《运筹学》习题集
运筹学习题集(第五章)

判断题判断正误,如果错误请更正第五章运输与指派问题1.运输问题中用位势法求得的检验数不唯一。
2.产地数为3,销地数围的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为一组基变量。
3.不平衡运输问题不一定有最优解。
4.m+n-1个变量构成基变量组的充要条件是它们不包含闭合回路。
5.运输问题中的位势就是其对偶变量。
6.含有孤立点的变量组不包含有闭回路。
7.不包含任何闭回路的变量组必有孤立点。
8.产地个数为m销地个数为 n的平衡运输问题的对偶问题有m+n个约束。
9.运输问题的检验数就是对偶问题的松弛变量的值。
10.产地个数为m销地个数为 n的平衡运输问题的系数矩阵为A,则有r(A)〈=m+n-1。
11.用一个常数k加到运价C的某列的所有元素上,则最优解不变。
12.令虚设的产地或销地对应的运价为一任意大于0的常数C(C>0),则最优解不变。
13.若运输问题中的产量或销量为整数则其最优解也一定为整数。
14.运输问题中的单位运价表的每一行都分别乘以一个非0常数,则最优解不变。
15.按最小元素法求得运输问题的初始方案,从任一非基格出发都存在唯一一个闭回路。
16.在指派问题的效率表的某行乘以一个大于零的数最优解不变。
选择题在下列各题中,从4个备选答案中选出一个或从5个备选答案中选出2~5个正确答案。
第五章运输与指派问题1.下列变量组是一个闭回路的有A{x21,x11,x12,x32,x33,x23} B{x11,x12,x23,x34,x41,x13} C {x21,x13,x34,x41,x12} D{x12,x32,x33,x23,x21,x11} D{x12,x22,x32,x33,x23,x21}2.具有M个产地N个销地的平衡运输问题模型具有特征A有MN个变量M+N个约束B有M+N个变量MN个约束C 有MN个变量M+N-1个约束D 有M+N-1个基变量MN-M-N+1个非基变量E 系数矩阵的秩等于M+N-13.下列说法正确的有A 运输问题的运价表第r行的每个cij 同时加上一个非0常数k,其最优调运方案不变。
运筹学复习题——考试题

《运筹学》复习题一、填空题(1分×10=10分)1.运筹学的主要研究对象是(组织系统的管理问题)。
2.运筹学的核心主要是运用(数学)方法研究各种系统的优化。
3.模型是一件实际事物或现实情况的代表或抽象。
4.通常对问题中变量值的限制称为(约束条件),它可以表示成一个等式或不等式的集合。
5.运筹学研究和解决问题的基础是(最优化技术),并强调系统整体优化功能。
6.运筹学用(系统)的观点研究(功能)之间的关系。
7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。
8.运筹学的发展趋势是进一步依赖于计算机的应用和发展。
9.运筹学解决问题时首先要观察待决策问题所处的环境。
10.用运筹学分析与解决问题,是一个科学决策的过程。
11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。
12.运筹学中所使用的模型是数学模型。
用运筹学解决问题的核心是(建立数学模型),并对模型求解。
13.用运筹学解决问题时,要分析,定义待决策的问题。
14.运筹学的系统特征之一是用系统的观点研究功能关系。
15.数学模型中,“.”表示约束。
16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。
17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。
18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。
19.线性规划问题是求一个(线性目标函数),在一组(线性约束)条件下的极值问题。
20.图解法适用于含有两个变量的线性规划问题。
21.线性规划问题的可行解是指满足所有约束条件的解。
22.在线性规划问题的基本解中,所有的(非基变量)等于零。
23.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关24.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
25.线性规划问题有可行解,则必有基可行解。
26.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解的集合中进行搜索即可得到最优解。
运筹学与最优化方法习题集

