奥数基础知识
小学奥数有哪些知识点

小学奥数有哪些知识点小学奥数知识点概览一、数论基础1. 质数与合数:理解质数的定义和性质,识别合数的因数分解。
2. 素因数分解:将一个合数分解为质数的乘积。
3. 最大公约数和最小公倍数:计算两个或多个数的GCD和LCM。
4. 整数的奇偶性:理解奇数和偶数的性质及其在问题解决中的应用。
5. 整数的四则运算:掌握整数加减乘除的规则和技巧。
6. 同余定理:理解同余的概念及其在解决数论问题中的应用。
二、分数与小数1. 分数的基本概念:分数的意义、性质和分类。
2. 分数的四则运算:分数的加、减、乘、除运算规则。
3. 分数的化简与比较:化简分数和比较分数大小的方法。
4. 小数的基本概念:小数的意义和性质。
5. 小数的四则运算:小数的加、减、乘、除运算规则。
6. 分数与小数的互化:分数与小数之间的转换方法。
三、几何知识1. 平面图形的认识:点、线、面的基本性质。
2. 常见平面图形的性质:正方形、长方形、三角形等的性质和计算。
3. 面积和周长的计算:计算各种平面图形的面积和周长。
4. 立体图形的初步认识:立方体、长方体、圆柱、圆锥等的性质。
5. 空间想象能力:通过剖面图、视图等理解三维空间。
四、代数基础1. 变量与常数:理解变量和常数的概念。
2. 简易方程:一元一次方程的建立和解法。
3. 代数表达式的简化:合并同类项、分配律等代数运算。
4. 不等式的概念:理解不等式的意义和基本性质。
5. 简单不等式的解法:解一元一次不等式。
五、逻辑推理1. 合情推理:通过已知信息推断未知信息。
2. 演绎推理:从一般到特殊的逻辑推理过程。
3. 归纳推理:从特殊到一般的推理方法。
4. 逻辑应用题:解决需要逻辑推理的实际问题。
六、组合数学1. 排列与组合:理解排列和组合的概念及其区别。
2. 简单排列组合问题:解决基础的排列组合问题。
3. 二项式定理:理解二项式定理并能够进行简单应用。
4. 容斥原理:解决涉及集合容斥问题的方法。
七、数列与级数1. 等差数列:理解等差数列的定义和性质。
小学奥数知识点

小学奥数知识点小学奥数知识点小学奥数是指参加全国小学数学奥赛的学生,他们需要掌握一些数学的基础知识和解题技巧。
下面是一些小学奥数常见的知识点:1. 数的认识:认识0-9的数字,知道数字的大小关系和位置价值。
学生需要掌握数字的读法和写法,以及数字之间的加减乘除运算。
2. 计算:学生需要掌握基本的加减乘除法,包括整数的计算和小数的计算。
他们需要学会口算和写算式,能够熟练地进行简单的运算。
3. 分数:学生需要学会认识和运算基本的分数,包括分数的加减乘除运算和带分数的运算。
他们需要知道分数的意义和表示方法,并能够将分数转化为小数和百分数。
4. 小数:学生需要学会认识和运算小数,包括小数的读法和写法,以及小数的加减乘除运算。
他们需要掌握小数和分数之间的转化,并能够将小数进行四舍五入。
5. 数据与图表:学生需要学会统计和分析数据,包括图表的读取和制作。
他们需要能够解决有关数据的问题,比如平均数、中位数和众数的计算,以及数据的比较和排序。
6. 几何:学生需要学会认识几何图形,包括点、线、面和体。
他们需要掌握几何图形的基本性质和分类方法,能够进行几何图形的比较、分析和构造。
7. 逻辑推理:学生需要学会进行逻辑推理和解决逻辑问题。
他们需要学会找出规律和推断结论,能够进行类比和推理,以及解决一些逻辑难题。
8. 排列组合:学生需要学会进行排列和组合的计算。
他们需要掌握基本的排列和组合原则,能够解决与排列组合相关的问题,比如有关种类、选择和次序的问题。
9. 等式与方程:学生需要学会解决等式和方程的问题。
他们需要掌握等式和方程的基本概念和性质,能够解决一些简单的一元一次方程和一元一次不等式。
10. 数学思维:学生需要培养数学思维和解决问题的能力。
他们需要学会分析和解决数学问题,能够运用所学的知识和技巧,寻找解题的方法和策略。
以上是小学奥数常见的一些知识点,学生在备战小学奥数的时候可以重点学习和巩固这些知识点。
通过不断地练习和思考,学生可以提高数学能力,成为一个优秀的小学奥数选手。
初一数学奥数题总结知识点

