运筹学第3版熊伟编著习题答案
熊伟编《运筹学》习题十详细解答

【解】模型 4。
D=50, A=40, H=10f 2HAD2一10一40一50 25200(元) 则每隔0.4月生产一次,每次生产量为20件。
10.2某化工厂每年需要甘油 100吨,订货的固定成本为 100元,甘油单价为7800元/吨,每 吨年保管费为32元,求:(1)最优订货批量;(2)年订货次数;(3)总成本。
【解】模型 4。
D=100 , A=100 , H=32 , C=7800小 J 2AD''2 100 100 冲Q上-上厂绚件)n D/Q 4(次) f . 2 HAD CD2一32一100一100 7800 100 780800(元)则(1)最优订货批量为 25件;(2)年订货4次;(3)总成本为780800元。
10.3工厂每月需要甲零件 3000件,每件零件120元,月存储费率为1.5%,每批订货费为 150元,求经济订货批量及订货周期。
【解】模型 4。
D=3000 , A=150 , H=120 X 0.015= 1.8, C=120Q 磐 FP 0707(件) t Q/D 0.24(月)f 2HAD CD 2 1.8 150 3000 120 3000 361272.79(元)则经济订货批量为 707件,订货周期为0.24月。
10.4某公司预计年销售计算机 2000台,每次订货费为 500元,存储费为32元/ (年台),缺货费为100元/年台。
试求:(1)提前期为零时的最优订货批量及最大缺货量; (2)提前期为10天时的订货点及最大存储量。
【解】模型 3。
D=2000 , A=500 , H=32 , B=100, L=0.0274(年)R = LD — S = 0.0274X 2000 — 69= 55-69 = — 14 (件)(1)最优订货批量为 287台,最大缺货量为 69台;⑵再订货点为—14台,最大存储量习题十10.1某产品每月用量为 优生产批量及生产周期。
熊伟编《运筹学》习题九详细解答

熊伟编《运筹学》习题九详细解答n 1 1 2 p习题九9.1某蛋糕店有一服务员,顾客到达服从=30人/小时的Poisson 分布,当店里只有一个顾客时,平均服务时间为1.5分钟,当店里有2个或2个以上顾客时,平均服务时间缩减至 1分钟。
两种服务时间均服从负指数分布。
试求: (1)此排队系统的状态转移图;(2)稳态下的概率转移平衡方程组;3)店内有2个顾客的概率; 4)该系统的其它数量指标。
(2) 由转移图可得稳态下的差分方程组如下: / / FCFS ]排队模型,该系统的状态转移图如下:1Pp 。
2^ ( 1)PP 2P 3( 2)EPn 1 2Pn 1(2)P n23 nP RP2 P 0 P3 2 PPnP n 11 1 21 21 2Po (3)已知 30(人/小时)1 11^— =40(人/小时)2= 丁 = 60(人/小时) 1.5 1 60 60 nP 0[1百]1n 11 21F 0 130 330 40260 p[1亡10.4P n3 10.4 0.15 4 2(4)系统中的平均顾客数(队长期望值)系统中顾客等待时间9.2某商店每天开10个小时,一天平均有90个顾客到达商店,商店的服务平均速度是每小时服务10个,若假定顾客到达的规律是服从Poisson 分布,商店服务时间服从负指数分布, 试求:(1)在商店前等待服务的顾客平均数。
(2)在队长中多于2个人的概率。
(3)在商店中平均有顾客的人数。
(4)若希望商店平均顾客只有2人,平均服务速度应提高到多少。
【解】此题是属于[M/M/1]:[ / /FCFS]系统,其中:=9 (个/小时) =10(个/小时)/ =9/10(1) L q2/(1)8.1 (个)(2) P(N 2)30.729⑶ L /(1 )9 (个)⑷L/( )22 9 1813.5(个/小时) 229.3为开办一个小型理发店,目前只招聘了一个服务员,需要决定等待理发的顾客的位子应设立多少。
运筹学版熊伟编著习题答案

