植物生理学:植物体内有机物的代谢
植物生理学课后习题答案

第一章植物的水分心理1.将植物细胞分离放在纯水和1mol/L蔗糖溶液中,细胞的渗入渗出势.压力势.水势及细胞体积各会产生什么变更?答:在纯水中,各项指标都增大;在蔗糖中,各项指标都下降.2.从植物心理学角度,剖析农谚“有收无收在于水”的道理.答:水,孕育了性命.陆生植物是由水生植物进化而来的,水是植物的一个重要的“先天”情况前提.植物的一切正常性命活动,只有在必定的细胞水分含量的状况下才干进行,不然,植物的正常性命活动就会受阻,甚至停滞.可以说,没有水就没有性命.在农业临盆上,水是决议收成有无的重要身分之一.水分在植物性命活动中的感化很大,重要表示在4个方面:●水分是细胞质的重要成分.细胞质的含水量一般在70~90%,使细胞质呈溶胶状况,包管了兴旺的代谢感化正常进行,如根尖.茎尖.假如含水量削减,细胞质便变成凝胶状况,性命活动就大大削弱,如休眠种子.●水分是代谢感化进程的反响物资.在光合感化.呼吸感化.有机物资合成和分化的进程中,都有水分子介入.●水分是植物对物资接收和运输的溶剂.一般来说,植物不克不及直接接收固态的无机物资和有机物资,这些物资只有在消融在水中才干被植物接收.同样,各类物资在植物体内的运输,也要消融在水中才干进行.●水分能保持植物的固有姿势.因为细胞含有大量水分,保持细胞的重要度(即膨胀),使植物枝叶挺拔,便于充分接收光照和交流气体.同时,也使花朵张开,有利于传粉.3.水分是若何跨膜运输到细胞内以知足正常的性命活动的须要的?●经由过程膜脂双分子层的间隙进入细胞.●膜上的水孔蛋白形成水通道,造成植物细胞的水分集流.植物的水孔蛋白有三种类型:质膜上的质膜内涵蛋白.液泡膜上的液泡膜内涵蛋白和根瘤共生膜上的内涵蛋白,个中液泡膜的水孔蛋白在植物体中散布最丰硕.水分透过性最大.4.水分是若何进入根部导管的?水分又是若何运输到叶片的?答:进入根部导管有三种门路:●质外体门路:水分通细致胞壁.细胞间隙等没有细胞质部分的移动,阻力小,移动速度快.●跨膜门路:水分从一个细胞移动到另一个细胞,要两次经由过程质膜,还要经由过程液泡膜.●共质体门路:水分从一个细胞的细胞质经由胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的持续体,移动速度较慢.这三条门路配合感化,使根部接收水分.根系吸水的动力是根压和蒸腾拉力.运输到叶片的方法:蒸腾拉力是水分上升的重要动力,使水分在茎内上升到达叶片,导管的水分必须形成持续的水柱.造成的原因是:水分子的内聚力很大,足以抵抗张力,包管由叶至根水柱不竭,从而使水分不竭上升.5.植物叶片的气孔为什么在光照前提下会张开,在阴郁前提下会封闭?●保卫细胞细胞壁具有伸缩性,细胞的体积能可逆性地增大40~100%.●保卫细胞细胞壁的厚度不合,散布不平均.双子叶植物保卫细胞是肾形,内壁厚.外壁薄,外壁易于伸长,吸水时向外扩大,拉开气孔;禾本科植物的保卫细胞是哑铃形,中央厚.两端薄,吸水时,横向膨大,负气孔张开.保卫细胞的叶绿体在光下会形成蔗糖,累积在液泡中,下降渗入渗出势,于是吸水膨胀,气孔张开;在阴郁前提下,进行呼吸感化,消费有机物,升高了渗入渗出势,于是掉水,气孔封闭.6.气孔的张开与保卫细胞的什么构造有关?●细胞壁具有伸缩性,细胞的体积能可逆性地增大40~100%.●细胞壁的厚度不合,散布不平均.双子叶植物保卫细胞是肾形,内壁厚.外壁薄,外壁易于伸长,吸水时向外扩大,拉开气孔;禾本科植物的保卫细胞是哑铃形,中央厚.两端薄,吸水时,横向膨大,负气孔张开.9.设计一个证实植物具有蒸腾感化的试验装配.10.设计一个测定水分运输速度的试验.第二章植物的矿质养分1.植物进行正常性命活动须要哪些矿质元素?若何用试验办法证实植物发展需这些元素?答:分为大量元素和微量元素两种:●大量元素:C H O N P S K Ca Mg Si●微量元素:Fe Mn Zn Cu Na Mo P Cl Ni试验的办法:应用溶液造就法或砂基造就法证实.经由过程参加部分养分元素的溶液,不雅察植物是否可以或许正常的发展.假如能正常发展,则证实缺乏的元素不是植物发展必须的元素;假如不克不及正常发展,则证实缺乏的元素是植物发展所必须的元素.2.在植物发展进程中,若何辨别产生缺氮.磷.钾现象;若产生,可采取哪些解救措施?缺氮:植物矮小,叶小色淡或发红,分枝少,花少,子实不饱满,产量低.解救措施:施加氮肥.缺磷:发展迟缓,叶小,分枝或分蘖削减,植株矮小,叶色暗绿,开花期和成熟期都延迟,产量下降,抗性削弱.解救措施:施加磷肥.缺钾:植株茎秆荏弱易倒伏,抗旱性和抗寒性均差,叶色变黄,逐渐坏逝世,缺绿开端在老叶.解救措施:施加钾肥.4.植物细胞经由过程哪些方法来接收溶质以知足正常性命活动的须要?(一)集中1.简略集中:溶质从高浓度的区域跨膜移向浓度较低的临近区域的物理进程.2.易化集中:又称协助集中,指膜转运蛋白易让溶质顺浓度梯度或电化学梯度跨膜转运,不须要细胞供给能量.