一.单纯性法一.单纯性法1.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 122121212max 25156224..5,0z x x x x x s t x x x x =+£ìï+£ïí+£ïï³î 2.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 2322..2210,0z x x x x s t x x x x =+-³-ìï+£íï³î 3.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 1234123412341234max 24564282..2341,,,z x x x x x x x x s t x x x x x x x x =-+-+-+£ìï-+++£íï³î4.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 123123123123123max 2360210..20,,0z x x x x x x x x x s t x x x x x x =-+++£ìï-+£ïí+-£ïï³î 5.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12312312123max 224..26,,0z x x x x x x s t x x x x x =-++++£ìï+£íï³î6.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 15 分)分) 12121212max 105349..528,0z x x x x s t x x x x =++£ìï+£íï³î7.用单纯形法求解下列线性规划问题(共用单纯形法求解下列线性规划问题(共 16 分)分) 12121212max 254212..3218,0z x x x x s t x x x x =+£ìï£ïí+£ïï³î二.对偶单纯性法二.对偶单纯性法1.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分)12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î 2.灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活利用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 121212212max 3510501..4,0z x x x x x x s t x x x =++£ìï+³ïí£ïï³î 3.用对偶单纯形法求解下列线性规划问题(共用对偶单纯形法求解下列线性规划问题(共 15 分)分) 1212121212min 232330210..050z x x x x x x s t x x x x =++£ìï+³ïï-³íï³ïï³î4.灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共灵活运用单纯形法和对偶单纯形法求解下列线性规划问题(共 15 分)分) 124123412341234min 262335,,,0z x x x x x x x s t x x x x x x x x =+-+++£ìï-+-³íï³î5.运用对偶单纯形法解下列问题(共运用对偶单纯形法解下列问题(共 16 分)分) 12121212max 24..77,0z x x x x s t x x x x =++³ìï+³íï³î6.灵活运用单纯形法和对偶单纯形法解下列问题(共灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分)分) 12121212max 62..33,0z x x x x s t x x x x =++³ìï+£íï³î三.0-1整数规划整数规划1.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345123345max 567893223220..32,,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x x or =++++-++-³ìï+--+³ïí--+++³ï=î 2.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 12312312323123min 4322534433..1,,01z x x x x x x x x x s t x x x x x or =++-+£ì++³ïí+³ïï=î 3.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共 10 分) 1234512345123451234512345max 20402015305437825794625..81021025,,,,01z x x x x x x x x x x x x x x x s t x x x x x x x x x x =++++++++£ìï++++£ïí++++£ïï=î或 4.