运筹学(第3版)习题答案P36 P74 P88 P105 P142 P173 P195 P218 P248 P277 P304 品P343 P371全书420页第1章 线性规划工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.产品 资源 A B C 资源限量 材料(kg) 4 2500 设备(台时) 3 1400 利润(元/件)101412310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:型号A 型号B 每套窗架需要材料长度(m ) 数量(根)长度(m) 数量(根)A 1:2 2B 1: 2 A 2:3 B 2:23需要量(套)300400问怎样下料使得(1)用料最少;(2)余料最少. 【解 方案 一 二 三 四 五 六 七 八 九 十 需要量 B1 2 1 1 1 0 0 0 0 0 0 800 B2 2 0 1 0 0 2 1 1 0 0 0 1200 A1 2 0 0 1 0 0 1 0 2 1 0 600 A2120 2 3 900 余料(m) 0 1 1 1 01设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩某企业需要制定1~6月份产品A 的生产与销售计划。
运筹学第三版课后习题答案 (2)

运筹学第三版课后习题答案第一章:引论1.1 课后习题习题1a)运筹学是一门应用数学的学科,旨在解决实际问题中的决策和优化问题。
它包括数学模型的建立、问题求解方法的设计等方面。
b)运筹学可以应用于各个领域,如物流管理、生产计划、流程优化等。
它可以帮助组织提高效率、降低成本、优化资源分配等。
c)运筹学主要包括线性规划、整数规划、指派问题等方法。
习题2运筹学的应用可以帮助组织提高效率、降低成本、优化资源分配等。
它可以帮助制定最佳的生产计划,优化供应链管理,提高运输效率等。
运筹学方法的应用还可以帮助解决紧急情况下的应急调度问题,优化医疗资源分配等。
1.2 课后习题习题1运筹学方法可以应用于各个领域,如物流管理、生产计划、供应链管理、流程优化等。
在物流管理中,可以使用运筹学方法优化仓储和运输的布局,提高货物的运输效率。
在生产计划中,可以使用运筹学方法优化产品的生产数量和生产周期,降低生产成本。
在供应链管理中,可以使用运筹学方法优化订单配送和库存管理,提高供应链的效率。
在流程优化中,可以使用运筹学方法优化业务流程,提高整体效率。
习题2在物流管理中,可以使用运筹学方法优化车辆的调度和路线规划,以提高运输效率和降低成本。
在生产计划中,可以使用运筹学方法优化生产线的安排和产品的生产量,以降低生产成本和提高产能利用率。
在供应链管理中,可以使用运筹学方法优化供应链各个环节的协调和调度,以提高整体效率和减少库存成本。
在流程优化中,可以使用运筹学方法优化业务流程的排布和资源的分配,以提高流程效率和客户满意度。
第二章:线性规划基础2.1 课后习题习题1线性规划是一种数学优化方法,用于解决包含线性约束和线性目标函数的优化问题。
其一般形式为:max c^T*xs.t. Ax <= bx >= 0其中,c是目标函数的系数向量,x是决策变量向量,A是约束矩阵,b是约束向量。
习题2使用线性规划方法可以解决许多实际问题,如生产计划、供应链管理、资源分配等。
熊伟编《运筹学》习题五详细解答

习题五5.2用元素差额法直接给出表5-53及表5-54下列两个运输问题的近似最优解.表 5-53【解】表。