(二)离子通道:细胞膜中,由通道蛋白构成的孔道,掌握离子通细致胞膜.(三)载体:跨膜运输的内涵蛋白,在跨膜区域不形成明显的孔道构造.1.单向运输载体:(uniport carrier)能催化分子或离子单倾向地顺着电化学势梯度跨质膜运输.2.同向运输器:(symporter)指运输器与质膜外的H联合的同时,又与另一分子或离子联合,统一倾向运输.3.反向运输器:(antiporter)指运输器与质膜外侧的H联合的同时,又与质膜内侧的分子或离子联合,两者朝相反的倾向运输.(四)离子泵:膜内涵蛋白,是质膜上的ATP酶,通度日化ATP释放能量推进离子逆化学势梯度进行跨膜转运.(五)胞饮感化:细胞经由过程膜的内陷从外界直接摄取物资进入细胞的进程.7.植物细胞经由过程哪些方法来掌握胞质中的钾离子浓度?●钾离子通道:分为内向钾离子通道和外向钾离子通道两种.内向钾离子通道是掌握胞外钾离子进入胞内;外向钾离子掌握胞内钾离子外流.●载体中的同向运输器.运输器与质膜外侧的氢离子联合的同时,又与另一钾离子联合,进行统一倾向的运输,其成果是让钾离子进入到胞内.8.无土栽培技巧在农业临盆上有哪些应用?●可以经由过程无土栽培技巧,肯定植物发展所必须的元素和元素的须要量,对于在农业临盆中,进行合理的施肥有指点的感化.●无土栽培技巧可以或许对植物的发展前提进行掌握,植物发展的速度快,可用于大量的培养幼苗,之后再栽培在泥土中.10.在作物栽培时,为什么不克不及施用过量的化肥,如何施肥才比较合理?过量施肥时,可使植物的水势下降,根系吸水艰苦,烧伤作物,影响植物的正常心理进程.同时,根部也接收不了,造成糟蹋.合理施肥的根据:●根据形态指标.边幅和叶色肯定植物所缺乏的养分元素.●经由过程对叶片养分元素的诊断,联合施肥,使养分元素的浓度尽量位于临界浓度的四周.●测土配方,肯定泥土的成分,从而肯定缺乏的肥料,按必定的比例施肥.11.植物对水分和矿质元素的接收有什么关系?是否完整一致?关系:矿质元素可以消融在溶液中,经由过程溶液的流淌来接收.两者的接收不完整一致雷同点:①两者都可以经由过程质外体门路和共质体门路进入根部.②温度和通气状况都邑影响两者的接收.不合点:①矿质元素除了根部接收后,还可以经由过程叶片接收和离子交流的方法接收矿物资.②水分还可以经由过程跨膜门路在根部被接收.12.细胞接收水分和接收矿质元素有什么关系?有什么异同?关系:水分在经由过程集流感化接收时,会同时运输少量的离子和小溶质调节渗入渗出势.雷同点:①都可以经由过程集中的方法来接收.②都可以经由通道来接收.不通电:①水分可以经由过程集流的方法来接收.②水分经由的是水通道,矿质元素经由的是离子通道.③矿质元素还可以经由过程载体.离子泵和胞饮的情势来运输.13.天然界或栽种作物进程中,叶子消失红色,为什么?●缺乏氮元素:氮元素少时,用于形成氨基酸的糖类也削减,余下的较多的糖类形成了较多的花色素苷,故呈红色.●缺乏磷元素:磷元素会影响糖类的运输进程,当磷元素缺乏时,阻碍了糖分的运输,使得叶片积聚了大量的糖分,有利于花色素苷的形成.●缺乏了硫元素:缺乏硫元素会有利于花色素苷的积聚.●天然界中的红叶:秋季降温时,植物体内会积聚较多的糖分以顺应严寒,体内的可溶性糖分增多,形成了较多的花色素苷.14.植株矮小,可能是什么原因?(六)缺氮:氮元素是合成多种性命物资所需的须要元素.(七)缺磷:缺乏磷元素时,蛋白质的合成受阻,新细胞质和新细胞核形成较少,影响细胞决裂,发展迟缓,植株矮小.(八)缺硫:硫元素是某些蛋白质或生物素.酸类的重要构成物资.(九)缺锌:锌元素是叶绿素合成所需,发展素合成所需,且是酶的活化剂.(十)缺水:水介入了植物体内大多半的反响.15.引起嫩叶发黄和老叶发黄的分离是什么元素?请列表解释.●引起嫩叶发黄的:S Fe,两者都不克不及从老叶移动到嫩叶.●引起老叶发黄的:K N Mg Mo,以上元素都可以从老叶移动到嫩叶.●Mn既可以引起嫩叶发黄,也可以引起老叶发黄,依植物的种类和发展速度而定.16.叶子变黄可能是那些身分引起的?请剖析并提出证实的办法.●缺乏下列矿质元素:N Mg F Mn Cu Zn.证实办法是:溶液造就法或砂基造就法.剖析:N和Mg是构成叶绿素的成分,其他元素可能是叶绿素形成进程中某些酶的活化剂,在叶绿素形成进程中起间接感化.●光照的强度:光线过弱,会晦气于叶绿素的生物合成,使叶色变黄.证实及剖析:在一致的正常前提下造就两份植株,之后一份植株保持原状造就,另一份放置在光线较弱的前提下造就.比较两份植株,哪一份起首消失叶色变黄的现象.●温度的影响:温度可影响酶的活性,在叶绿素的合成进程中,有大量的酶的介入,是以过高或过低的温度都邑影响叶绿素的合成,从而影响了叶色.证实及剖析:在一致正常的前提下,造就三份植株,之后个中的一份保持原状造就,一份放置在低温下造就,另一份放置在高温前提下造就.比较三份植株变黄的时光.第三章植物的光合感化1.植物光合感化的光反响和碳反响是在细胞的哪些部位进行的?为什么?