因素的作用而发生的。
(J)二、计算题:1、一台面以f频率做垂直正弦运动。
如果求台面上的物理保持与台面接触,则台面的最大振幅可有多大?(分)解:台面的振动为:x = X sin(tyZ - cp)x = —a>2X sin(or —cp)最大加速度:无max = "X如台面上的物体与台面保持接触,贝U :九《=g (9・81米/秒2)。
所以,在f 频率(/=仝)时,最大振幅为:2nX max =x< g/4^72= 9.81/4* 严(米)2、质量为ni 的发电转子,它的转动惯量J 。
的确定采用试验方法:在转子经向Ri 的 地方附加一小质量mi 。
试验装置如图1所示,记录其振动周期。
大学物理机械振动习题附答案要点

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 v 与a5.3552期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >'[ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
从t = 0时刻起,到质点位置在x = -2 cm 处,且向x 轴正方向运动的最短时间间隔为(A) s 81 (B) s 61 (C) s 41 (D) s 31 (E)[ ]7.5179:一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。
机械振动学习题答案

2受迫振动
杆、轴、弦的受迫振动微分方程分别为
?2u?2u
杆:?a2?ea2?f(x,t)
?t?x?2??2?
轴:j2?gip2?f(x,t), j??ip
?t?x?2y?2y
弦:?2?t2?f(x,t)
?t?x
?n?1
(8)
(9)
下面以弦为例。令y(x,t)??yn(x)?n(t),其中振型函数yn(x)满足式(2)和式(3)。代入式(9)得
lll
2
?n??n?n?
llqn(t)
, qn(t)??ynf(x,t)dx, b??yn2dx
00?b
(12)
当f(x,t)?f(x)ei?t简谐激励时,式(12)的稳态响应解为
qn(t)1l11i?t
?n(t)?yf(x)dxe?n2222?0?b?n???n???b全响应解为
?n(t)?
?1l1??
?d1sinkl1?c2coskl1?d2sinkl1
② ③
du1(l1)du2(l1)
?ea2 ?ad④ 11coskl1?a2?d2coskl1?c2sinkl1? dxdx
②式代入③式得d1tankl1?c2?1?tankl1tank(l1?l2)?
②式代入④式得所以频率方程即
d1?c2?tank(l1?l2)?tankl1?a2/a1
q(x)?ccoskx?
dsinkx,其中k?① ②
c?0, gipdkcoskl?t0 q(x)?
t0
sinkx
gipkcoskl
t0
sinkxsin?t
gipkcoskl
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械振动习题解答(四)·连续系统的振动
连续系统振动的公式小结: 1 自由振动分析
杆的拉压、轴的扭转、弦的弯曲振动微分方程
22
222y y c t x
∂∂=∂∂ (1)
此式为一维波动方程。
式中,对杆,y
为轴向变形,c =y 为扭转
角,c ;对弦,y
为弯曲挠度,c =。
令(,)()i t y x t Y x e ω=,Y (x )为振型函数,代入式(1)得
20, /Y k Y k c ω''+== (2) 式(2)的解为
12()cos sin Y x C kx C kx =+
(3)
将式(3)代入边界条件,可得频率方程,并由此求出各阶固有频率ωn ,及对应
的振型函数Y n (x )。
可能的边界条件有
/00, 0/0p EA y x Y Y GI y x ∂∂=⎧⎫⎪⎪
'=⇒=⎨⎬∂∂=⎪⎪⎩⎭
对杆,轴向力固定端自由端对轴,扭矩
(4)
类似地,梁的弯曲振动微分方程
24240y y
A EI t x
ρ∂∂+=∂∂
(5)
振型函数满足 (4)442
0, A
Y k Y k EI
ρω-==
(6) 式(6)的解为
1234()cos sin cosh sinh Y x C kx C kx C kx C kx =+++
(7)
梁的弯曲挠度y (x , t ),转角/y x θ=∂∂,弯矩22/M EI y x =∂∂,剪力
33//Q M x EI y x =∂∂=∂∂。
所以梁的可能的边界条件有
000Y Y Y Y Y Y ''''''''======固定端,简支端,自由端 (8)
2 受迫振动
杆、轴、弦的受迫振动微分方程分别为
222222222222(,)
(,), (,)
p p u u