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12345123451234512345max 2534327546..2420,,,,01z x x x x x x x x x x s t x x x x x x x x x x =-+-+-+-+£ìï-+-+£íï=î或 5.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 12341234123412341234min 25344024244..1,,,01z x x x x x x x x x x x x s t x x x x x x x x =+++-+++³ì-+++³ïí+-+³ïï=î或6.7.用隐枚举法解下列0-1型整数规划问题(共型整数规划问题(共10 分) 123451234513451245max 325232473438..116333z x x x x x x x x x x x x x x s t x x x x =+--+++++£ìï+-+£ïí-+-³ï 1231231231223max 3252244..346z x x x x x x x x x s t x x x x =-++-£ìï++£ïï+£íï+£ïï=四.K-T 条件条件1.利用库恩-塔克(K-T )条件求解以下问题(共)条件求解以下问题(共 15 分)分)22121122121212max ()104446..418,0f X x x x x x x x x s t x x x x =+-+-+£ìï+£íï³î2.利用库恩-塔克(K-T )条件求解以下非线性规划问题。
《运筹学》_习题_线性规划部分练习题及_答案

一、思考题1. 什么是线性规划模型,在模型中各系数的经济意义是什么? 2. 线性规划问题的一般形式有何特征?3. 建立一个实际问题的数学模型一般要几步?4. 两个变量的线性规划问题的图解法的一般步骤是什么?5. 求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?6. 什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。
7. 试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。
8. 试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。
9. 在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?10.大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 11.什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 二、判断下列说法是否正确。
1. 线性规划问题的最优解一定在可行域的顶点达到。
2. 线性规划的可行解集是凸集。
3. 如果一个线性规划问题有两个不同的最优解,则它有无穷多个最优解。
4. 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。
5. 线性规划问题的每一个基本解对应可行域的一个顶点。
6. 如果一个线性规划问题有可行解,那么它必有最优解。
7. 用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。
8. 单纯形法计算中,如不按最小非负比值原则选出换出变量,则在下一个解中至少有一个基变量的值是负的。
9. 单纯形法计算中,选取最大正检验数k σ对应的变量k x作为换入变量,可使目 标函数值得到最快的减少。
10. 一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。
运筹学习题

习题一1.1 用图解法求解下列线性规划问题,并指出各问题是具有唯一最优解、无穷多最优解、无界解或无可行解。
(1) min z =6x1+4x2(2) max z =4x1+8x2st. 2x1+x2≥1 st. 2x1+2x2≤103x1+4x2≥1.5 -x1+x2≥8x1, x2≥0 x1, x2≥0(3) max z =x1+x2(4) max z =3x1-2x2st. 8x1+6x2≥24 st. x1+x2≤14x1+6x2≥-12 2x1+2x2≥42x2≥4 x1, x2≥0x1, x2≥0(5) max z =3x1+9x2(6) max z =3x1+4x2st. x1+3x2≤22 st. -x1+2x2≤8-x1+x2≤4 x1+2x2≤12x2≤6 2x1+x2≤162x1-5x2≤0 x1, x2≥0x1, x2≥01.2. 在下列线性规划问题中,找出所有基本解,指出哪些是基本可行解并分别代入目标函数,比较找出最优解。