Objective Vallue = 824 (Minimization)表5-54 Z=495Objective Value = 495 (Minimization)^Eritering: Source 1 to Deslinator A Leading: Source 3 to Desti5.3求表5-55及表5-56所示运输问题的最优方案.(1)用闭回路法求检验数(表5-55)(2)用位势法求检验数(表5-56)【解】(1)5.4求下列运输问题的最优解(1) C i目标函数求最小值;(2) C2目标函数求最大值3 5 9 2 50 7 10 15 20 60C1 6 4 8 5 25 C 14 13 9 6 3011 13 12 7 30 5 8 7 10 9015 45 20 40 60 30 50 40⑶目标函数最小值,B i的需求为30W b i w 50, B2的需求为40, B3的需求为20< b3W 60,A i不可达A A , B4的需求为30.4 9 7 706 5 3 2 208 4 9 10 50(3)先化为平衡表5.5 (1)建立数学模型设X j (|=l,2,3;j=1,2)为甲、乙、丙三种型号的客车每天发往 Bi, B2两城市的台班数,则maxZ 40(80x 11 65x i 2 60夠 50冷2 50x 31 40x 32) 40x 11 40x 21 40x 31 400 40x 12 40x 22 40x 32600X 11X12 5 X 11 X2210X 31X3215Xj0(i 1,2,3; j1,2)(2)写平衡运价表132333为了平衡表简单,故表中运价没有乘以 ,最优解不变(3 )最优调度方案:Z=40 (5 >80+5 >60+5 X50+10 >40) =54000 (元)5.6 (1)设X j 为第i 月生产的产品第j 月交货的台数,则此生产计划问题的数学模型为31.45X 14M X 21 L1 2345 a i1 50 1565 2251030651 2 3 4 5a i 1 1 1.15 1.3 1.45 0 65 2 M 1.25 1.4 1.55 0 65 3 M M 0.87 1.02 0 65 4 M M M 0.98 0 65b j50 40 60 80305列是虚设销地费 (2 )化为运输问题后运价表(即生产费用加上存储费用)如下,其中第用为零,需求量为 30。
熊伟编《运筹学》习题九详细解答

习题九9.1某蛋糕店有一服务员,顾客到达服从λ=30人/小时的Poisson 分布,当店里只有一个顾客时,平均服务时间为1.5分钟,当店里有2个或2个以上顾客时,平均服务时间缩减至1分钟。
两种服务时间均服从负指数分布。
试求: (1)此排队系统的状态转移图; (2)稳态下的概率转移平衡方程组; (3)店内有2个顾客的概率; (4)该系统的其它数量指标。
【解】(1)此系统为]//[:]1//[FCFS M M ∞∞排队模型,该系统的状态转移图如下:(2)由转移图可得稳态下的差分方程组如下:⎪⎪⎩⎪⎪⎨⎧+=++=++=+=+-nn n P P P P P P P P P P P )()()(21212232111220110λμμλλμμλλμμλμλ 011P P μλ=∴ 02122P P μμλ= 022133P P μμλ= 0121P P n n n -=μμλ (3)已知小时)(人==小时)(人==小时)(人/606011/40605.11/3021μμλ= 由1i i P ∞==∑得011121102[1]111n n n P P λμμλμλμ∞-=-+=⎡⎤⎢⎥⎢⎥=+⎢⎥-⎢⎥⎣⎦∑令 1212303301,404602λλρρμμ======,有111021012011234[1][1]0.41112n n n n P p p p ρρλρρμμ----=+=+=--==则 2120310.40.1542P P ρρ==⨯⨯= (4)系统中的平均顾客数(队长期望值))(2.1)5.01(14.043)1(1...)321(222010320101210人=-⨯⨯=-=+++===∑∑∞=-∞=ρρρρρρρP P P n nP L n n n n在队列中等待的平均顾客数(队列长期望值))(4.02114.0432.11...)...1()1(2011222201111人=-⨯-=--=+++++-=-=-=-∞=∞=∞=∑∑∑ρρρρρρp L P L P nP P n L n n nn n n n q 系统中顾客逗留时间1.20.04()30LW λ===小时 系统中顾客等待时间)(013.0304.0小时===λqq L W9.2某商店每天开10个小时,一天平均有90个顾客到达商店,商店的服务平均速度是每小时服务10个,若假定顾客到达的规律是服从Poisson 分布,商店服务时间服从负指数分布,试求:(1)在商店前等待服务的顾客平均数。