A EA f x t t x J GI f x t J I t x y y
T f x t t x
ρθθ
ρρ∂∂=+∂∂∂∂=+=∂∂∂∂=+∂∂杆:轴:弦:
(9)
下面以弦为例。
令1
(,)()()n n n y x t Y x t ϕ∞==∑,其中振型函数Y n (x )满足式(2)和式(3)。
代入式(9)得
1
1
(,)n n n n n n Y T Y f x t ρϕϕ∞
∞
==''-=∑∑&&
(10)
考虑到式(2),式(10)可改写为
2
1
1
(,)n n n n n n n Y T k Y f x t ρϕϕ∞
∞
==+=∑∑&& (11)
对式(11)两边乘以Y m ,再对x 沿长度积分,并利用振型函数的正交性,得
222
(,)l
l
l
n n n n n n Y dx Tk Y dx Y f x t dx ρϕϕ+=⎰⎰⎰&&
2
200()
, ()(,), l l n n n n n n n Q t Q t Y f x t dx b Y dx b
ϕωϕρ+=
==⎰⎰&&
(12)
当(,)()i t f x t F x e ω=简谐激励时,式(12)的稳态响应解为
222
20()111()()l i t
n n n n n Q t t Y F x dx e b b
ωϕρωωωωρ=
=--⎰ 全响应解为
2
2011()()sin sin l n n n n n t Y F x dx t t b ω
ϕωωρωωω⎛⎫=
- ⎪-⎝⎭
⎰ 当(,)()f x t F x =阶跃激励时,式(12)的解为()2()1
()1cos n n n n
Q t t t b ϕωρω=
- 类似地,梁的弯曲振动微分方程
2424(,)y y
A EI f x t t x
ρ∂∂+=∂∂
(13)
令1
(,)()()n n n y x t Y x t ϕ∞
==∑,代入式(13),经过一系列处理,得
2
200()
, ()(,), l l n n n n n n n Q t Q t Y f x t dx b Y dx Ab
ϕωϕρ+=
==⎰⎰&& (14)
---------------------------------------------我是分割线---------------------------------------------- 解题步骤
1 自由振动分析
①按照式(3)或(7),写出含待定系数的振型函数; ②写出边界条件;
③把振型函数代入边界条件,消去待定系数,得到频率方程。
2 受迫振动分析
①写出激励f (x , t )的表达式;
②通过以上自由振动分析的步骤得到振型函数Y n (x ); ③计算Q n (t )和b ,得到式(12)或(14),求解主坐标φn (t )。
---------------------------------------------我是分割线---------------------------------------------- 8.1 求阶梯杆纵向振动的频率方程。
解:振型函数:1111
22212
()cos sin , 0()()cos sin , U x C kx D kx x l U x U x C kx D kx l x l =+≤≤⎧=⎨=+≤≤⎩
,其中k =
边界条件: 1(0)0U = 10C ⇒= ① 212()
0dU l l dx
+=
2212tan ()D C k l l ⇒=+
② 连续性条件:1121()()U l U l =
112121sin cos sin D kl C kl D kl ⇒=+
③
11211
2()()
dU l dU l EA EA dx dx
= []11122121cos cos sin A D kl A D kl C kl ⇒=- ④ ②式代入③式得 []112112tan 1tan tan ()D kl C kl k l l =++
②式代入④式得 []1212121tan ()tan /D C k l l kl A A =+-
所以频率方程 []1121121211tan tan ()tan tan ()tan /kl k l l kl k l l kl A A ++=+-
即
1121
122112tan ()tan tan tan 1tan tan ()
A k l l kl kl kl A kl k l l +-==++ ---------------------------------------------我是分割线---------------------------------------------- 8.2 长度为L 、惯性矩为I s 的轴两端各带有惯性矩为I 0圆盘(单位厚度),求轴和圆盘组成的扭振系统的频率方程,并在I s <<I 0的情形下校验频率方程的正确性。