答:光反响在类囊体膜(光合膜)长进行的,碳反响在叶绿体的基质中进行的.原因:光反响必须在光下才干进行的,是由光引起的光化学反响,类囊体膜是光合膜,为光反响供给了光的前提;碳反响是在暗处或光处都能进行的,由若干酶催化的化学反响,基质中有大量的碳反响须要的酶.2.在光合感化进程中,ATP和NADPH是若何形成的?又是如何被应用的?答:形成进程是在光反响的进程中.●非轮回电子传递形成了NADPH:PSII和PSI配合受光的激发,串联起来推进电子传递,从水中夺电子并将电子最终传递给NADP+,产生氧气和NADPH,是凋谢式的通路.●轮回光和磷酸化形成了ATP:PSI产生的电子经由一些传递体传递后,陪同形成腔表里H浓度差,只引起ATP的形成.●非轮回光和磷酸化时两者都可以形成:放氧复合体处水裂解后,吧H释放到类囊体腔内,把电子传递给PSII,电子在光和电子传递链中传递时,陪同着类囊体外侧的H转移到腔内,由此形成了跨膜的H浓度差,引起ATP的形成;与此同时把电子传递到PSI,进一步进步了能位,形成NADPH,此外,放出氧气.是凋谢的通路.应用的进程是在碳反响的进程中进行的.C3门路:甘油酸-3-磷酸被ATP磷酸化,在甘油酸-3-磷酸激酶催化下,形成甘油酸-1,3-二磷酸,然后在甘油醛-3-磷酸脱氢酶感化下被NADPH还原,形成甘油醛-3-磷酸.C4门路:叶肉细胞的叶绿体中草酰乙酸经由NADP-苹果酸脱氢酶感化,被还原为苹果酸.C4酸脱羧形成的C3酸再运回叶肉细胞,在叶绿体中,经丙酮酸磷酸双激酶催化和ATP感化,生成CO2受体PEP,使反响轮回进行.3.试比较PSI和PSII的构造及功效特色.4.光和感化的氧气是如何产生的?答:水裂解放氧是水在光照下经由PSII的放氧复合体感化,释放氧气,产生电子,释放质子到类囊体腔内.放氧复合体位于PSII类囊体膜腔概况.当PSII反响中间色素P680受激发后,把电子传递到脱镁叶绿色.脱镁叶绿素就是原初电子受体,而Tyr是原初电子供体.掉去电子的Tyr又经由过程锰簇从水分子中获得电子,使水分子裂解,同时放出氧气和质子.6.光合感化的碳同化有哪些门路?试述水稻.玉米.菠萝的光合碳同化门路有什么不合?答:有三种门路C3门路.C4门路和景天酸代谢门路.水稻为C3门路;玉米为C4门路;菠萝为CAM.7.一般来说,C4植物比C3植物的光合产量要高,试从它们各自的光合特点以及心理特点比较剖析.总体的结论是,C4植物的光合效力大于C3植物的光合效力.8.从光呼吸的代谢门路来看,光呼吸有什么意义?光呼吸的门路:在叶绿体内,光照前提下,Rubisco把RUBP氧化成乙醇酸磷酸,之后在磷酸酶感化下,脱去磷酸产生乙醇酸;在过氧化物酶体内,乙醇酸氧化为乙醛酸和过氧化氢,过氧化氢变成洋气,乙醛酸形成甘氨酸;在线粒体内,甘氨酸变成丝氨酸;过氧化物酶体内形成羟基丙酮酸,最终成为甘油酸;在叶绿体内,产生甘油-3-磷酸,介入卡尔文轮回.●在干旱和高辐射时代,气孔封闭,CO2不克不及进入,会导致光克制.光呼吸会释放CO2,消费过剩的能量,对光合器官起到呵护的感化,防止产生光克制.●在有氧前提下,经由过程光呼吸可以收受接管75%的碳,防止损掉过多.●有利于氮的代谢.9.卡尔文轮回和光呼吸的代谢有什么接洽?●卡尔文轮回产生的有机物的1/4经由过程光呼吸来消费.●氧气浓度高时,Rubisco作为加氧酶,是RUBP氧化,进行光呼吸;CO2高时,Rubisco作为羧化酶,使CO2羧化,进行卡尔文轮回.●光呼吸的最终产品是甘油酸-3-磷酸,介入到卡尔文轮回中.10.经由过程进修植物水分代谢.矿质元素和光合感化常识之后,你以为如何才干进步农作物的产量.●合理浇灌.合理浇灌可以改良作物各类心理感化,还能改变栽培情况,间接地对感化产生影响.●合理追肥.根据植物的形态指标和心理指标肯定追肥的种类和量.同时,为了进步肥效,须要恰当的浇灌.恰当的深耕和改良施肥的方法.●光的强度尽量的接近于植物的光饱和点,使植物的光合速度最大,最大可能的积聚有机物,但是同时留意光强不克不及太强,会产生光克制的现象.●栽培的密度适度的大点,肥水充足,植株繁茂,能接收更多的CO2,但同时要留意光线的强弱,因为跟着光强的增长CO2的应用率增长,光合速度加快.同时,可经由过程人工的增长CO2含量,进步光合速度.●使作物在合适的温度规模内栽植,使作物体内的酶的活性在较强的程度,加快光合感化的碳反响进程,积聚更多的有机物.11.C3植物.C4植物和CAM在固定CO2方面的异同.12.据你所知,叶子变黄可能与什么前提有关,请周全评论辩论.●水分的缺掉.水分是植物进行正常的性命活动的基本.●矿质元素的缺掉.有些矿质元素是叶绿素合成的元素,有些矿质元素是叶绿素合成进程中酶的活化剂,这些元素都影响叶绿素的形成,消失叶子变黄.●光前提的影响.光线过弱时,植株叶片中叶绿素分化的速度大于合成的速度,因为缺乏叶绿素而使叶色变黄.●温度.叶绿素生物合成的进程中须要大量的酶的介入,过高或过低的温度都邑影响酶的活动,从而影响叶绿素的合成.