频域采样定理

合集下载

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

时域采样与频域采样

时域采样与频域采样

实验二:时域采样与频域采样一、实验目的:时域采样理论与频域采样理论是数字信号处理中的重要理论。

要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。

二、实验原理与方法:1、时域采样定理的要点:1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(ˆΩj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。

公式为:)](ˆ[)(ˆt x FT j X a a=Ω )(1∑∞-∞=Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。

利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。

理想采样信号)(ˆt xa 和模拟信号)(t x a 之间的关系为 ∑∞-∞=-=n a a nT t t x t x)()()(ˆδ 对上式进行傅立叶变换,得到:dt e nT t t x j X t j n a a Ω-∞∞-∞-∞=⎰∑-=Ω])()([)(ˆδdt e nT t t x t j n a Ω-∞-∞=∞∞-∑⎰-)()( δ=在上式的积分号内只有当nT t =时,才有非零值,因此∑∞-∞=Ω-=Ωn nT j aae nT xj X )()(ˆ上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到:∑∞-∞=-=Ωn nj aen x j X ω)()(ˆ上式的右边就是序列的傅立叶变换)(ωj e X ,即T j a e X j X Ω==Ωωω)()(ˆ 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用T Ω代替即可。

2、频域采样定理的要点:a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到2()() , 0,1,2,,1j N k NX k X e k N ωπω===-L则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为:()IDFT[()][()]()N N N N i x n X k x n iN R n ∞=-∞==+∑b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。

关于频域采样定理的理论证明和验证

关于频域采样定理的理论证明和验证

关于频域采样定理的理论证明和验证作者:陈艾伦来源:《中国新通信》2012年第14期1引言采样的理论基础是采样定理。

它在连续时间信号与离散时间信号之间架起了一座桥梁,为连续时间信号与离散时间信号的相互转换提供了依据。

而采样定理又分为时域采样定理和频域采样定理。

时域采样定理大家都比较熟悉,笔者发现频域采样定理对于初学者较为陌生,因此在这里着重证明和验证频域采样定理。

2频域采样定理的理论证明我们以冲激取样为例,设有一个信号f(t)为有限时间信号(简称时限信号),我们假设它在时间区间(-tm,tm)以外为零。

f(t)的频谱函数为F(jw),且为连续谱。

我们对连续谱F(jw)进行间隔为ws的冲激采样,抽样函数的数学形式为:啄ws(w)=∑∞n=-∞δ(w-nws)取样后信号fs(t)的频谱函数为:Fs(jw)= F(jw)∑∞n=-∞δ(w-nws)=∑∞n=-∞F(jnws)δ(w-nws)有限时间信号f(t)的频谱函数在被间隔为ws的冲激序列采样之后,则被采样之后的频谱函数Fs(jw)所对应的时域信号fs(t)以Ts为周期而重复。

所以为了从fs(t)中无失真地恢复f(t),我们在时域上选择一个理想的低通滤波器与fs(t)相乘,得到其在区间(-Ts/2,Ts/2)的一个周期。

在这里我们设理想低通滤波器的频率响应的幅度为ws,截止时间为tm(tm≤Ts/2),即3频域采样定理最后我们可以得到著名的频域采样定理:一个在时间区间(-tm,tm)以外为零的有限时间信号f(t)的频谱函数F(jw),可唯一地由其在均匀频率间隔fs(fsF(jw)=∑∞n=-∞F(jnπ/tm)·Sa(w·tm-nπ)其中tm=1/(2fs)。

