信号与系统3.11抽样定理

合集下载

信号与系统第三章

信号与系统第三章
T1 t0
1
2 t0 T1
2 t0 T1
2
[ T1
t0
f (t) cos n 1tdt
j T1
t0
f (t) sin n 1tdt]
1 t0 T1
T1 t0 f (t)[cos n 1t j sin n 1t]dt
1 t0 T1 f (t)
T1 t0
2e jn 1t dt
2
1 t0
T1
f (t)e
jn 1t dt
1768年生于法国 1807年提出“任何周
期信号都可用正弦函 数级数表示”
拉格朗日,拉普拉斯 反对发表
1822年首次发表在 “热的分析理论”
一书中
一、频域分析
从本章开始由时域转入变换域分析,首先讨 论傅里叶变换。傅里叶变换是在傅里叶级数正交 函数展开的基础上发展而产生的,这方面的问题 也称为傅里叶分析(频域分析)。将信号进行正 交分解,即分解为三角函数或复指数函数的组合。
t0 T1 t0
f (t)e jn1tdt
n 0,1, 2,3 。
Fn
1 t0
T1
f (t)e
jn 1t dt
T1 t0
n 0, 1, 2, 3 。
为了积分方便,通常取积分区间为:0
~
T1或
T1 2
~
T1 2
推导完毕
f (t)
n
Fne jn 1t F0
Fne jn 1t
n1
1
Fne jn 1t
n
(形式一) f (t) a0 an cos(n1t) bn sin(n1t) n1
傅氏级数展开实质就是确定展开式中各分量系数
确定系数:
f (t) a0 an cos(n1t) bn sin(n1t) n1

信号抽样与抽样定理

信号抽样与抽样定理

(1)信号在时域周期化,周期为 T ,则频谱离散化,
抽样间隔为 ω0=2π/T。 (2)信号在时域抽样,抽样间隔为 TS ,则频谱周期化,
重复周期为 ωS=2π/TS 。
四、频域抽样与频域抽样定理
矩形单脉冲信号的频谱 F ( ) E Sa 0
2
m0 Sa 2 m

( ns m0 )
四、频域抽样与频域抽样定理
f 0 t
E
F0 ( )
E

2

0
a
E
2
t
2

0
2
f1 t
b


F1
E 0
T 0
2
T
c
E
2
t
2

0
2
d


f s t
E 0 Ts
T
Fs
二、时域抽样定理
时域抽样定理:一个频谱受限的信号 f (t) ,如果频谱只占据 , m m
的范围,则信号 f (t)可以用等间隔的抽样值
样间隔 Ts 不大于 2f
1
m
f (nTs ) 唯一地表示,只要抽
,其中 f m为信号的最高频率,
或者说,抽样频率 f s 满足条件
通常把满足抽样定理要求的最低抽样频率 f s 2 f m 称为奈奎斯特频率, 1 1 把最大允许的抽样间隔 Ts 称为奈奎斯特间隔 。 fs 2 fm
如何从抽样信号中恢复原连续信号,以及在什么条件下才可以无失
真地由抽样信号恢复原连续信号。著名的抽样定理对此作了明确而精 辟的回答。
抽样定理在通信系统、信息传输理论、数字信号处理等方面占有十 分重要的地位,该定理在连续时间信号与系统和离散时间信号与系统、 数字信号与系统之间架起了一座桥梁。该定理从理论上回答了为什么 可以用数字信号处理手段解决连续时间信号与系统问题。

信号与系统 抽样定理实验

信号与系统 抽样定理实验

信号与系统实验报告实验六抽样定理实验六抽样定理一、实验内容:(60分)1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。

2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m=1Hz。

(1)分别显示原连续信号波形和F s=f m、F s=2f m、F s=3f m 三种情况下抽样信号的波形;程序如下:dt=0.1;f0=0.2;T0=1/f0;fm=5*f0;Tm=1/fm;t=-10:dt:10;f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]);title('Ô­Á¬ÐøÐźźͳéÑùÐźÅ');for i=1:3;fs=i*fm;Ts=1/fs;n=-10:Ts:10;f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]); end运行结果如下:(2)求解原连续信号和抽样信号的幅度谱;程序: dt=0.1;fm=1;t=-8:dt:8;N=length(t);f=sinc(t);wm=2*pi*fm;k=0:N-1;w1=k*wm/N;F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2* pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]);for i=1:3;if i<=2 c=0;else c=1;endfs=(i+c)*fm;Ts=1/fs;n=-6:Ts:6;N=length(n);f=sinc(n);wm=2*pi*fs;k=0:N-1;w=k*wm/N;F=f*exp(-1i*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),0.5*min(abs(F)),1.1*max(abs(F) )]);end波形如下:(3)用时域卷积的方法(内插公式)重建信号。

信号与系统-取样定理..