●叶片的年轻.叶片年轻时,叶绿素轻易降解,数目削减,而类胡萝卜素比较稳固,所以叶色呈现出黄色.13.高O2浓度对光合进程有什么影响?答:对于光合进程有克制的感化.高的O2浓度,会促进Rubisco的加氧酶的感化,更倾向于进行光呼吸,从而克制了光合感化的进行.15.“霜叶红于二月花”,为什么霜降后枫叶变红?答:霜降后,温度下降,体内积聚了较多的糖分以顺应严寒,体内的可溶性糖多了,就形成较多的花色素苷,叶子就呈红色的了.第四章植物的呼吸感化6.用很低浓度的氰化物和叠氮化合物或高浓度的CO处理植物,植物很快会产生损害,试剖析该损害的原因是什么?答:上述的处理办法会造成植物的呼吸感化的克制,使得植物不克不及进行正常的呼吸感化,为植物体供给的能量也削减了,从而造成了损害的感化.7.植物的光合感化与呼吸感化有什么关系?相干性:●载能的媒体雷同:ATP.NADPH.●物资相干:许多重要的中央产品是可以瓜代应用的.●光合感化的O2可以用于呼吸感化;呼吸感化的CO2可以用于光合感化.●磷酸化的机制雷同:化学渗入渗出学说.8.植物的光呼吸和暗呼吸有哪些差别?对9.光合磷酸化与氧化磷酸化有什么异同?雷同点:使ADP与pi合成ATP.10.剖析下列的措施,并解释它们有什么感化?●将果蔬贮消失低温下.●小麦.水稻.玉米.高粱等食粮贮藏之前要晒干.●给作物中耕松土.●初春严寒季候,水稻浸种催芽时,经常应用温水淋种和不时翻种.答:剖析如下●在低温情况下,果蔬的呼吸感化较弱,削减了有机物的消费,保持了果蔬的质量.●食粮晒干之后,因为没有水分,从而不会再进行光合感化.若含有水分,呼吸感化会消费有机物,同时,反响生成的热量会使食粮发霉演变.●改良泥土的通气前提.●掌握温度和空气,使呼吸感化顺遂进行.11.绿茶.红茶和乌龙茶是如何制成的?道理安在?第五章植物体内有机物的代谢第六章植物体内有机物的运输1.植物叶片中合成的有机物资是以什么情势和经由过程什么门路运输到根部?若何用试验证实植物体内有机物运输的情势和门路?答:情势主如果还原性糖,例如蔗糖.棉子糖.水苏糖和毛蕊糖,个中以蔗糖为最多.运输门路是筛分子-伴胞复合体经由过程韧皮部运输.验证情势:应用蚜虫的吻刺法收集韧皮部的汁液. 蚜虫以其吻刺拔出叶或茎的筛管细胞汲取汁液.当蚜虫汲取汁液时,用CO2麻醉蚜虫,用激光将蚜虫吻刺于下唇处割断,瘦语处不竭流出筛管汁液,可收集汁液供剖析.验证门路:应用放射性同位素示踪法.5.木本植物怕剥皮而不怕空心,这是什么道理?答:叶片是植物有机物合成的地方,合成的有机物经由过程韧皮部向双向运输,供植物的正常性命活动.剥皮等于损坏了植物的韧皮部,使有机物的运输收到阻碍.第七章细胞旌旗灯号转导1.什么叫旌旗灯号转导?细胞旌旗灯号转导包含哪些进程?答:旌旗灯号转导是指细胞偶联各类刺激旌旗灯号与其引起的特定心理效应之间的一系列分子反响机制.包含四个步调:第一,旌旗灯号分子与细胞概况受体的相联合;第二,跨膜旌旗灯号转换;第三,在细胞内经由过程旌旗灯号转导收集进行旌旗灯号传递.放大和整合;第四,导致心理生化变更.2.什么叫钙调蛋白?它有什么感化?答:钙调蛋白是一种耐热的球蛋白,具有148个氨基酸的单链多肽.两种方法起感化:第一,可以直接与靶酶联合,引诱构象变更而调节靶酶的活性;第二,与CA联合,形成活化态的CA/cam复合体,然后再与靶酶联合,将靶酶激活.3.蛋白质可逆磷酸化在细胞旌旗灯号转导中有什么感化?答:是生物体内一种广泛的翻译后润饰方法.细胞内第二信使如CA等往往经由过程调节细胞内多种蛋白激酶和蛋白磷酸酶,从而调节蛋白质的磷酸化和去磷酸化进程,进一步传递旌旗灯号.4.植物细胞内钙离子浓度变更是若何完成的?答:细胞壁是胞外钙库.质膜上的CA通道掌握CA内流,而质膜上的CA泵负责将CA泵出细胞.胞内钙库的膜上消失CA通道.CA泵和CA/H反向运输器,前者掌握CA外流,后两者将胞质CA泵入胞内钙库.第八章植物发展物资1.发展素是在植物体的哪些部位合成的?发展素的合成有哪些门路?答:合成部位---叶原基.嫩叶.发育中种子门路(底物是色氨酸)----吲哚丙酮酸门路.色胺门路.吲哚乙腈门路和吲哚乙酰胺门路.2.根尖和茎尖的薄壁细胞有哪些特色与发展素的极性运输是相顺应的?答:发展素的极性运输是指发展素只能从植物体的形态学上端向下端运输.在细胞基部的质膜上有专一的发展素输出载体.3.植物体内的赤霉素.细胞决裂素和脱落酸的生物合成有何接洽.4.细胞决裂素是如何促进细胞决裂的?答:CTK+CRE1——旌旗灯号的跨膜转换——CRE1上的pi基团到组氨酸磷酸转移蛋白上——细胞核内反响蛋白——基因表达——细胞决裂5.喷鼻蕉.芒果.苹果果实成熟时代,乙烯是如何形成的?乙烯又是如何引诱果实成熟的?答:Met——SAM——ACC+O2——Eth(MACC)引诱果实的成熟:促进呼吸强度,促进代谢;促进有机物资的转化;促进质膜透性的增长.6.发展素与赤霉素,发展素与细胞决裂素,赤霉素与脱落酸,乙烯与脱落酸各有什么互相关系?8.发展素.赤霉素.细胞决裂素.脱落酸和乙烯在农业临盆上有何感化?赤霉素:1.在啤酒临盆上可促进麦芽糖化.2.促进抽芽.3.促进发展.4.促进雄花产生.细胞决裂素:细胞决裂素可用于蔬菜.生果和鲜花的保鲜保绿.其次,细胞决裂素还可用于果树和蔬菜上,重要感化用于促进细胞扩大,进步坐果率,延缓叶片年轻.脱落酸:1.克制发展2.促进休眠3.引起气孔封闭4.增长抗逆性乙烯:1.催熟果实.2.促进年轻.10.要使水稻秧苗矮壮分蘖多,你在水肥治理或植物发展调节剂应用方面有什么建议?。