熊伟编《运筹学》习题十一详细解答

习题十11.1某地方书店希望订购最新出版的图书•根据以往经验,新书的销售量可能为 50,100, 150或200本.假定每本新书的订购价为4元,销售价为6元,剩书的处理价为每本 2元.要求:(1 )建立损益矩阵;(2)分别用悲观法、乐观法及等可能法决策该书店应订购的 新书数字;(3)建立后悔矩阵,并用后悔值法决定书店应订购的新书数. (4)书店据以往统计资料新书销售量的规律见表11 - 13,分别用期望值法和后悔值法决定订购数量;(5)如某市场调查部门能帮助书店调查销售量的确切数字,该书店愿意付出多大的调查费用。
表 11- 13表- (2) 1 4 23(3)后悔矩阵如表11.1-2所示。
表2 3(4) 按期望值法和后悔值法决策,书店订购新书的数量都是 100本。
(5) 如书店能知道确切销售数字,则可能获取的利润为X j p (x ),书店没有调查费用时i的利润为:50X0.2+100 >0.4+150 X0.3+200 X ).仁115元,则书店愿意付出的最大的调查费用为X i P (X j ) 115i11.2某非确定型决策冋题的决策矩阵如表 11 — 14所示:表 11- 14(1)若乐观系数a =0.4,矩阵中的数字是利润,请用非确定型决策的各种决策准则分别确定出相应的最优方案.(2)若表11 - 14中的数字为成本,问对应于上述决策准则所选择的方案有何变化?【解】(1)悲观主义准则:S3 ;乐观主义准则:S3 ; Lapalace准则:S3 ; Savage准则:3 ;折衷主义准则:S3。
(2 )悲观主义准则:S2 ;乐观主义准则:S3 ; Lapalace准则:S1 ; Savage准则: S1 ;折衷主义准则:S1或S2。
11.3在一台机器上加工制造一批零件共 10 000个,如加工完后逐个进行修整,则全部可以合格,但需修整费 300元.如不进行修理数据以往资料统计,次品率情况见表11- 15.(1 )用期望值决定这批零件要不要整修;(2)为了获得这批零件中次品率的正确资料,在刚加工完的一批10000件中随机抽取130个样品,发现其中有9件次品,试修正先验概率,并重新按期望值决定这批零件要不要整修.【解】(1)先列出损益矩阵见表 11-19(2)修正先验概率见表11-20表11.4某工厂正在考虑是现在还是明年扩大生产规模问题. 由于可能出现的市场需求情况不一样,预期利润也不同•已知市场需求高( E i )、中(E 2)、低(E 3)的概率及不同方案时的预 期利润,如表11 — 16所示.表11— 16(单位:万元)肯定得8万元或0.9概率得10万和0.1概率失去1万;②肯定得6万元或0.8概率得10万 和0.2概率失去1万;③肯定得1万元或0.25概率得10万和0.75概率失去1万。
运筹学答案(熊伟)下

习题七7.2(1)分别用节点法和箭线法绘制表7-16的项目网络图,并填写表中的紧前工序。
(2) 用箭线法绘制表7-17的项目网络图,并填写表中的紧后工序表7-16表7-17【解】(1)箭线图:节点图:(2)箭线图:7.3根据项目工序明细表7-18:(1)画出网络图。
(2)计算工序的最早开始、最迟开始时间和总时差。
(3)找出关键路线和关键工序。
表7-18【解】(1)网络图(2)网络参数(3)关键路线:①→②→③→④→⑤→⑥→⑦;关键工序:A、C、D、G;完工期:48周。
7.4 表7-19给出了项目的工序明细表。
表7-19(2)在网络图上求工序的最早开始、最迟开始时间。
(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差。
