2018年高三最新 高考数学第一轮总复习试卷(一) 精品
2018年高考文科数学全国卷1(含详细答案)

数学试题 第1页(共22页)数学试题 第2页(共22页)绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( )A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( ) A .0 B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率( ) A .13B .12CD5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.B .12πC.D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +8.已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A.B.C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B.C.D.11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( )A .15BCD .1-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试题 第3页(共22页)数学试题 第4页(共22页)12.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________. 16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。
2018年高三最新 高考数学第一轮总复习试卷(十六) 精品

高考数学第一轮总复习试卷(十六)导数与微分第I 卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.某汽车的路程函数是)s /m 10g (gt 21t 2s 223=-=,则当t=2s 时,汽车的加速度是( )A .2s /m 14B .2s /m 4C .2s /m 10D .2s /m 4- 2.抛物线2x y =在点P (-1,1)处的切线的倾斜角( ) A .arctan2 B .arctan(-2) C .21arctanD .π-arctan2 3.与直线y=4x-1平行的曲线2x x y 3-+=的切线方程是( ) A .4x-y=0 B .4x-y-4=0C .2x-y-2=0D .4x-y=0或4x-y-4=04.已知2)t 2x()x (f +=,则f ′(x)为( ) A .)t 2x (2+ B .)12x)(t 2x (2++C .t 2x +D .)t 2x(41+5.已知y=f(x)=ln|x|,则正确的命题是( )A .x>0时,x 1)x ('f =;x<0时,x 1)x ('f -= B .x>0时,x1)x ('f =;x<0时,f ′(x)无意义C .x ≠0时,都有x1)x ('f =D . 由于x=0时无意义,则y=ln|x|不能求导6.下列各组曲线中,在交点处切线互相垂直的一组曲线是( )A .y=lnx 与2x y 2= B .y=sinx 与y=cosxC .1y x 22=-与xy=4D .x311y x y 3-==与7.函数|2x 3x |y 2+-=,下列结论中正确的是( ) A .y 有极小值41,但无极大值 B .y 有极小值0,但无极大值C .y 有极小值0,极大值41 D .y 有极大值41,但无极小值 8.函数3x x 2y +-=的单调递减区间是( )A .)36(--∞, B .⎪⎪⎭⎫ ⎝⎛∞+,36 C .⎪⎪⎭⎫ ⎝⎛∞+⎪⎪⎭⎫ ⎝⎛-∞-,,3636 D .⎪⎪⎭⎫ ⎝⎛-36 36, 9.“若函数f(x)可导,则f(x)有驻点”是“f(x)有极大值的”( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件10.若函数y ′=f(x)在区间(a ,b )有且只有一个驻点0x ,则)x (f 0( ) A .一定不是函数的最大值 B .一定不是函数的最小值 C .一定是函数的最小值D .若是函数的极大值,则一定是函数的最大值11.下列各说法:①若A x x )x (f )x (f lim00x x 0=--→,则A 是物体在x 到0x 内的平均速度。
2018年高考全国卷1理科数学(含答案)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=()A.0 B.C.1 D.2.(5分)(2018•新课标Ⅰ)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2} B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2} D.{x|x≤﹣1}∪{x|x≥2}3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)(2018•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12 B.﹣10 C.10 D.125.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2 C.3 D.28.(5分)(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.89.(5分)(2018•新课标Ⅰ)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)(2018•新课标Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.(5分)(2018•新课标Ⅰ)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.412.(5分)(2018•新课标Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为() A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年高考数学一轮复习(讲+练+测): 专题2.2 函数定义域、值域(讲)