初一数学奥数题总结知识点一、数学基础知识1. 整数1)绝对值2)比较大小3)整数的加减乘除2. 分数1)分数的加减乘除2)分数的大小比较3. 百分数1)百分数表示法2)百分数的加减乘除3)百分数与分数的互化4. 比例1)比例的概念2)比例的应用3)比例的计算5. 直角坐标系1)直角坐标系的概念2)坐标的意义3)直角坐标系中的图形6. 数据的收集与整理1)调查数据的收集2)数据的整理3)数据的分析和解释二、几何基础知识1. 图形的认识1)平面图形的分类2)图形的性质和特点2. 角1)角的概念2)角的分类3)角的大小和角度的度量3. 直线和线段1)直线和线段的概念2)直线和线段的性质4. 三角形1)三角形的分类2)三角形的性质3)三角形的计算5. 四边形1)四边形的分类2)四边形的性质3)四边形的计算6. 圆1)圆的概念2)圆的性质3)圆的计算7. 正多边形1)正多边形的概念2)正多边形的性质3)正多边形的计算8. 空间图形1)立体图形的认识2)立体图形的性质3)立体图形的计算三、代数知识1. 代数式1)代数式的概念2)代数式的计算2. 一元一次方程1)一元一次方程的概念2)一元一次方程的解法3)一元一次方程的应用3. 一元一次不等式1)一元一次不等式的概念2)一元一次不等式的解法3)一元一次不等式的应用4. 整式的加减1)整式的概念2)整式的加减法5. 整式的乘法1)整式的乘法原理2)多项式的乘法6. 整式的除法1)整式的除法原理2)多项式的除法以上是初一数学奥数题的知识点总结,通过学习这些知识点,可以更好地应对初一数学奥数题的挑战。
希望同学们能够认真学习,积极思考,不断提高数学解题能力。
奥数基础知识

奥数基础知识奥数(奥林匹克数学)是指一类精英数学竞赛,其目的是培养学生的创造力、逻辑思维和解决问题的能力。
在现代教育体系中,奥数被认为是培养学生数学能力和发展学生潜力的重要途径之一。
然而,要在奥数竞赛中取得好成绩,学生首先需要掌握一些基础知识。
奥数的基础知识主要包括以下几个方面:1. 数论:数论是奥数中重要的一个分支。
它研究整数的性质和规律,并由此推导出一些数学定理和公式。
学生需要熟悉常见的数论问题,例如质数、约数、同余等,并掌握解决这些问题的方法。
2. 代数:代数是奥数中另一个重要的分支。
它研究数和符号之间的关系,并通过运算和推理来解决问题。
学生需要熟悉常见的代数运算,例如四则运算、方程的解法等,并应用这些知识解决实际问题。
3. 几何:几何是奥数中不可缺少的一部分。
它研究空间和图形的性质和规律,并由此推导出一些几何定理和公式。
学生需要掌握几何的基本概念,例如直线、角、三角形等,并通过几何证明和计算来解决几何问题。
4. 概率与统计:概率与统计是奥数中相对较新的分支,它研究事件的可能性和数据的统计规律。
学生需要理解概率和统计的基本概念,例如事件的概率、样本调查等,并应用这些知识解决概率和统计问题。
除了以上几个方面的基础知识,学生还需要具备一些解题的基本技巧。
例如,学生需要学会分析题目、抽象问题、建立模型、寻找规律等。
此外,学生还需要培养逻辑思维和创造力,以便能够独立思考和解决复杂问题。
要掌握奥数的基础知识,学生需要积极参与数学课堂的学习,并进行有针对性的习题训练。
同时,他们还可以参加奥数辅导班和竞赛,与优秀的数学家和同学交流,以提高解题能力和思维水平。
总之,奥数基础知识是学生成功参加奥数竞赛的关键。
通过掌握数论、代数、几何和概率与统计等基础知识,学生能够建立起扎实的数学基础,并能够灵活运用这些知识解决实际问题。
此外,学生还需要培养解题的基本技巧和思维能力,以提高在奥数竞赛中的表现。
奥数的学习不仅能够提高学生的数学能力,还能够培养学生的逻辑思维、创造力和解决问题的能力,对学生的全面发展有着积极的影响。
小学奥数基础知识汇集