(4)找出所有关键路线及对应的关键工序。
(5)求项目的完工期。
【解】(1)网络图(2)工序最早开始、最迟开始时间(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差工序t T ES T EF T LS T LF 总时差S 自由时差FA 8 0 89 1790B 5 0 50 500C 7 0 77 700D 12 8 2017 2999E 8 5 13 5 1300F 17 7 247 2400G 16 13 2913 2900H 8 29 3729 3700I 14 13 2733 472020J 5 13 1819 246 6K 10 37 4737 4700L 23 24 4724 4700M 15 47 6247 6200N 12 47 5950 623 3(4)关键路线及对应的关键工序关键路线有两条,第一条:①→②→⑤→⑥→⑦→○11→○12;关键工序:B,E,G,H,K,M 第二条:①→④→⑧→⑨→○11→○12;关键工序:C,F,L,M(5)项目的完工期为62天。
7.5已知项目各工序的三种估计时间如表7-20所示。
求:表7-20(1)绘制网络图并计算各工序的期望时间和方差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产品
资源
A
B
C
资源限量
材料<kg>
1.5
1.2
4
2500
设备<台时>
3
1.6
1.2
1400
利润<元/件>
10
14
12
根据市场需求,预测三种产品最低月需求量分别是150、260和120,最高月需求是250、310和130.试建立该问题的数学模型,使每月利润最大.
[解]设x1、x2、x3分别为产品A、B、C的产量,则数学模型为
-16
对应的顶点:
基可行解
可行域的顶点
X<1>=〔0,0,6,10,4〕、
X<2>=〔0,2.5,1,0,1.5,〕、
X<3>=〔2,2,0,0,0〕
X<4>=〔2,2,0,0,0〕
〔0,0〕
〔0,2.5〕
<2,2>
〔2,2〕
最优解:X=〔2,2,0,0,0〕;最优值Z=-16
该题是退化基本可行解,5个基本可行解对应4个极点.
第2章线性规划的对偶理论P74
第3章整数规划P88
第4章目标规划P105
第5章运输与指派问题P142
第6章网络模型P173
第7章网络计划P195
第8章动态规划P218
第9章排队论P248
第10章存储论P277
第11章决策论P304
第12章多属性决策品P343
第13章博弈论P371
全书420页
第
1.1工厂每月生产A、B、C三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.
〔1〕用料最少数学模型为
〔2〕余料最少数学模型为
1.3某企业需要制定1~6月份产品A的生产与销售计划.已知产品A每月底交货,市场需求没有限制,由于仓库容量有限,仓库最多库存产品A1000件,1月初仓库库存200件.1~6月份产品A的单件成本与售价如表1-25所示.
表1-25
月份
1 2 3 4 5 6
性规划p36性规划的对偶理论p74整数规划p88目标规划p105问题p142网络模型p173网络计划p195动态规划p218存储论p277决策论p304属性决策品p343p371全书420线性规划11工厂每月生产件产品的原材料消耗量设备台时的消耗量资源限量及单件产品利润如表123示
运筹学〔第
第1章线性规划P36
标准型为
1.8设线性规划
取基 分别指出 对应的基变量和非基变量,求出基本解,并说明 是不是可行基.
[解]B1:x1、x3为基变量,x2、x4为非基变量,基本解为X=〔15,0,10,0〕T,B1是可行基.B2:x2、x4是基变量,x1、x3为非基变量,基本解X=〔0,20,0,100〕T,B2是可行基.
<4>
[解]最优解X=〔2,3〕;最优值Z=26,有唯一最优解
<5>
[解]无界解.
<6>
[解]无可行解.