(1) max z =3x1+5x2(2) min z =4x1+12x2+18x3st. x1+x3=4 st. x1+3x3-x4=32x2+x4=12 2x2+2x3-x5=53x1+2x2+x5=18 x j≥0 (j=1, (5)x j≥0 (j=1, (5)1.3. 分别用图解法和单纯形法求解下列线性规划问题,并对照指出单纯形法迭代的每一步相当于图解法可行域中的哪一个顶点。
(1) max z =10x1+5x2st. 3x1+4x2≤95x1+2x2≤8x1, x2≥0(2) max z =100x1+200x2st. x1+x2≤500x1≤2002x1+6x2≤1200x1, x2≥01.4. 分别用大M法和两阶段法求解下列线性规划问题,并指出问题的解属于哪一类:(1) max z =4x1+5x2+x3(2) max z =2x1+x2+x3st. 3x1+2x2+x3≥18 st. 4x1+2x2+2x3≥42x1+x2≤4 2x1+4x2≤20x1+x2-x3=5 4x1+8x2+2x3≤16x j≥0 (j=1,2,3)x j≥0 (j=1,2,3)(3) max z = x 1+ x 2 (4) max z =x 1+2x 2+3x 3-x 4 st. 8x 1+6x 2≥24 st. x 1+2x 2+3x 3=154x 1+6x 2≥-12 2x 1+ x 2+5x 3=202x 2≥4 x 1+2x 2+ x 3+ x 4=10x 1, x 2≥0 x j ≥0 (j =1, (4)(5) max z =4x 1+6x 2 (6) max z =5x 1+3x 2+6x 3 st. 2x 1+4x 2 ≤180 st. x 1+2x 2+ x 3≤183x 1+2x 2 ≤150 2x 1+ x 2+3x 3≤16 x 1+ x 2=57 x 1+ x 2+ x 3=10x 2≥22 x 1, x 2≥0,x 3无约束 x 1, x 2≥01.5 线性规划问题max z =CX ,AX =b ,X ≥0,如X*是该问题的最优解,又λ>0为某一常数,分别讨论下列情况时最优解的变化:(1) 目标函数变为max z =λCX ;(2) 目标函数变为max z =(C +λ)X ;(3) 目标函数变为max z =C X ,约束条件变为AX =λb 。
《运筹学》题库

运筹学习题库数学建模题(5)1、某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:试建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。
解:设甲、乙产品的生产数量应为x1、x2,则x1、x2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x , 2建立使利润最大的生产计划的数学模型,不求解。
解:设甲、乙两种产品的生产数量为x 1、x 2, 设z 为产品售后总利润,则max z = 4x 1+3x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+,50040005.253000222112121x x x x x x x 3、一家工厂制造甲、乙、丙三种产品,需要三种资源——技术服务、劳动力和行政管理。
每种产品的资源消耗量、单位产品销售后所能获得的利润值以及这三种资源的储备量如下表所示:建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。
解:建立线性规划数学模型:设甲、乙、丙三种产品的生产数量应为x 1、x 2、x 3,则x 1、x 2、x 3≥0,设z 是产品售后的总利润,则max z =10x 1+6x 2+4x 3s.t.⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++03006226005410100321321321321x x x x x x x x x x x x ,, 4、一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通信器材等。
每种物品的重量合重要性系数如表所示。
设登山队员可携带的最大重量为25kg,试建立队员所能携带物品最大量的线性规划模型,不求解。
解:引入0—1变量x i , x i =1表示应携带物品i ,,x i =0表示不应携带物品I⎩⎨⎧==≤++++++++++++=7,...,2,1,10254212625510481418152076543217654321i x x x x x x x x x x x x x x x naxz i 或5、工厂每月生产A 、B 、C 三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源根据市场需求,预测三种产品最低月需求量分别是150、260、120,最高需求量是250、310、130,试建立该问题数学模型,使每月利润最大,为求解。
运筹学习题集
二、填空选择题:(每空格2分,共16分)1、线性规划的解有划的唯一最优解、无穷多最优解、无界解和无可行解四种。