高考生物植物营养与代谢

高考生物植物营养与代谢植物是自养生物,能够通过光能、无机物和有机物合成自己的有机物质,以及获得生长和发育所必需的能量。
植物的营养与代谢过程与动物有着很大的区别,本文将从植物的光合作用、无机物的吸收与转运、有机物的合成与运输以及能量的利用等方面,介绍植物的营养与代谢。
首先,植物通过光合作用合成有机物质和提供能量。
光合作用是植物利用太阳能将二氧化碳和水转化为葡萄糖和氧气的过程。
光合作用发生在叶绿体中,叶绿体的主要功能是吸收光能和参与光合作用的反应。
在光合作用中,植物利用叶绿素将光能转化为化学能,通过一系列复杂的化学反应,将二氧化碳和水转化为有机物,同时释放出氧气。
光合作用是植物合成有机物质和提供能量的主要途径,对维持生物圈的稳定和维持地球上的生命有着重要的作用。
其次,植物需要通过根系吸收和转运无机物质。
植物的根系通过与土壤中的水分和溶解在水中的无机物质接触,通过根毛吸收这些物质。
植物所需的主要无机元素包括氮、磷、钾等。
吸收的无机盐通过细胞质、细胞壁和木质部等途径转运到不同部位的细胞,并在细胞内参与代谢过程。
无机盐的吸收和转运是植物正常生长和发育的重要保障,植物缺乏某种无机盐会导致生长停滞、叶片变黄等异常症状。
除了无机物的吸收外,植物还需要通过有机物的合成和运输来满足自身的营养需求。
植物通过光合作用合成的有机物被转化为葡萄糖、淀粉等形式储存起来,以备不时之需。
在需要的时候,植物通过转运体系将有机物质从叶子运输到需要的地方。
转运体系包括韧皮部和木质部,它们能够有效地将有机物质从光合作用的地方运输到根系和其他需要的部位。
植物的有机物合成和运输是植物生长和发育的基础,对植物的生命活动起着关键的作用。
最后,植物通过利用能量来进行各种代谢过程。
植物通过光合作用获得的能量被储存在化学键中,在需要的时候释放出来以供植物进行各种代谢过程。
植物的能量利用主要包括呼吸和发酵。
呼吸是植物将有机物质氧化分解为二氧化碳和水释放能量的过程。
植物生理学-植物体内有机物代谢

Literature (2)
PubMed (2)
Enzyme (4)
BRENDA (1)
EXPASY-ENZYME (1)
EXPLORENZ (1) IUBMB (1)
All databases (1683)
第二节 萜类
一、萜类的定义,种类与分布 二、生物合成 三、药理作用 四、重要化合物简介
一、萜类的定义,种类与分布
SORBI_05g020150 SORBI_05g020160 SORBI_05g020170 SORBI_05g022500
SORBI_07g024260 ZMA: 100272924 100274415(c2) 100282642 PPP: PHYPADRAFT_104998 PHYPADRAFT_126819 PHYPADRAFT_56017
定义:由初生代谢物转变成其它有机物的代谢。 物质的主要类型:萜类, 酚类, 含氮次生物 主要储存场所:液泡, 细胞壁等 作用:调控(激素), 防御, 色香味(繁殖). 工业与药用原料等 代谢特征:最终代谢物, 多数不再代谢和不分解
二. 次生代谢的主要类型, 代谢途径及与初生代谢的关系
4C糖
3C糖
** *
C00223 + 3 C00083 <=> C06561 + 4 C00010 + 3 C00011
Commen t RPair
Enzyme Pathwa y Orthol ogy
multi-step reaction
RP00051 C00010_C00083 main RP00144 C00010_C00223 main RP05694 C00011_C00083 leave RP06631 C00083_C06561 trans RP06632 C00223_C06561 trans RP10885 C00083_C06561 trans RP13393 C00083_C06561 trans
植物生理作业答案(最新整理)

(Mg)
白,叶脉上出现各色斑点,最后全叶变黄
嫩叶绿且皱缩,叶缘上卷并有白色条纹,花朵受阻,新 钙(Ca) 嫩叶 叶难以展开或呈病状扭曲
镁
植株生长不旺盛。老叶由下至上从叶缘至中央渐失绿变
老叶
(Mg)
白,叶脉上出现各色斑点,最后全叶变黄
硫(S) 嫩叶
嫩叶从叶脉开始黄化,最后直至全叶发黄,根系发育不 正常。