4频域采样定理的matlab验证对频谱函数X(ej棕)=FT[x(n)]在区间[0,2仔]上等间隔32点采样,得到X32(k)。

再对X32(k)进行32点IFFT。

分别画出X(ej棕)、X32(k)的幅度谱,并绘图显示x(n)、X32(n)的波形。

信号处理中的采样

信号处理中的采样

采样,其他名称:取样,指把时间域或空间域的连续量转化成离散量的过程。

1采样简介解释1所谓采样(sampling)就是采集模拟信号的样本。

采样是将时间上、幅值上都连续的模拟信号,在采样脉冲的作用,转换成时间上离散(时间上有固定间隔)、但幅值上仍连续的离散模拟信号。

所以采样又称为波形的离散化过程。

解释2把模拟音频转成数字音频的过程,就称作采样,所用到的主要设备便是模拟/数字转换器(Analog to Digital Converter,即ADC,与之对应的是数/模转换器,即DAC)。

采样的过程实际上是将通常的模拟音频信号的电信号转换成二进制码0和1,这些0和1便构成了数字音频文件。

采样的频率越大则音质越有保证。

由于采样频率一定要高于录制的最高频率的两倍才不会产生失真,而人类的听力范围是20Hz~20KHz,所以采样频率至少得是20k×2=40KHz,才能保证不产生低频失真,这也是CD音质采用44.1KHz(稍高于40kHz是为了留有余地)的原因。

通过周期性地以某一规定间隔截取音频信号,从而将模拟音频信号变换为数字信号的过程。

每次采样时均指定一个表示在采样瞬间的音频信号的幅度的数字。

2采样频率每秒钟的采样样本数叫做采样频率。

采样频率越高,数字化后声波就越接近于原来的波形,即声音的保真度越高,但量化后声音信息量的存储量也越大。

采样频率与声音频率之间的关系:根据采样定理,只有当采样频率高于声音信号最高频率的两倍时,才能把离散模拟信号表示的声音信号唯一地还原成原来的声音。

目前在多媒体系统中捕获声音的标准采样频率定为44.1kHz、22.05kHz和11.025kHz三种。

而人耳所能接收声音频率范围大约为20Hz--20KHz,但在不同的实际应用中,音频的频率范围是不同的。

例如根据CCITT公布的声音编码标准,把声音根据使用范围分为以下三级:·电话语音级:300Hz-3.4kHz·调幅广播级:50Hz-7kHz·高保真立体声级:20Hz-20kHz因而采样频率11.025kHz、22.05kHz、44.1kHz正好与电话语音、调幅广播和高保真立体声(CD音质)三级使用相对应。

频域取样定理

频域取样定理

2
t
时域抽样
时分复用
屏域抽样
频分复用


s
1
T s (t )
s

t
T s
f t
s
t t
m
m
T T 2T
s s
s
t t T
m m
s
2T s
t
即当频域取样的周期 s ,T s 2 t m时在时域中信号 f s t不重叠。 Ts 可用矩形脉冲低选通信号,恢复原信号,如图。 2 s 频域采样定理:时域信号必须为有限时间信号;频域抽样周期 Ts , 只有当 T s 2t m时,才 可恢复原信号。
s
n
n 取样信号: F j n F jn n
s s n
F( j )

对应时域:
1 1

s
1
s
Hale Waihona Puke sn s
s
2
如果信号ft为有限时间信号时限信号其时间区间它的频谱函数f连续函数频谱在频域中对等间隔取样
频域取样定理
原理:时域与频域为对称的,可推出频域取样定理。 如果信号f(t)为有限时间信号(时限信号),其时间区间 (t m , t m),它的频谱函数F( j)为 连续函数频谱,在频域中对F( j ) 等间隔取样。间隔为 s ,取样脉冲为:
s
s


1
s n


1
s n
F j
s
s
2
s
s

f s t [ F s j ] [F j ] [ s ]

频域采样定理

频域采样定理

频域采样定理
频域采样定理是数字信号处理的基本定理之一。

对于有限时宽序列x(n)的周期连续频谱X(e'`})进行均匀取样,当一个周期内的取样点数N大于或至少等于x(n)的有限时宽时,则有可能从频谱样点X(k)中无失真地恢复原来的周期连续频谱。