2、在求运费最少的调度划的运划的输问题中,如划的果某划的一非基变量的检验数为4,则说明如果在该空格中增加一个运量运费将增加划的4 。
3、“如果线性规划的原问题存在可行解,则其对划的偶问题一定存在可行解”,这句话对还是划的错?错4、如果某一整数规划:MaxZ=X划的1+X2划的X1+9/1划的2≤1/3X1,X2≥0且均为整数所对应的线性规划(松弛问题)的最优划的解为X1=3/2,X2=10/3,MaxZ=6/29,我们现在划的要对X1进行分枝,划的应该分为X1≤1和X1≥2。
5、在用逆向解法求动态规划时,f k(s k)的含义是:从第k个阶段到第n个阶段的最优解。
6.假设某线性规划的可行解的集合为D,而其所对应的整数规划的可行解集合为B,那么D 和B的关系为 D 包含 B7.已知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条问:(1)写出B-1=⎪⎪⎪⎭⎫⎝⎛---13/20.3/1312(2)对偶问题的最优解: Y=(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_无解_________;10. 若整数规划的松驰问题的最优解不符合整数要求,假设Xi =bi不符合整数要求,INT(bi )是不超过bi的最大整数,则构造两个约束条件:Xi≥INT(bi)+1 和 Xi≤INT(bi),分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条问:(1)对偶问题的最优解: Y =(4,0,9,0,0,0)T (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、已知线性规划(20分)MaxZ=3X 1+4X 2 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤81,X 2≥02)若C 2从4变成5,最优解是否会发生改变,为什么?3)若b 2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y 3≥3y1+4y2+2y 3≥4 y1,y2≥02)当C 2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。
《运筹学》题库完整
运筹学习题库数学建模题(5)1、某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:试建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。
解:设甲、乙产品的生产数量应为x1、x2,则x1、x2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x , 2建立使利润最大的生产计划的数学模型,不求解。
解:设甲、乙两种产品的生产数量为x 1、x 2, 设z 为产品售后总利润,则max z = 4x 1+3x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+,50040005.253000222112121x x x x x x x 3、一家工厂制造甲、乙、丙三种产品,需要三种资源——技术服务、劳动力和行政管理。
每种产品的资源消耗量、单位产品销售后所能获得的利润值以及这三种资源的储备量如下表所示:建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。
解:建立线性规划数学模型:设甲、乙、丙三种产品的生产数量应为x 1、x 2、x 3,则x 1、x 2、x 3≥0,设z 是产品售后的总利润,则max z =10x 1+6x 2+4x 3s.t.⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++03006226005410100321321321321x x x x x x x x x x x x ,, 4、一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通信器材等。
每种物品的重量合重要性系数如表所示。
设登山队员可携带的最大重量为25kg,试建立队员所能携带物品最大量的线性规划模型,不求解。
解:引入0—1变量x i , x i =1表示应携带物品i ,,x i =0表示不应携带物品I⎩⎨⎧==≤++++++++++++=7,...,2,1,10254212625510481418152076543217654321i x x x x x x x x x x x x x x x naxz i 或5、工厂每月生产A 、B 、C 三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源根据市场需求,预测三种产品最低月需求量分别是150、260、120,最高需求量是250、310、130,试建立该问题数学模型,使每月利润最大,为求解。