小学奥数的三十个知识汇集1.和差倍问题和差问题和倍问题差倍问题已知条件几个数的和与差几个数的和与倍数几个数的差与倍数公式适用范围已知两个数的和,差,倍数关系公式①(和-差)÷2=较小数较小数+差=较大数和-较小数=较大数②(和+差)÷2=较大数较大数-差=较小数和-较大数=较小数和÷(倍数+1)=小数小数×倍数=大数和-小数=大数差÷(倍数-1)=小数小数×倍数=大数小数+差=大数关键问题求出同一条件下的和与差和与倍数差与倍数2.年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3.归一问题的基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;4.植树问题基本类型在直线或者不封闭的曲线上植树,两端都植树在直线或者不封闭的曲线上植树,两端都不植树在直线或者不封闭的曲线上植树,只有一端植树封闭曲线上植树基本公式棵数=段数+1棵距×段数=总长棵数=段数-1棵距×段数=总长棵数=段数棵距×段数=总长关键问题确定所属类型,从而确定棵数与段数的关系5.鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
小学奥数知识点汇总基础知识点

小学奥数知识点汇总基础知识点在小学阶段,奥数作为一门拓展性的学科,能够帮助孩子们培养逻辑思维和解决问题的能力。
下面为大家汇总一些基础的小学奥数知识点。
一、数的认识1、整数整数包括正整数、零和负整数。
需要掌握整数的读法、写法、大小比较以及四则运算。
2、自然数自然数是用以计量事物的件数或表示事物次序的数,即用数码 0,1,2,3,4……所表示的数。
3、奇数和偶数奇数指不能被 2 整除的整数,数学表达形式为:2k+1,奇数可以分为正奇数和负奇数。
偶数是能够被 2 所整除的整数。
若某数是 2 的倍数,它就是偶数,可表示为 2k。
4、质数与合数质数是指在大于 1 的自然数中,除了 1 和它本身以外不再有其他因数的自然数。
合数是指自然数中除了能被 1 和本身整除外,还能被其他数(0 除外)整除的数。
二、数的运算1、四则运算加法、减法、乘法和除法统称四则运算。
在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算原则。
2、运算定律加法交换律:a + b = b + a加法结合律:(a + b) + c = a +(b + c)乘法交换律:a × b = b × a乘法结合律:(a × b) × c = a ×(b × c)乘法分配律:(a + b) × c = a × c + b × c三、图形的认识1、平面图形(1)三角形三角形具有稳定性。
三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形;按边分,可以分为等边三角形、等腰三角形和不等边三角形。
(2)四边形四边形包括平行四边形、长方形、正方形、梯形等。
平行四边形两组对边分别平行且相等。
长方形对边平行且相等,四个角都是直角。
小升初奥数必考知识点归纳

小升初奥数必考知识点归纳小升初奥数是许多学生和家长关注的焦点,它不仅考验学生的数学基础,还考察学生的逻辑思维能力和解决问题的能力。
以下是一些小升初奥数必考知识点的归纳:1. 四则运算:熟练掌握加、减、乘、除的基本运算规则,以及运算的优先级。
2. 数的分类:了解自然数、整数、奇数、偶数、质数、合数、因数和倍数等概念。
3. 分数和小数:掌握分数和小数的加减乘除运算,以及分数和小数的转换。
4. 比例和百分比:理解比例的概念,包括简单比例和复合比例,以及百分比的计算。
5. 方程与不等式:解一元一次方程和不等式,包括方程的平衡、移项和合并同类项。
6. 几何图形:熟悉基本的平面几何图形,如三角形、四边形、圆等,以及它们的周长、面积和体积的计算。
7. 图形的变换:包括平移、旋转和对称等几何变换。
8. 逻辑推理:掌握逻辑推理的基本技巧,如排除法、假设法和反证法。
9. 数列问题:了解等差数列、等比数列和数列的求和问题。
10. 组合与排列:理解组合和排列的区别,掌握组合数和排列数的计算公式。
11. 概率初步:了解概率的基本概念,包括事件的独立性和互斥性。
12. 应用题:能够将实际问题抽象成数学问题,并运用所学知识解决。
13. 数学思维:培养数学思维,包括抽象思维、逻辑推理和创造性思维。
14. 解题技巧:掌握一些常用的解题技巧,如代入法、赋值法、归纳法等。
15. 奥数竞赛题型:熟悉各类奥数竞赛题型,如填空题、选择题、解答题等。
结束语:掌握这些知识点,不仅能够帮助学生在小升初奥数考试中取得好成绩,更能培养学生的数学兴趣和思维能力。
希望每位学生都能在奥数的学习中找到乐趣,不断进步。
奥数基础知识