频域取样定理之所以重要,在于它揭示了连续周期频谱与离散周期频谱之间的内在联系。

如果已知一个信号的频谱,只要符合频域取样定理,对它进行频率取样,则有可能利用数字的方法求得相应的信号,从而为数字信号处理技术开拓了新的途径。

采样定理详解:3个主要条件只需满足其中任意2个

采样定理详解:3个主要条件只需满足其中任意2个

采样定理详解:3个主要条件只需满⾜其中任意2个采样定理采样定理解决的问题是确定合理的采样间隔△t以及合理的采样长度T,保障采样所得的数字信号能真实地代表原来的连续信号x(t)。

衡量采样速度⾼低的指标称为采样频率fs。

⼀般来说,采样频率fs越⾼,采样点越密,所获得的数字信号越逼近原信号。

为了兼顾计算机存储量和计算⼯作量,⼀般保证信号不丢失或歪曲原信号信息就可以满⾜实际需要了。

这个基本要求就是所谓的采样定理,是由Shannon提出的,也称为Shannon采样定理。

Shannon采样定理规定了带限信号不丢失信息的最低采样频率为式中fm为原信号中最⾼频率成分的频率。

采集的数据量⼤⼩N为因此,当采样长度⼀定时,采样频率越⾼,采集的数据量就越⼤。

使⽤采样频率时有两个问题需要注意。

正确估计原信号中最⾼频率成分的频率,对于采⽤电涡流传感器测振的系统来说,⼀般确定为最⾼分析频率为12.5X,采样模式为同步整周期采集,若选择频谱分辨率为400线,需采集1024点数据,若每周期采集32点,采样长度为32周期。

同样的数据量可以通过改变每周期采样点数提⾼基频分辨率,这对于识别次同步振动信号是必要的,但降低了最⾼分析频率,如何确定视具体情况⽽定。

采样定理解析采样定理实际上涉及了3个主要条件,当确定其中2个条件后,第3个条件⾃动形成。

这3个条件是进⾏正确数据采集的基础,必须理解深刻。

条件1:采样频率控制最⾼分析频率采样频率(采样速率)越⾼,获得的信号频率响应越⾼,换⾔之,当需要⾼频信号时,就需要提⾼采样频率,采样频率应符合采样定理基本要求。

这个条件看起来似乎很简单,但对于⼀个未知信号,其中所含最⾼频率信号的频率究竟有多⾼,实际上我们是⽆法知道的。

解决这个问题需要2个步骤,⼀是指定最⾼测量频率,⼆是采⽤低通滤波器把⾼于设定最⾼测量频率的成分全部去掉(这个低通滤波器就是抗混滤波器)。

现实的抗混滤波器与理论上的滤波器存在差异,因此信号中仍会存在⼀定混叠成分,⼀般在计算频谱后将⾼频成分去掉,⼀般频谱线数取时域数据点的1/2.56,或取频域幅值数据点的1/1.28,即128线频谱取100线,256线频谱取200线,512线频谱取400线等等。