信号与系统-取样定理..

2018/10/8
信号信息与处理 取样定理
22
连续时间信号的离散时间处理
设计一个连续时间带限微分器的离散时间实现
d t h t 微分器单位冲激响应: dt j , c 微分器频率响应: H c j 0 , c
c
Hd e

关键问题


一种解决思路


利用零阶保持电路替代冲激串,即在t=nT取 样后,该幅度一直保持到t=(n+1)T 必须解决零阶取样保持电路的恢复问题
信号信息与处理 取样定理 10
2018/10/8
零阶保持取样

傅立叶变换过程分析
x t
x t
零阶 保持
x0 t
x0 t
x t
若x(t)是一个带限信号,满足| ω |>ωM时, X(jω)=0.则当ωs>2ωM,其中ωs=2π/T,则 x(t)可以唯一的用样本x(nT)所确定,n取遍 所有的整数。 2ωM称为奈奎斯特频率 构造方法: 产生一个周期脉冲串,冲激串幅度 为取样样本值;将冲激串序列通过一个 幅度为T,截止频率大于ωM,小于2ωM 低通滤波器,该滤波器输出就是x(t)
c
p t
xp t p t x t
xd [n]
0 T 2T
xp t p t x t
xd [n]
0 T 2T
2018/10/8
信号信息与处理 取样定理
18
连续时间信号的离散化处理频谱变换
1
X c j

xp t
n
x nT t nT
n c

jn

信号与系统第3章傅里叶变换

信号与系统第3章傅里叶变换

*本章要点
1.利用傅立叶级数的定义式分析周期信号的离散谱。 2.利用傅立叶积分分析非周期信号的连续谱。 3.理解信号的时域与频域间的关系。 4.用傅立叶变换的性质进行正逆变换。 5.掌握抽样信号频谱的计算及抽样定理
将信号表示为不同频率正弦分量的线性组合意义
1.从信号分析的角度 将信号表示为不同频率正弦分量的线性组合,为不同信号之 间进行比较提供了途径。
发展历史
•1822年,法国数学家傅里叶(J.Fourier,1768-1830)在研究热传导 理论时发表了“热的分析理论”,提出并证明了将周期函数展 开为正弦级数的原理,奠定了傅里叶级数的理论基础。 •泊松(Poisson)、高斯(Guass)等人把这一成果应用到电学中去, 得到广泛应用。 •19世纪末,人们制造出用于工程实际的电容器。 •进入20世纪以后,谐振电路、滤波器、正弦振荡器等一系列具 体问题的解决为正弦函数与傅里叶分析的进一步应用开辟了广 阔的前景。 •在通信与控制系统的理论研究和工程实际应用中,傅里叶变换 法具有很多的优点。 •“FFT”快速傅里叶变换为傅里叶分析法赋予了新的生命力。
一.三角函数形式的傅里叶级数
1.正交三角函数集
三角函数系1, cos x,sin x, cos 2x,sin 2x,..., cos nx,sin nx,...
在区间[-π,π]上正交,是指在三角函数系中任何不同的两个函 数的乘积在区间的积分等于零,即
cosnxdx 0(n 1,2,3,...)
傅里叶生平
1768年生于法国 1807年提出“任何周期信号
都可用正弦函数级数表示” 1829年狄里赫利第一个给出
收敛条件 拉格朗日反对发表 1822年首次发表“热的分析
理论”中

信号抽样定理实验报告

信号抽样定理实验报告

一、实验目的1. 理解并验证信号抽样定理的基本原理。

2. 学习信号抽样过程中频谱的变换规律。

3. 掌握信号从抽样信号中恢复的基本方法。

4. 通过实验加深对信号处理理论的理解。

二、实验原理信号抽样定理,也称为奈奎斯特定理,指出如果一个带限信号的最高频率分量小于抽样频率的一半,那么通过适当的方法可以将这个信号从其抽样信号中完全恢复出来。

具体来说,如果一个连续信号 \( x(t) \) 的最高频率分量为 \( f_{max} \),那么为了不失真地恢复原信号,抽样频率 \( f_s \) 必须满足 \( f_s > 2f_{max} \)。