奥数基础知识【正文】奥数基础知识一、奥数的概念和作用奥数,即奥林匹克数学,是指培养学生的逻辑思维和解决问题的能力的一种数学教育方法。
奥数常常运用于竞赛和选拔活动中,被视为培养下一代数学和科学精英的重要途径。
奥数通过培养学生的逻辑思维和问题解决能力,能够激发学生的求知欲和创造力,帮助他们掌握数学的基本原理和方法。
奥数的学习不仅可以提高学生的数学成绩,还可以培养学生的思维能力和创新意识,为他们未来的学习和职业发展打下坚实的基础。
二、奥数的基础知识1. 数论:数论是奥数中的一个重要分支,研究整数的性质和规律。
例如,素数理论、公约数与最大公约数、同余定理等都属于数论的范畴。
2. 几何:几何是奥数中的另一个重要领域,研究空间形状和物体的位置关系。
几何的基本概念包括直线、角度、三角形等,其中平面几何和立体几何是奥数学习的重点内容。
3. 代数:代数是奥数中的另一个重要分支,研究数的运算和关系。
奥数中的代数概念包括方程、函数、不等式等,通过代数的方法,可以解决各种数学问题。
4. 组合数学:组合数学研究的是离散的、不重复的对象之间的组合关系。
例如,排列、组合、鸽笼原理等都是奥数学习中的重要内容。
5. 概率论和统计学:概率论和统计学是奥数中的另外两个重要分支。
概率论研究的是随机事件发生的概率,统计学研究的是数据的收集和分析方法。
这两个领域在现实生活中具有广泛的应用和重要意义。
三、培养奥数基础知识的方法1. 掌握基本概念:在学习奥数的过程中,首先需要掌握各个分支的基本概念和定义。
只有对基本概念有清晰的认识,才能更好地理解和运用相关原理和方法。
2. 多实践、多思考:奥数学习需要学生进行大量的实际操作和思考。
通过做题和思考问题,学生可以培养自己的逻辑思维和问题解决能力,掌握奥数的核心内容。
3. 学会归纳总结:奥数学习是一个渐进的过程,需要学生不断总结经验、归纳规律。
通过总结和归纳,可以加深对知识的理解,提高解题的效率和准确率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径=几倍数几倍数÷1倍数=倍数几倍数÷倍数= 1倍数
3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
(2)体积=长×宽×高V=abc
5、三角形s面积a底h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高
6、平行四边形:s面积a底h高面积=底×高s=ah
7、梯形:s面积a上底b下底h高面积=(上底+下底)×高÷2 s=(a+b)×h÷2
8圆形:S面C周长∏ d=直径r=半径
顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2
浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题
利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)
重量单换算
1吨=1000千克1千克=1000克1千克=1公斤人民币单位换算
1元=10角1角=10分1元=100分时间单位换算
1世纪=100年1年=12月大月(31天)有: 1\3\5\7\8\10\12月小月(30天)的有: 4\6\9\11月平年2月28天,闰年2月29天平年全年365天,闰年全年366天1日=24小时1小时=60分1分=60秒1小时=3600秒
小学数学几何形体周长面积体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽S=ab
4、正方形的面积=边长×边长S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
第二,学生应以老师讲的内容为主,因为老师讲的题目,都是精心挑选的。上课时一定要弄懂每一道题目,这很重要。但更重要的是:下课后一定要把老师讲过的题目重新作一遍!如果只是停留在上课听懂的层面上,那考试时,即使遇到老师讲过的题目,学生还是做不对。题目不但要弄懂,而且一定要会做!
第三,关于知识缺陷。有很多同学都说没有时间补习,但是如果一些重点知识不会的话,在升学考试中遇到稍微综合一些的题目还是不会做。所以,不管怎样,重点的知识一定要弄懂!