实验4时域采样理论与频域采样定理验证

实验4时域采样理论与频域采样定理验证

六、程序清单和信号波形1、时域采样理论的验证程序清单:% 时域采样理论验证程序Tp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;f=n*Fs/M;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xn=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xn,M);%M点FFT[xnt)]subplot(3,1,1);plot(f,abs(Xk));xlabel('f/Hz');ylabel('|x1(jf)|');title('x1(n)的幅度特性');%=============================================================== =====%Fs=300HzTp=64/1000; %观察时间Tp=64微秒%产生M长采样序列x(n)% Fs=1000;T=1/Fs;Fs=300;T=1/Fs;M=Tp*Fs;n=0:M-1;f=n*Fs/M;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xn=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xn,M);%M点FFT[xnt)]subplot(3,1,2);plot(f,abs(Xk));xlabel('f/Hz');ylabel('|x2(jf)|');title('x2(n)的幅度特性');%=============================================================== =====%Fs=200HzTp=64/1000; %观察时间Tp=64微秒 %产生M 长采样序列x(n) % Fs=1000;T=1/Fs; Fs=200;T=1/Fs; M=Tp*Fs;n=0:M-1; f=n*Fs/M;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5; xn=A*exp(-alph*n*T).*sin(omega*n*T); Xk=T*fft(xn,M);%M 点FFT[xnt)] subplot(3,1,3); plot(f,abs(Xk)); xlabel('f/Hz'); ylabel('|x3(jf)|');title('x3(n)的幅度特性'); 信号波形:100200300400500600700800900100000.51f/Hz|x 1(j f )|x1(n)的幅度特性5010015020025030000.51f/Hz|x 2(j f )|x2(n)的幅度特性02040608010012014016018000.51f/Hz|x 3(j f )|x3(n)的幅度特性2、频域采样理论的验证 程序清单:M=27;N=32;n=0:M;%产生M 长三角波序列x(n)xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32) ;%32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:1023;wk=2*k/1024; %subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域采样');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20]) k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20]) 信号波形:01020301020(b) 三角波序列x(n)nx (n )0.51100200(a)FT[x(n)]ω/π|X (e j ω)|24680100200(c) 16点频域采样k|X 16(k)|10203001020(d) 16点IDFT[X 16(k)]nx 16(n)51015100200(e) 32点频域采样k|X 32(k )|01020301020(f) 32点IDFT[X 32(k)]nx 32(n )思考题简答先对原序列x(n)以N 为周期进行周期延拓后取主值区序列,()[()]()N N i x n x n iN R n ∞=-∞=+∑再计算N 点DFT 则得到N 点频域采样:2()DFT[()] =(), 0,1,2,,1j N N N k NX k x n X e k N ωπω===-七、实验总结1由图可见,采样序列的频谱的确是以采样频率为周期对模拟信号频谱的周期延拓。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频域采样定理
(2)频域采样理论的验证。

给定信号如下:
⎪⎩
⎪⎨⎧≤≤-≤≤+=其它02614271301)(n n n n n x
编写程序分别对频谱函数()FT[()]j X e x n ω=在区间]2,0[π上等间隔采样32
和16点,得到)()(1632k X k X 和:
32232()() , 0,1,2,31j k X k X e k ωπω===
16216()() , 0,1,2,15
j k X k X e k ωπω=== 再分别对)()(1632k X k X 和进行32点和16点IFFT ,得到)()(1632n x n x 和:
323232()I F F T [()] , 0,1,2,,31
x n X k n == 161616()I F F T
[()] , 0,1,2,,15x n X k n == 分别画出()j X e ω、)()(1632k X k X 和的幅度谱,并绘图显示x (n)、)()(1632n x n x 和的波形,
进行对比和分析,验证总结频域采样理论。

提示:频域采样用以下方法容易变程序实现。

① 直接调用MATLAB 函数fft 计算3232()FFT[()]X k x n =就得到()j X e ω
在]2,0[π的32点频率域采样
② 抽取32()X k 的偶数点即可得到()j X e ω在]2,0[π的16点频率域采样16()X k ,即1632()(2) , 0,1,2,,15X k X k k == 。


3 当然也可以按照频域采样理论,先将信号x (n)以16为周期进行周期延拓,取其主值区(16点),再对其进行16点DFT(FFT),得到的就是()j X e ω
在]2,0[π的16点频率域采样16()X k 。

2 频域采样理论的验证程序清单
%频域采样理论验证程序exp2b.m
M=27;N=32;n=0:M;
%产生M 长三角波序列x(n)
xa=0:floor(M/2); xb= ceil(M/2)-1:-1:0; xn=[xa,xb];
Xk=fft(xn,1024); %1024点FFT[x(n)], 用于近似序列x(n)的FT X32k=fft(xn,32) ;%32点FFT[x(n)]
x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)
X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)
x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)
subplot(3,2,2);stem(n,xn,'.');box on
title('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20]) k=0:1023;wk=2*k/1024;
subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');
xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])。

相关文档
最新文档