专题2.2 函数定义域、值域【考纲解读】【直击考点】题组一 常识题1.下列函数中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的是________.A .y =xB .y =lg xC .y =2xD .y =1x【答案】D 【解析】y =10lg x=x ,定义域与值域均为(0,+∞),只有选项D 满足题意.2.已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域为________.【答案】 ⎣⎢⎡⎦⎥⎤0,52 【解析】 由x ∈[-2,3],得x +1∈[-1,4],由2x -1∈[-1,4],得x ∈⎣⎢⎡⎦⎥⎤0,52 3.[教材改编] 函数f (x )=8-xx +3的定义域是________. 【答案】(-∞,-3)∪(-3,8]【解析】要使函数有意义,则需8-x ≥0且x +3≠0,即x ≤8且x ≠-3,所以其定义域是(-∞,-3)∪(-3,8]. 题组二 常错题4.函数y =f (cos x )的定义域为⎣⎢⎡⎦⎥⎤2k π-π6,2k π+2π3(k ∈Z ),则函数y =f (x )的定义域为________.【答案】 ⎣⎢⎡⎦⎥⎤-12,1【解析】 由于函数y =f (cos x )的定义域是⎣⎢⎡⎦⎥⎤2k π-π6,2k π+2π3(k ∈Z ),所以u =cos x 的值域是⎣⎢⎡⎦⎥⎤-12,1,所以函数y =f (x )的定义域是⎣⎢⎡⎦⎥⎤-12,1.5.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ∈[0,1],92-32x ,x ∈(1,3],当t ∈[0,1]时,f [f (t )]∈[0,1],则实数t 的取值范围是______________. 【答案】⎣⎢⎡⎦⎥⎤log 373,1【解析】 因为t ∈[0,1],所以f (t )=3t ∈[1,3],所以f [f (t )]=f (3t)=92-32·3t ∈[0,1],即73≤3t≤3,所以log 373≤t ≤1.6.若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________.【答案】⎣⎢⎡⎭⎪⎫0,34. 【解析】函数的定义域为R ,即mx 2+4mx +3≠0恒成立.①当m =0时,符合题意;②当m ≠0时,Δ=(4m )2-4×m ×3<0,即m (4m -3)<0,解得0<m <34.综上所述,实数m 的取值范围是⎣⎢⎡⎭⎪⎫0,34.题组三 常考题7.若一系列函数的解析式相同、值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为y =x 2,值域为{1,4}的“同族函数”共有________个. 【答案】98. 函数f (x )=lg(x 2+x -6)的定义域是________. 【答案】{x |x <-3或x >2}【解析】 要使函数有意义,则需x 2+x -6>0,解得x <-3或x >2.9.设函数f (x )在区间[0,1]上有意义,若存在x ∈R 使函数f (x -a )+f (x +a )有意义,则a 的取值范围为________. 【答案】 [-2,-1].【知识清单】1 函数的定义域1.已知函数解析式,求定义域,其主要依据是使函数的解析式有意义,主要形式有:(1)分式函数,分母不为0;(2)偶次根式函数,被开方数非负数; (3)一次函数、二次函数的这定义域为R ; (4)0x 中的底数不等于0; (5)指数函数x y a =的定义域为R ;(6)对数函数log a y x =的定义域为{}|0x x >; (7)sin ,cos y x y x ==的定义域均为R ;(8)tan y x =的定义域均为|,2x x k k z ππ⎧⎫≠+∈⎨⎬⎩⎭; 2.求抽象函数的定义域:(1)由()y f x =的定义域为D ,求[()]y f g x =的定义域,须解()f x D ∈; (2)由[()]y f g x =的定义域D ,求()y f x =的定义域,只须解()g x 在D 上的值域就是函数()y f x = 的定义域;(3)由[()]y f g x =的定义域D ,求[()]y f h x =的定义域.3.实际问题中的函数的定义域,除了使解析式本身有意义,还要使实际问题有意义. 2 函数的值域 函数值域的求法:(1)利用函数的单调性:若y=f(x)是 [a,b]上的单调增(减)函数,则f(a),f(b)分别是f(x)在区间[a,b]上取得最小(大)值,最大(小)值.(2)利用配方法:形如2(0)y ax bx c a =++≠型,用此种方法,注意自变量x 的范围. (3)利用三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-.(4)利用“分离常数”法:形如y=ax b cx d ++ 或2ax bx ey cx d++=+ (a,c 至少有一个不为零)的函数,求其值域可用此法.(5)利用换元法:形如y ax b =+,可用此法求其值域. (6)利用基本不等式:(7)导数法:利用导数与函数的连续性求图复杂函数的极值和最值,然后求出值域【考点深度剖析】定义域是函数的灵魂,高考中考查的定义域多以填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,难度中等.【重点难点突破】考点1 函数的定义域 【1-1】函数y(+)的定义域为_________.【答案】(-∞,-1)∪(-1,0).【1-2】函数22-25+1+)cos (=x x log y 的定义域为_________.【答案】33x x ππ⎧⎫-≤≤⎨⎬⎩⎭【解析】由已知条件,自变量x 需满足22log cos 10250x x +≥⎧⎨-≥⎩得1cos 22,23355x k x k k Z x ππππ⎧≥⇒-+≤≤+∈⎪⎨⎪-≤≤⎩ 所以33x ππ-≤≤故而所求函数定义域为33x x ππ⎧⎫-≤≤⎨⎬⎩⎭.【1-3】设()x x x f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为________.【答案】()()2,11,2 --【解析】由202x x +>-得,()f x 的定义域为{}|22x x -<<.故22,222 2.xx⎧-<<⎪⎪⎨⎪-<<⎪⎩,解得()()4,11,4x ∈--.故⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为()()2,11,2 -- 【1-4】若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 【答案】[-1,0]【思想方法】(1)已知具体函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)对抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.【温馨提醒】对于含有字母参数的函数定义域,应注意对参数取值的讨论;对于实际问题的定义域一定要使实际问题有意义;而分段函数的定义域是各段区间的并集、各个段上的定义域交集为空集,即各个段的端点处不能重复. 考点2 函数的值域【2-1】求函数y =x +4x(x <0)的值域.【答案】(-∞,-4].【解析】∵x <0,∴x +4x=-⎝ ⎛⎭⎪⎫-x -4x ≤-4,当且仅当x =-2时等号成立. ∴y ∈(-∞,-4]. ∴函数的值域为(-∞,-4].【2-2】 求函数y =x 2+2x (x ∈[0,3])的值域. 【答案】[0,15].【解析】(配方法)y =x 2+2x =(x +1)2-1,∵y =(x +1)2-1在[0,3]上为增函数, ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15]. 【2-3】 求函数y =1-x21+x 2的值域.【答案】(-1,1].【2-4】 求函数f (x )=x -1-2x .的值域.【答案】1(,]2-∞.【解析】法一:(换元法)令1-2x =t ,则t ≥0且x =1-t22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是1(,]2-∞.法二:(单调性法)容易判断f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12,所以11()22y f ≤=即函数的值域是1(,]2-∞.【2-5】 求函数y =x 2-xx 2-x +1的值域.【答案】1[,1)3-【思想方法】求函数值域常用的方法(1)配方法,多适用于二次型或可转化为二次型的函数. (2)换元法. (3)基本不等式法. (4)单调性法. (5)分离常数法.【温馨提醒】求函数值域的方法多样化,需结合函数解析式的特点选用恰当的方法【易错试题常警惕】分段函数的参数求值问题,一定要注意自变量的限制条件. 如:已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨--≥⎩,若()()11f a f a -=+,则a 的值为_______.【分析】当0a >时,11a -<,11a +>,由()()11f a f a -=+得2212a a a a -+=---,解得32a =-,不合题意;当0a <时,11a ->,11a +<,由()()11f a f a -=+得 1222a a a a -+-=++,解得34a =-.所以a 的值为34-.【易错点】没有对a 进行讨论,以为11a -<,11a +>直接代入求解而致误;求解过程中忘记检验所求结果是否符合要求而致误. 【练一练】函数f (x )=⎩⎪⎨⎪⎧log 2 x ,x >0,4x ,x ≤0,则f (f (-1))的值为________.【答案】-2【解析】∵f (-1)=4-1=14,∴f (f (-1))=f ⎝ ⎛⎭⎪⎫14=log 2 14=-2.。
2018高考全国1卷理科数学试卷及复习资料