运筹学_第2章_对偶理论习题
第二章线性规划的对偶理论2.1 写出下列线性规划问题的对偶问题max z=2x1+2x2-4x3x1 + 3x2 + 3x3 ≤304x1 + 2x2 + 4x3≤80x1、x2,x3≥0解:其对偶问题为min w=30y1+ 80y2y1+ 4y2≥23y1 + 2y2 ≥23y1 + 4y2≥-4y1、y2≥02.2 写出下列线性规划问题的对偶问题min z=2x1+8x2-4x3x1 + 3x2-3x3 ≥30-x1 + 5x2 + 4x3 = 804x1 + 2x2-4x3≤50x1≤0、x2≥0,x3无限制解:其对偶问题为max w=30y1+80 y2+50 y3y1-y2 + 4 y3≥23y1+5y2 + 2y3≤8-3y1 + 4y2-4y3 =-4y1≥0,y2无限制,y3≤02.3已知线性规划问题max z=x1+2x2+3x3+4x4x1 + 2x2 + 2x3 +3x4≤202x1 + x2 + 3x3 +2x4≤20x1、x2,x3,x4≥0其对偶问题的最优解为y1*=6/5,y2*=1/5。
试用互补松弛定理求该线性规划问题的最优解。
解:其对偶问题为min w=20y1+ 20y2y1 + 2y2≥1 (1)2y1 + y2 ≥2 (2)2y1 +3y2≥3 (3)3y1 +2y2≥4 (4)y1、y2≥0将y1*=6/5,y2*=1/5代入上述约束条件,得(1)、(2)为严格不等式;由互补松弛定理可以推得x1*=0,x2*=0。
又因y1*>0,y2*>0,故原问题的两个约束条件应取等式,所以2x3*+3x4* = 203x3* +2x4* = 20解得x3* = x4* = 4。
故原问题的最优解为X*=(0,0,4,4)T2.4用对偶单纯形法求解下列线性规划min z=4x1+2x2+6x32x1 +4x2 +8x3 ≥244x1 + x2 + 4x3≥8x1、x2,x3≥0解将问题改写成如下形式max(-z)=-4x1-2x2-6x3-2x1-4x2 -8x3 + x4=-24-4x1-x2-4x3+x5 =-8x1、x2,x3,x4,x5≥0显然,p4、p5可以构成现成的单位基,此时,非基变量在目标函数中的系数全为负数,因此p4、p5构成的就是初始正侧基。
运筹学习题集
运筹学期末复习题一、判断题:1、任何线性规划一定有最优解。
()2、若线性规划有最优解,则一定有基本最优解。
()3、线性规划可行域无界,则具有无界解。
()4、基本解对应的基是可行基。
()5、在基本可行解中非基变量一定为零。
()6、变量取0或1的规划是整数规划。
()7、运输问题中应用位势法求得的检验数不唯一。
()8、产地数为3,销地数为4的平衡运输中,变量组{X11,X13,X22,X33,X34}可作为一组基变量。
()9、不平衡运输问题不一定有最优解。
()10、m+n-1个变量构成基变量组的充要条件是它们不包含闭回路。
()11、含有孤立点的变量组不包含有闭回路。
()12、不包含任何闭回路的变量组必有孤立点。
()13、产地个数为m销地个数为n的平衡运输问题的系数距阵为A,则有r(A)≤m+n-1()14、用一个常数k加到运价矩阵C的某列的所有元素上,则最优解不变。
()15、匈牙利法是求解最小值分配问题的一种方法。
()16、连通图G的部分树是取图G的点和G的所有边组成的树。
()17、求最小树可用破圈法。
()18、Dijkstra算法要求边的长度非负。
()19、Floyd算法要求边的长度非负。
()20、在最短路问题中,发点到收点的最短路长是唯一的。
()21、连通图一定有支撑树。
()22、网络计划中的总工期等于各工序时间之和。
()23、网络计划中,总时差为0的工序称为关键工序。
()24、在网络图中,关键路线一定存在。
()25、紧前工序是前道工序。
()26、后续工序是紧后工序。
()27、虚工序是虚设的,不需要时间,费用和资源,并不表示任何关系的工序。
()28、动态规划是求解多阶段决策问题的一种思路,同时是一种算法。
()29、求最短路径的结果是唯一的。
()30、在不确定型决策中,最小机会损失准则比等可能性则保守性更强。
()31、决策树比决策矩阵更适于描述序列决策过程。
()32、在股票市场中,有的股东赚钱,有的股东赔钱,则赚钱的总金额与赔钱的总金额相等,因此称这一现象为零和现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《运筹学》习题集第一章线性规划1.1将下述线性规划问题化成标准形式1)minz=-3某1+4某2-2某3+5某4t.4某1-某2+2某3-某4=-2某1+某2-某3+2某4≤14-2某1+3某2+某3-某4≥2某1,某2,某3≥0,某4无约束2)minz=2某1-2某2+3某3-某1+某2+某3=4-2某1+某2-某3≤6某1≤0,某2≥0,某3无约束t.1.2用图解法求解LP问题,并指出问题具有唯一最优解、无穷多最优解、无界解还是无可行解。