⑵ 小麦、水稻等均属于植物的种子结构,种子是有生命的有机体,不断地进 行着呼吸作用。呼吸速率快,会引起有机物的大量消耗;呼吸放出的水分,又会 使粮堆湿度增大,粮食“出汗”,呼吸加强;呼吸放出的热量,又使粮温增高, 反过来又促使呼吸增强,最后导致发热霉变,使粮食变质变量,因此,可以通过 晒干,减少种子的水分,降低呼吸速率,更利于贮藏;还可有效抑制微生物繁殖, 确保粮食种子不发热霉变。
细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。 ③ 渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。 ④ 水分临界期:指植物对水分不足特别敏感的时期。
二. 思考题 1. 将植物细胞分别放在纯水和 1 mol·L-1 蔗糖溶液中,细胞的渗透势、压力势、
水势及细胞体积各会发生什么变化? 答:渗透势是由于溶质颗粒的存在,降低了水的自由能;而压力势是指细胞
酶称为诱导酶。 ③ 临界浓度:是获得最高产量的最低养分浓度。
二. 思考题 1. 植物进行正常的生命活动需要哪些矿质元素?如何用实验方法证明植物
生长需要这些矿质元素? 答:植物正常生命活动所需的元素有:①大量元素:N、P、K、Ca、Mg、S、Si
等;②微量元素:Cl、Fe、Mn、B、Zn、Cu、Mo、Ni、Na 等。 通过用完全和缺素培养的方法可以证明植物生长是否需要这些矿质元素。
植物生理学答案(1)

植物生理学答案(1)第一章植物的水分生理一、名词解释。
渗透势(solute potential):由于溶液中溶质颗粒的存在,降低了水的自由能而引起的水势低于纯水水势的值,此值为负值.其也称为溶质势.质外体途径(apoplast pathway): 指水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动方式速度快。
共质体途径(symplast pathway): 指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。
渗透作用(osmosis):物质依水势梯度而移动,指溶液中的溶剂分子通过半透膜扩散的现象.对于水溶液而言,就是指水分子从水势高的系统通过半透膜向水势低的系统移动的现象.蒸腾作用(transpiration): 指水分以气体状态,通过植物体的表面,从体内散失到体外的现象。
二、思考题1、将植物细胞分别放在纯水和1mo l/L蔗糖溶液中,细胞的渗透势、压力势、水势及细胞体积各会发生什么变化?答:在正常情况下,植物细胞的水势为负值,在土壤水分充足的条件下,一般植物的叶片水势为-0.8~-0.2MPa。
将植物细胞放在纯水中时,纯水的水势为0,故植物细胞会吸水,渗透势、压力势及水势均上升,细胞体积变大。
当吸水达到饱和时,细胞体积达最大,水势最终变为0,渗透势和压力势绝对值相等、符号相反,各组分不再变化。
当植物细胞放于1mo l /L蔗糖溶液中时,根据公式计算蔗糖溶液的水势(设温度为27 ℃,已知蔗糖的解离系数i=1)=-icRT=-1mol /L×0.0083L·MPa/(mol·K)×(273+27)K=-2.49MPa,由于细胞的水势大于蔗糖溶液的水势,因此细胞放入溶液后会失水,渗透势、压力势及水势均减少,体积也缩小,严重时还会发生质壁分离现象。
如果细胞处于初始质壁分离状态,其压力势为0,水势等于渗透势。
植物生理学习题及答案 第五章 植物体内有机物的代谢.

7、√
8、×
五、选择题
1、A
2、B
3、C
4、B
5、A
6、B
7、A
8、B
六、填空题
1、异戊二烯,倍半萜、双萜、三萜
2、甲羟戊酸途径、甲基赤藓醇磷酸途径
3、单萜类、双萜类、多萜类
4、莽草酸途径、丙二酸途径
5、木质素
6、含N杂环
7、酚类醇衍生物黄烷衍生物
8、黄烷、B环取代物、红色、蓝色
9、抗病、合成芳香族氨基酸、合成生长素10、含氮杂环、氮素、氨基酸、氮肥11、苯丙氨酸和酪氨酸
上述四种醇类经过糖基化作用,进一步形成葡萄香豆醇、松柏苷、5-羟基阿魏苷和丁香苷,再通过质膜运输到细胞壁,在β-糖苷酶作用下释放出相应的单体(醇最后这些单体经过氧化和聚合作用形成木质素。
3、答:(1挥发油,多是单萜和倍半萜类化合物,广泛分布于植物界,它能使植物引诱昆
虫传粉,或防止动物的侵袭。
(2固醇,是三萜类的衍生物,是质膜的主要组成,它是与昆虫脱皮有关的植物脱皮激素的成分。
(3类胡萝卜素的四萜的衍生物,包括胡萝卜素、叶黄素,番茄红素等,常能决定花、叶和果实的颜色。胡萝卜素和叶黄素能吸收光能,参与光合作用,胡萝卜素也是维生素A的主要来源。
(4橡胶是最有名的高分子化合物,一般由1500—15000个异戊二烯单位所组成。橡胶由橡胶树的乳汁管流出,对植物有保护作用,如封闭伤口和防御食草动物取食等。
三、名词解释
1、类萜:由异戊二烯(五碳化合物组成的,链状的或环状的次生植物物质。
2、酚类:是芳香族环上的氢原子被羟基或功能衍生物取代后生成的化合物。