三、实验设备与软件1. 实验设备:信号发生器、示波器、信号源、滤波器等。

2. 实验软件:MATLAB或其他信号处理软件。

四、实验步骤1. 信号生成:使用信号发生器生成一个连续的带限信号,例如正弦波、方波等,并记录其频率和幅度。

2. 信号抽样:使用信号源对生成的带限信号进行抽样,设定抽样频率 \( f_s \),并记录抽样后的信号。

3. 频谱分析:对原始信号和抽样信号分别进行傅里叶变换,分析其频谱,观察抽样频率对信号频谱的影响。

4. 信号恢复:使用滤波器对抽样信号进行低通滤波,去除高频分量,然后对滤波后的信号进行逆傅里叶变换,观察恢复后的信号与原始信号的一致性。

5. 改变抽样频率:重复步骤2-4,分别使用不同的抽样频率进行实验,比较不同抽样频率对信号恢复效果的影响。

五、实验结果与分析1. 频谱分析:通过实验发现,当抽样频率 \( f_s \) 小于 \( 2f_{max} \) 时,抽样信号的频谱会发生混叠,无法恢复出原始信号。

当 \( f_s \) 大于\( 2f_{max} \) 时,抽样信号的频谱不会发生混叠,可以恢复出原始信号。

2. 信号恢复:通过低通滤波器对抽样信号进行滤波,可以有效地去除高频分量,从而恢复出原始信号。

滤波器的截止频率应设置在 \( f_{max} \) 以下。

信号与系统抽样与抽样定理

信号与系统抽样与抽样定理
第五章 系统的频域分析及其应用
连续时间系统的频率响应
连续信号通过系统响应的频域分析
无失真系统与理想低通
抽样与抽样定理
调制与解调
连续时间信号的时域抽样
信号抽样的理论分析 时域抽样定理
抽样定理的工程应用
信号重建
实际应用举例
1、信号抽样的理论分析
f (t)
fs (t)
T (t)
冲激串 ->序列
f [k ]
2p F T t T
n
w nw
s

f s (t ) f (t ) T (t )
1 2p F FS jw [ F jw 2p T
n
w nw ]
s

1 Fs ( jw ) F [ j(w nws )] T n
wm 0 wm
w
ws 1.5wm
Fs ( jw )
1 T
混叠 (aliasing)
F[j(wws)] ...
ws ws wm
F(jw)
0
F[ j(w ws )] ...
ws
wm ws
w
2、时域取样定理
若带限信号f(t)的最高角频率为ωm,则信号f(t) 可以用等间隔的抽样值唯一地表示。而抽样间隔T 需不大于1/2fm,或最低抽样频率fs不小于2fm。
例5-9 已知实信号f(t)的最高频率为fm (Hz), 试计算对各信号f(2t), f(t)f(2t), f(t)f(2t) 抽样不混叠的最小抽样频率。 解: 根据信号时域与频域的对应关系及抽样定理得: 对信号f(2t)抽样时,最小抽样频率为 4fm(Hz); 对f(t)f(2t)抽样时,最小抽样频率为 2fm(Hz); 对f(t)f(2t)抽样时,最小抽样频率为 6fm(Hz)。

信号与系统§3.11 抽样定理

信号与系统§3.11 抽样定理
复f t波形。
当s 2m时,不满足抽样定理,fs t 的频谱出现混叠,
在 时 域 图 形 中 , 因Ts过 大 使 冲 激 响 应Sa函 数 的 各 波 形 在 时
间 轴 上 相 隔 较 远 , 无 论如 何 选 择 c 都 不 可 能 使 迭 加 后 的 波
形恢复f t。
由于要产生接近冲激序列的信号和接近理想低通的 系统都相当困难,因而在数字通信系统中广泛采用零阶 抽样保持来产生和传输信号,在收端利用补偿滤波器恢 复连续时间信号。
§3.11 抽样定理
பைடு நூலகம்
主要内容
抽样定理 由抽样信号恢复原信号
重点 抽样定理 难点 由抽样信号恢复原信号
一.抽样定理
1.对信号抽样 (1)抽样前滤波→有限频带 (2)抽样率足够高 (3)抽样后接理想低通滤波器,滤除高频分量
2.抽样定理
一个频率受限的信号f(t) ,若频谱只占据 m ~ m
的范围,则信号f(t)可用等间隔的抽样值来唯一地表示.其
二.由抽样信号恢复原信号
理想低通滤波器
S 2m 1 F S
TS
H T0s
c c