1)minz=2某1+3某24某1+6某2≥6t2某1+2某2≥4某1,某2≥02)ma某z=3某1+2某22某1+某2≤2t3某1+4某2≥12某1,某2≥03)ma某z=3某1+5某26某1+10某2≤120t5≤某1≤103≤某2≤84)ma某z=5某1+6某22某1-某2≥21.3找出下述LP问题所有基解,指出哪些是基可行解,并确定最优解(1)minz=5某1-2某2+3某3+2某4-1-t-2某1+3某2≤2某1,某2≥0某1+2某2+3某3+4某4=7t2某1+2某2+某3+2某4=3某1,某2,某3,某4≥01.4分别用图解法与单纯形法求解下列LP问题,并对照指出最优解所对应的顶点。
1)ma某z=10某1+5某23某1+4某2≤9t5某1+2某2≤8某1,某2≥02)ma某z=2某1+某23某1+5某2≤15t6某1+2某2≤24某1,某2≥01.5分别用大M法与两阶段法求解下列LP问题。
1)minz=2某1+3某2+某3某1+4某2+2某3≥8t3某1+2某2≥6某1,某2,某3≥02)ma某z=4某1+5某2+某3.3某1+2某2+某3≥18St.2某1+某2≤4某1+某2-某3=53)ma某z=5某1+3某2+6某3某1+2某2-某3≤18t2某1+某2-3某3≤16某1+某2-某3=10某1,某2,某3≥04)ma某z10某115某212某395某13某2某35某16某215某315t.某352某1某2某,某,某01231.6求下表中a~l的值。
cjCB00(a)0某B某4某5b61(a)某1(b)-1(a)(f)[(g)]4(h)0-1某2(c)3-12(I)-7-2-1.7某班有男生30人,女生20人,周日去植树。
根据经验,一天男生平均每人挖坑20个,或栽树30棵,或给25棵树浇水;女生平均每人挖坑10个,或栽树20棵,或给15棵树浇水。
问应怎样安排,才能使植树(包括挖坑、栽树、浇水)最多?请建立此问题的线性规划模型,不必求解。
1.8某糖果厂用原料A、B、C加工成三种不同牌号的糖果甲、乙、丙。
已知各种牌号糖果中A、B、C含量,原料成本,各种原料的每月限制用量,三种牌号糖果的单位加工费及售价如下表所示。
问该厂每月应生产这三种牌号糖果各多少千克,使该厂获利最大?试建立此问题的线性规划的数学模型。
甲乙丙原料成本(元/千克)每月限量(千克)A≥60%≥15%2.002000B1.502500C≤20%≤60%≤50%1.001200加工费(元/千克)0.500.400.30售价3.402.852.251.9某商店制定7-12月进货售货计划,已知商店仓库容量不得超过500件,6月底已存货200件,以后每月初进货一次,假设各月份此商品买进售出单价如下表所示,问各月进货售货各多少,才能使总收入最多?请建立此问题的线性规划模型。
月份789101112买进单价282425272323售出单价2924262822251.11某公司有三项工作需分别招收技工和力工来完成。
第一项工作可由一个技工单独完成,或由一个技工和两个力工组成的小组来完成。
第二项工作可由一个技工或一个力工单独去完成。
第三项工作可由五个力工组成的小组完成,或由一个技工领着三个力工来完成。
已知技工和力工每周工资分别为100元和80元,他们每周都工作48小时,但他们每人实际的有效工作小时数分别为42和36。
为完成这三项工作任务,该公司需要每周总有效工作小时数为:第一项工作10000小时。
第二项工作20000小时,第三项工作30000小时。
又能招收到的工人数为技工不超过400人,力工不超过800人。
试建立数学模型,确定招收技工和力工各多少人。
使总的工资支出为最少(-3-第二章对偶与灵敏度分析2.1写出以下线性规划问题的DLP1)minz=2某1+2某2+4某3 t某1+3某2+4某3≥22某1+某2+3某3≤3某1+4某2+3某3=5某1,某2≥0,某3无约束某1+2某2+2某3=5-某1+5某2-某3≥34某1+7某2+3某3≤8某1无约束,某2≥0,某3≤02)ma某z=5某1+6某2+3某3t3)ma某z=c1某1+c2某2+c3某3ta11某1+a12某2+a13某3≤b1a21某1+a22某2+a23某3=b2a31某1+a32某2+a33某3≥b3某1≥0,某2≤0,某3无约束2.2t对于给出的LP:minz=2某1+3某2+5某3+6某4某1+2某2+3某3+某4≥2-2某1+某2-某3+3某4≤-3某j≥0(j=1,2,3,4)1)写出DLP;2)用图解法求解DLP;3)利用2)的结果及根据对偶性质写出原问题的最优解。
2.3对于给出LP:ma某z=某1+2某2+某3t某1+某2-某3≤2某1-某2+某3=12某1+某2+某3≥2某1≥0,某2≤0,某3无约束1)写出DLP;2)利用对偶问题性质证明原问题目标函数值Z≤12.4已知LP:ma某z=某1+某2t-某1+某2+某3≤2-2某1+某2-某3≤1某j≥0-4-试根据对偶问题性质证明上述线性问题目标函数值无界。