1.7将下列线性规划化为标准形式
<1>
[解]〔1〕令 为松驰变量,则标准形式为
<2>
[解]〔2〕将绝对值化为两个不等式,则标准形式为
<3>
[解]方法1:
方法2:令
则标准型为
<4>
[解]令 ,线性规划模型变为
总利润:
高级汽油和一般汽油的辛烷值约束
航空煤油蒸气压约束
一般煤油比例约束
即
半成品油供应量约束
整理后得到
1.6图解下列线性规划并指出解的形式:
<1>
[解]最优解X=〔3,2〕;最优值Z=19
<2>
[解]有多重解.最优解X〔1〕=〔0,5/4〕;X〔2〕=〔3,1/2〕最优值Z=5
<3>
[解]最优解X=〔4,1〕;最优值Z=-10,有唯一最优解
C<j>-Z<j>
0
2
11/8
0
-3/4
0
9
X4
0
0
0
9/8
1
7/16
-1/4
27/4
6
X1
3
1
0
-1/2
0
1/4
0
3
M
X2
2
0
1
[11/16]
0
-3/32
1/8
1/8
0.181818
C<j>-Z<j>
0
0
0
0
-9/16
-1/4
37/4
X3进基、X2出基,得到另一个基本最优解.
C<j>
3
2
-0.125
基本最优解 ,最优解的通解可表示为 即
〔4〕
[解]单纯形表:
C<j>
3
2
1
0
0
R. H. S.
Ratio
Basis
C<i>
X1
X2
X3
X4
X5
X4
0
5
4
6
1
0
25
5
X5
0
[8]
6
3
0
1
24
3
C<j>-Z<j>
3
2
1
0
0
0
X4
0
0
1/4
33/8
1
-5/8
10
X1
3
1
3/4
3/8
0
1/8
3
C<j>-Z<j>
1.9分别用图解法和单纯形法求解下列线性规划,指出单纯形法迭代的每一步的基可行解对应于图形上的那一个极点.
<1>
[解]图解法
单纯形法:
C<j>
1
3
0
0
b
Ratio
C<i>
Basis
X1
X2
X3
X4
0
X3
-2
[1]
1
0
2
2
0
X4
2
3
0
1
12
4
C<j>-Z<j>
1
3
0
0
0
3
X2
-2
1
1
0
2
M
0
X4
[8]
[解]第一步:求下料方案,见下表.
方案
一
二
三
四
五
六
七
八
九
十
需要量
B1
2.5
2
1
1
1
0
0
0
0
0
0
800
B2
2
0
1
0
0
2
1
1
0
0
0
1200
A1
2
0
0
1
0
0
1
0
2
1
0
600
A2
1.5
0
0
0
1
0
0
2
0
2
3
900
余料<m>
0
0.5
0.5
1
1
1
0
1
0
0.5
第二步:建立线性规划数学模型
设xj〔j=1,2,…,10〕为第j种方案使用原材料的根数,则
0
-3
1
6
0.75
C<j>-Z<j>
7
0
-3
0
6
3
X2
0
1
0.25
0.25
7/2
1
X1
1
0
-0.375
0.125
3/4
C<j>-Z<j>
0
0
-0.375
-0.875
45/4
对应的顶点:
基可行解
可行域的顶点
X<1>=〔0,0,2,12〕、
X<2>=〔0,2,0,6,〕、
X<3>=〔 、
〔0,0〕
〔0,2〕
表1-26
成品油
高级汽油
一般汽油
航空煤油
一般煤油
半成品油
中石脑油
重整汽油
裂化汽油
中石脑油
重整汽油
裂化汽油
轻油、裂化油、重油、残油
轻油、裂化油、重油、残油按10:4:3:1调合而成
辛烷值
≥94
≥84
蒸汽压:公斤/平方厘米
≤1
利润<元/桶>
5
4.2
3
1.5
半成品油的辛烷值、气压、及每天可供应数量见表1-27.
10
-5
1
0
0
0
* Big M
5
3
1
0
0
0
X1
10
1
3/5
1/5
0
1/5
2
X4
0
0
4
-9
1
1
25
C<j>-Z<j>
0
-11
-1
0
-2
20
* Big M
0
0
0
0
-1
0
最优解X=<2,0,0>;Z=20