3、生物碱:是一类含氮杂环化合物,一般具有碱性。如阿托品、吗啡、烟碱等。
植物生理学:第五章 植物体内有机物质的代谢和运输

一、植物体内有机物质的运输系统
短距离运输系统
一、植物体内有机物质的运输系统
短距离运输系统
一、植物体内有机物质的运输系统
(二)长距离运输系统:指器官之间、源与库之间运输, 长距离运输系统:指器官之间、源与库之间运输, 距离从几厘米到上百米
1、微管束的组成:以导管为中心的富含纤维组织的木质部;以 微管束的组成:以导管为中心的富含纤维组织的木质部; 木质部 韧皮部; 筛管为中心的周围有薄壁组织伴连的韧皮部 筛管为中心的周围有薄壁组织伴连的韧皮部;穿插与包围木 质部和韧皮部的多种细胞,微管束鞘。 质部和韧皮部的多种细胞,微管束鞘。 微管束的功能: 2、微管束的功能: • 通常情况下,水分与无机盐通过木质部输送,有机物通过韧 通常情况下,水分与无机盐通过木质部输送, 皮部输送。 皮部输送。 • 信息(信使)物质传递的通道:如根部合成的细胞分裂素、 信息(信使)物质传递的通道:如根部合成的细胞分裂素、 脱落酸等通过木质部输送至地上部分; 脱落酸等通过木质部输送至地上部分;茎尖合成的生长素则 通过韧皮部向下运输;植物受环境刺激后产生的电波( 通过韧皮部向下运输;植物受环境刺激后产生的电波(膜电 也主要在微管束中传播。 位)也主要在微管束中传播。 • 两通道之间的物质运输:木质部与韧皮部之间侧向(横向) 两通道之间的物质运输:木质部与韧皮部之间侧向(横向) 运输可相互间运送水分和养分, 运输可相互间运送水分和养分,如筛管内的膨压变化就是由 于导管与筛管间发生水分交换产生的。 于导管与筛管间发生水分交换产生的。源自一、植物体内有机物质的运输系统
(二)长距离运输系统
2、微管束的功能 • 对同化物的吸收与分泌:韧皮部对同化物的吸收与分泌不 对同化物的吸收与分泌: 仅发生在库源端,而且在同化物的运输途中, 仅发生在库源端,而且在同化物的运输途中,微管束能与 周围组织发生物质交换。 周围组织发生物质交换。 • 对同化物的加工与贮存:同化物的运输过程中可卸至微管 对同化物的加工与贮存: 束中的某些薄壁细胞内合成淀粉,并贮存起来。 束中的某些薄壁细胞内合成淀粉,并贮存起来。是个中间 需要时再转运出去。 库,需要时再转运出去。 • 外源化学物质以及病毒等的传播通道:杀虫剂、灭菌剂、 外源化学物质以及病毒等的传播通道:杀虫剂、灭菌剂、 肥料、以及病毒分子经两通道的传输,能产生周身效应。 肥料、以及病毒分子经两通道的传输,能产生周身效应。 另外筛管汁液的蛋白抑制剂能抑制动物消化道内的消化酶, 另外筛管汁液的蛋白抑制剂能抑制动物消化道内的消化酶, 说明筛管本身存在一定的防卫机制。 说明筛管本身存在一定的防卫机制。 • 植物体的机械支撑:木质部导管、管胞。 植物体的机械支撑:木质部导管、管胞。
植物生理学:植物体内有机物的代谢

C、生物碱是重要药物的有效成分。许多中药的有效成分往往是
生物碱,比如有平喘作用的麻黄,其有效成分是麻黄碱;有抗菌效果的 黄连,其有效成分是小檗碱;有止痛作用的元胡,其有效成分是延胡索 乙素等多种生物碱。现在西药常用的重要药品,最初还是从植物分离出 来证实有效后化学合成的,例如从萝芙木分离出来的利血平,从金鸡纳 树皮分离出来的奎宁等。在抗癌药物中有从长春花中分离出来的长春新 碱,从粗榧分离的三尖杉酯碱,从美登木分离的美登木碱等。
喹嗪 (Quinolizidine)
鸟氨酸 赖氨酸
倒千里光碱
无
羽扇豆碱
恢复心律
异喹啉 (Isoquinoline)
吲哚 (Indole)
酪氨酸 色氨酸
可待因吗啡
止痛药、止咳止痛药
利血平 马钱子碱
治疗高血压、精神病 毒鼠药、治疗眼疾
(二)作用
A、生物碱是核酸的基本成分,又是维生素B1、叶酸和生物 素的基本成分,所以具有重要的生理意义;
糖、脂肪和蛋白质之间可以互相转变,丙酮酸、乙酰辅 酶A、α-酮戊二酸和草酰乙酸等中间产物在它们之间的转 变过程中起着枢纽作用。
核苷酸的核糖来源于戊糖磷酸代谢,碱基则是由氨基酸 及其代谢产物组成的。
植物体内各种主要有机物之间的联系
二、植物的初生代谢和次生代谢
1891年,Kossel明确提出了植物次生代谢的概念。
甲基赤藓醇途径由糖酵解或C4途径的中间产物丙酮酸和3-磷酸甘油醛, 形成甲基赤藓醇磷酸,继而形成二甲丙烯二磷酸(DMAPP)。
IPP和DMAPP是异构体。
第三节 酚 类
一、Concept:
芳香族环上的氢原子被羟基或功能衍生物取代后生成的化合物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
印楝素
蜕皮激素
Structure of two triterpenes, azadirachtin (A), and α-ecdysone (B), which serve as powerful feeding deterrents to insects.