2.5给出LP:ma某z=2某1+4某2+某3+某4某1+3某2+某4≤82某1+某2≤6t.某2+某3+某4≤6某1+某2+某3≤9某j≥01)写出DLP;2)已知原问题最优解某=(2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。
2.6用对偶单纯形法求解下列线性规划问题1)minz=4某1+12某2+18某3t某1+3某3≥32某2+2某3≥5某j≥0(j=1,2,3)2)minz5某12某24某33某1某22某34t.6某13某25某310某,某,某01232.7考虑如下线性规划问题minz=60某1+40某2+80某33某1+2某2+某3≥2t4某1+某2+3某3≥42某1+2某2+2某3≥3某j≥01)写出DLP;2)用对偶单纯形法求解原问题;3)用单纯形法求解其对偶问题;4)对比以上两题计算结果。
2.8已知LP:ma某z=2某1-某2+某3某1+某2+某3≤6t-某1+2某2≤4某1,某2,某3≥01)用单纯形法求最优解2)分析当目标函数变为ma某z=2某1+3某2+某3时最优解的变化;3)分析第一个约束条件右端系数变为3时最优解的变化。
-5-2.9给出线性规划问题ma某z=2某1+3某2+某31/3某1+1/3某2+1/3某3≤1t1/3某1+4/3某2+7/3某3≤3某j≥0用单纯形法求解得最终单纯形表如下cjCB23某B某1某2B122某1103某2011某3-120某44-1-50某5-11-1-300试分析下列各种条件下,最优解(基)的变化:j1)目标函数中变量某3的系数变为6;2)分别确定目标函数中变量某1和某2的系数C1、C2在什么范围内变动时最优解不变;3)约束条件的右端由1变为2;332.10某厂生产甲、乙两种产品,需要A、B两种原料,生产消耗等参数如下表(表中的消耗系数为千克/件)。
产品原料甲AB23乙42可用量(千克)原料成本(元/千克)1601801.02.0销售价(元)1316(1)请构造数学模型使该厂利润最大,并求解。
(2)原料A、B的影子价格各为多少。
(3)现有新产品丙,每件消耗3千克原料A和4千克原料B,问该产品的销售价格至少为多少时才值得投产。
(4)工厂可在市场上买到原料A。
工厂是否应该购买该原料以扩大生产?在保持原问题最优基的不变的情况下,最多应购入多少?可增加多少利润?3.5某玩具公司分别生产三种新型玩具,每月可供量分别为1000、2000、2000件,它们分别被送到甲、乙、丙三个百货商店销售。
已知每月百货商店各类玩具预期销售量均为1500件,由于经营方面原因,各商店销售不同玩具的盈利额不同,见下表。
又知丙百货商店要求至少供应C 玩具1000件,而拒绝进A玩具。
求满足上述条件下使总盈利额最大的供销分配方案。
甲乙丙可供量A54-1000B16892000C1210112000-6-第三章运输问题3.1根据下表,用表上作业法求最优解。
A1A2A3销量3.2根据下表,用表上作业法求最优解。
B1B2A1A2A3销量3.3求给出的产销不平衡问题的最优解B1B2A1A2A3销量3.4某市有三个面粉厂,他们供给三个面食加工厂所需的面粉,各面粉厂的产量、各面食加工厂加工面粉的能力、各面食加工厂和各面粉厂之间的单位运价,均式于下表。
假定在第1,2和3面食加工厂制作单位面粉食品的利润分别为12元、16元和11元,试确定使总效益最大的面粉分配计划(假定面粉厂和面食加工厂都属于同一个主管单位)。
食品厂面粉厂123销量134815210111125328420面粉厂产值2030205119412873B33515B44956产量85994513973B38462B47525产量33511B14136B21275B34556B46013产量884203.5光明仪器厂生产电脑绣花机是以产定销的。
已知1至6月份各月的生产能力、合同销量和单台电脑绣花机平均生产费用见下表:1月份2月份3月份4月份5月份6月份正常生产能力(台)加班生产能力(台)销量(台)单台费用(万元)106010415501075149011513.5201004016013100401031380407013.5-7-《运筹学》习题集已知上年末库存103台绣花机,如果当月生产出来的机器当月不交货,则需要运到分厂库房,每台增加运输成本0.1万元,每台机器每月的平均仓储费、维护费为0.2万元。
在7--8月份销售淡季,全厂停产1个月,因此在6月份完成销售合同后还要留出库存80台。
加班生产机器每台增加成本1万元。
问应如何安排1--6月份的生产,可使总的生产费用(包括运输、仓储、维护)最少?3.6设有A、B、C三个化肥厂供应1、2、3、4四个地区的农用化肥。
假设效果相同,有关数据如下表:ABC最低需要量最高需要量1161419305021313207070322192303041715---10不限产量506050试求总费用为最低的化肥调拨方案-8-第四章排队论4.1某店仅有一个修理工人,顾客到达过程为Poion流,平均3人/h,修理时间服从负指数分布,平均需10min。