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
小学数学图形计算公式
1、正方形:C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a
(1)周长=直径×π=2×π×半径C=πd=2πr
(2)面积=半径×半径×π
9、圆柱体:v体积h:高s:底面积r:底面半径c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10、圆锥体:v体积h高s底面积r底面半径体积=底面积×高÷3
首先,针对自己没有学习的奥数内容,一定要想办法补上,如果这个时候不补的话,那么到了六年级的下学期,根本没有时间补。如果因为缺的东西太多,那就要把重要的内容补上,例如:三年级的和差倍问题、年龄问题、盈亏问题、五年级的整除问题等等,虽然简单的问题考试时不会出现,但是经常融合到行程问题等同学们认为较难的题目中。对于补课的方法,可以请家教,也可以自己学。
再次,作系统的训练。在讲课的时候,我经常对同学们讲:"奥数,只看不练,等于白干"。学奥数,就像学自行车,你的理论知识再好,没有足量的练习,你还是不能真正掌握奥数。但是我们作练习不能盲目,我们推荐《奥林匹克训练题库》(刘京友题库)、《华罗庚学校思维训练导引》两本书。
对于这两本书上的题目,学生应该做中等难度的题目,以刘京友题库来说,作题号前面画菱形的题目即可;对于《华罗庚学校思维训练导引》作三个星以下的题目即可。关于作哪部分的题目,我们提倡每一部分都作。在实在没有时间的情况下,我们重点部分和自己的弱项先做,多做;非重点、自己学的好的部分应该后做、少做。
2、正方体:V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a
3、长方形:C周长S面积a边长周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab
4、长方体V:体积s:面积a:长b:宽c:高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+bc+ca)
其次,改掉自己的坏习惯。奥数学习好的学生,特别是男生,都有马虎的毛病,他们不怕题目多难,而是怕题目简单。
二、奥数学习不扎实
学习好的同学总是不多的,更多的,或者说是大多数同学的状况是这样的:他们四年级或五年级才开始学习奥数,有的甚至是六年级暑假刚开始学,这样的同学是半路出家的学生;
有的同学是从三年级开始学的奥数,但是学了3、4年,只是听课,没有做过系统的训练,甚至是没有做过训练,有的同学家长就跟我抱怨说:以前,他们的孩子在某某学校学习奥数,学校的老师不负责任--只是讲课,不留作业--这样学过来的学生,我们只能说他听过奥数课,但并没有真正学到奥数。那我们应该采取怎样的有效的措施呢?
2、封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题
相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题
长度单位换算1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升
数的认识
数的运算
式与方程
常见的量
比和比例
数学思考
2.空间与图形
图形的认识与测量
奥数学习
编辑
六年级的奥数学习主要分为几种一下三种情况一一来分析:
一、奥数学的很扎实
这样的学生奥数起步比较早而且一般对奥数有很大的兴趣,自己会主动地去学习奥数,主动的做题。但是我们要取得更好的成绩,那就需要我们更好的学习。
首先,看看自己那一部分的题目练习的不够。奥数学习好的学生,一般都做了一本或者几本题库练习类的书,但是这里要说的是,应该重视那些做错的题目和那些没有做出来的。
总数÷总份数=平均数
和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)
差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)植树问题
1、非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)
这样的错误出现,判试题的老师不认为学生的语文水平差,而是认为学生的整体水平很差,让你自己想想,能不影响成绩吗?所以,我们一定要更正自己的坏习惯。
三、刚开始学习奥数
刚开始学习奥数,入门最重要。
第一,树立起我一定能学好得信心。有的同学因为到了六年级才开始学习奥数,在心里不免就有一点拉在别人后面的阴影。
六年级开始学习奥数,最后进重点中学试验班的同学比比皆是--这些同学都付出很大的努力!学习奥数比别人晚,还有一个优点呢!那就是你能得到老师的帮助,少走弯路!一定要对自己有信心!这是学好奥数的首要问题!
题目,对于自己不会的题目一定要弄懂!!不但题目要弄懂,而且要看看这道题目涉及的知识是什么,这部分知识就是大多数孩子的弱点;除此之外,还要看看这道题目用什么方法解答的,在以后的练习中,要着重使用这种方法。在教育行业,新东方的奥数会根据学生的不同基础、不同水平、不同兴趣和发展方向给予具体的指导,具有一定的学习方法总结,广受家长的好评。
2、正方体:V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a
3、长方形:C周长S面积a边长周长=(长+宽)×2 C=2(a+b)面积=长×宽S=ab
4、长方体V:体积s:面积a:长b:宽c:高
(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+bc+ca)
总数÷总份数=平均数
和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)