S
F Fs H f t fs t ht
om
S
S m
H
TS


滤除高频成分,即可恢复原信号 从时域运算时域解释
C o C

F
1


o
m

m
时域运算
以理想抽样为例

时 域 : f s (t) f (t) T (t) f (nTs ) (t nTs )
n
频 域 :Fs
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(其中m=2
fm),或者说,最低抽样频率为2f

m
第3章 傅里叶变换
从上一节可以
看出,假定信号f(t)
的频谱F( )限制在
-m~ m范围内,
若以间隔T(s 或重复
频率s=
2
Ts
)对f(t)
进行抽样,抽样后
信号fs (t)的频谱
Fs ()是F ()以s为
周期重复。
只有满足抽样定理,才不会产生“频谱混叠”的现象。这样,抽样信号 保留了原来连续信号的全部信息,完全可以用fs(t)恢复出f(t)。
由前面的例题已知它是抽样函数(Sa函数)。
第3章 傅里叶变换
h t
c
Sa(c t)
因为 fs t பைடு நூலகம் nTs t nTs n
所以
f t fs tht
n
f
nTs
t
nTs
c
Sa(c t)
= c
n
f
nTs Sa[c t nTs ]
这说明ft 可以展开成正交抽样函数Sa函数的无穷级数,级数的系数等于
2tm
则抽样后的频谱F1()可以唯一地表示原信号。
从物理概念上不难理解,因为在频域中对F 进行抽样, 等效于f t 在时域中重复。只要抽样间隔不大于 1 ,则在时
2tm 域中波形不会产生混叠,用矩形脉冲作选通信号就可以无失真 地恢复出原信号f(t)。
(Nyquist)频率”,把最大允许的抽样间隔
Ts=
m
=1 2fm
称为“奈奎斯特间隔”。
(二第3)章由傅抽里叶样变换信号恢复原连续信号
从前图可以看出,在满足抽样定理的条件下,
为了从频谱Fs ()在无失真地选出F(),可以用如 下的矩形函数H()与Fs ()相乘,即
F()=Fs ()H()
其中
抽样值fnTs 。也可以说若在抽样信号fs t 的每个抽样值上画一个峰值为f nTs 的Sa波形,则合成的波形就是ft 。
(三第)3章频傅域里叶抽变样换定理
频域抽样定理的内容是:
若信号f(t)是时间受限信号,它集中在-t

m
t
的时间范围内,
m
若在频域中以不大于 1 的频率间隔对f(t)的频谱F()进行抽样,
第3章 傅里叶变换
3.11 抽样定理
如何从抽样信号中恢复原连续信号? 在什么条件下才可以无失真地完成这 种恢复作用?
第3章 傅里叶变换
(一) 时域抽样定理
一个频谱受限的信号f(t),如果频谱只占据
-m~ m的范围,则信号f(t)可以用等间隔的
抽样值唯一的表示。而抽样间隔必须不大于 1 2fm
H()=Ts
0
<m >m
该方法就是将抽样信号fs 施加于
“理想低通滤波器”。此滤波器的传递函
数为H(),这样,在滤波器的输出端可
以得到频谱为F 的连续信号f t 。
第3章 傅里叶变换
从时域看如何从抽样信号恢复原信号呢?
因为滤波器的输出频谱为:
F()=Fs ()H()
由时域卷积定理知:
f t fs (t) h(t) 其中,h t 为H 的傅里叶逆变换(原函数)。
第3章 傅里叶变换
物理概念上解释:
由于一个频带受限的信号波形决不可能在很短的
时间内产生独立的、实质的变化,它的最高变换速度
受最高频率分量m的限制。
因此为了保留这一频率的分量的全部信息,一个
周期的间隔内至少抽样两次,即必须满足s 2m或
fs
2f

m
通常把最低允许的抽样率fs=2fm称为“奈奎斯特
相关文档
最新文档