3、萜类的作用:
(1)影响植物的生长发育:
次生代谢:次生代谢产物合成与分解。
次生代谢产物的功能: (1)使植物具有一定的色、香、味,吸引昆虫或动物来传 粉和传播种子; (2)防御天敌吞食; (3)重要的药物或工业原料。
植物的次生代谢产物可分3类: 萜类、酚类和含氮次生化合物
次生代谢产物合成主要途径及其与初生产物的联系
A simplified view of the major pathways of secondary-metabolite biosynthesis and their interrelationships with primary metabolism.
GA(双萜)——调节植株高度的激素;固醇、磷脂(三萜)——膜组成成分; 类胡萝卜素(四萜)—— 决定叶、花和果实的颜色,参与光合作用, VA的来源,转变形成ABA;CK和叶绿素含有萜类侧链。
(2)有毒,防止哺乳动物和昆虫吞食:
拟除虫菊酯(单萜)——极强的杀虫剂;苎烯和桂叶烯(松脂的单萜成分)—— 对昆虫有毒;挥发油(单萜和倍半萜)——有气味,防止害虫侵袭;棉酚(棉花, 倍半萜)——抗虫侵袭;冷杉酸(双萜)——阻止害虫取食;佛波醇(大戟科,双 萜)——刺激皮肤,对哺乳动物有毒。
P138图5-7
三、作用:
1、决定花、果颜色:花色素和橙皮素; 2、次生壁重要组成:木质素; 3、作为药物:芸香苷(路丁)、桂皮酸和肉桂醇等。
四、酚类的生物合成:
以莽草酸途径和丙二酸途径为主
植物酚类物质的生物合成途径
莽草酸代谢途径
是酚类合成的中心,重要!
五、简单酚类(simple pheolci compound)
亦称香豆素A(coumarin)类,也具苯环-C3的基本骨架,但C3与苯环通过 氧环化,例如伞形酮(umbelliforone),补骨脂内酯(psoralen lactone)、香 豆素等 。(p138)
第六章 植物体内有机物的代谢
第一节 植物的初生代谢和次生代谢
Primary metabolites and secondary metabolites of plant
一、植物体内有机物代谢之间的联系
卡尔文循环、糖酵解、三羧酸循环和戊糖磷酸途径是有机 物代谢的主干,它筑起了生命活动的舞台,是各种有机物代 谢的基础,这个主干来源于光合作用,形成蔗糖和淀粉;通 过呼吸作用,分解糖类,产生各种中间产物,进一步为脂肪、 核酸和蛋白质的合成提供底物。
糖、脂肪和蛋白质之间可以互相转变,丙酮酸、乙酰辅 酶A、α-酮戊二酸和草酰乙酸等中间产物在它们之间的转 变过程中起着枢纽作用。
核苷酸的核糖来源于戊糖磷酸代谢,碱基则是由氨基酸 及其代谢产物组成的。
植物体内各种主要有机物之间的联系
二、植物的初生代谢和次生代谢
1891年,Kossel明确提出了植物次生代谢的概念。
甲基赤藓醇途径由糖酵解或C4途径的中间产物丙酮酸和3-磷酸甘油醛, 形成甲基赤藓醇磷酸,继而形成二甲丙烯二磷酸(DMAPP)。
IPP和DMAPP是异构体。
第三节 酚 类
一、Concept:
芳香族环上的氢原子被羟基或功能衍生物取代后生成的化合物。
二、Classes:
种类繁多,是重要的次级产物之一。根据芳香环上带有的碳 原子数目的不同进行分类。
(3)药用或工业原料:
如红豆杉醇(紫杉醇)、橡胶等。
二、萜类的生物合成
两条途径
甲羟戊酸途径(mevalonic acid pathway) 甲基赤藓醇磷酸途径(methylerythritol phosphate pathway)
都形成异戊烯焦磷酸(IPP)
甲羟戊酸途径以三个乙酰CoA分子为原料,形成甲羟戊酸,再经过焦磷 酸化、脱羧化和脱水等过程,形成IPP。
(1)简单苯丙酸类(phenyl propanoid)化合物:
具苯环-C3的基本骨架,例如,反-桂皮酸(trans-cinnamic acid),对-香豆 酸(para-coumaric acid)、咖啡酸(caffeic acid),阿魏酸(ferulianoic lactone)类化合物:
在植物细胞中,低分子量的萜是挥发油,分子量增高就成为树脂、胡 萝卜素等较复杂的化合物,更大分子量的萜则形成橡胶等高分子化合物。 (p133图5-3)
柠檬油精
薄荷醇
Structures of limonene (A) and menthol (B). These two well-known monoterpenes serve as defenses against insects and other organisms that feed on these plants.
初生代谢产物( primary metabolites): 维持细胞生命活动所必需 的,包括碳水化合物、氨基酸、蛋白质、核酸、叶绿素、有机 酸等。
初生代谢:初生代谢产物合成与分解
次生代谢产物(secondary metabolites):植物体内一大类并非生 长发育所必需的小分子有机化合物,产生和分布有种属、器官 组织和生长发育的特异性(由糖类等有机物次生代谢衍生出来 的物质,因此称为次生代谢产物),贮存在液泡或细胞壁中, 是代谢的终产物,大部分不再参加代谢活动。
第二节 萜 类(terpene)
一、Kinds of Terpene
萜类或类萜在植物界广泛存在,不溶于水;由异戊二烯(isoprenoid) 组成的;结构有链状的,也有环状的。
1、基本结构
2、种类 萜类种类是根据异戊二烯数目而定,有单萜(monoterpene)、 倍半萜(sesquiterpene)、双萜(diterpene)、三萜 (triterpene)、四萜(tetraterpene)和多萜(polyterpene) 之分。