绝密★启用前2018年普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题,本题共12小题,每小题5份,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设i iiz 211++-=,则=z A.0 B.21C.1D.2 2. 已知集合{}02|2>--=x x x A ,则=A C R A. {}21|<<-x x B.{}21|≤≤-x x C.{}{}2|1|>-<x x x x D.{}{}2|1|≥-≤x x x x3.某地区经过一年的新农村建设,农村的经济收入增加了一杯,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计和该地图新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.记n S 为等差数列{}n a 的前n 项和,若4233S S S +=,21=a ,则=5a A.-12 B.-10 C.10 D.125.设函数()()ax x a x x f +-+=231,若()x f 为奇函数,则曲线()x f y =在点()0,0处的切线方程为A.x y 2-=B.x y -=C.x y 2=D.x y = 6.在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=EBA.AC AB 4143-B.AC AB 4341- C.AC AB 4143+ D.AC AB 4341+7.某圆柱的高为2,地面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A.172B.52C.3D.28.设抛物线x y C 4:2=的焦点为F ,过点()0,2-且斜率为32的直线与C 交于N M ,两点,则=⋅FN FMA.5B.6C.7D.89.已知函数()()()a x x f x g x x x e x f x ++=⎩⎨⎧>≤=,0,ln 0,,若()x g 存在2个零点,则a 的取值范围是A.[)0,1-B.[)+∞,0C.[)+∞-,1D.[)+∞,110.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成。
〖全国卷-2018名师推荐〗高考总复习数学(理)第一次高考模拟试题及答案解析一

2018年高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x||x﹣2|≤2,x∈R},B={x|﹣1≤x≤2},则∁R(A∩B)等于()A.{x|﹣1<x<0} B.{x|2≤x<4} C.{x|x<0或x>2} D.{x|x≤0或x≥2}2.在复平面内,复数z=的共轭复数对应的点所在的象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知x>0,则“a=4“是“x+≥4”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.执行如图所示的程序框图,若输出的n=6,则输入整数p的最小值是.()A.17 B.16 C.18 D.195.在等差数列{a n}中,若a4+a6+a8+a10+a12=120,则2a10﹣a12的值为()A.6 B.12 C.24 D.606.已知O为坐标原点,双曲线﹣=1(a>0,b>0)的右焦点F,以OF为直径作圆交双曲线的渐近线于异于原点O的两点A、B,若(+)•=0,则双曲线的离心率e为()A.2 B.3 C.D.7.在区间[﹣1,1]上随机取一个数k,使直线y=k(x+3)与圆x2+y2=1相交的概率为()A.B.C.D.8.有以下命题:①命题“∃x∈R,x2﹣x﹣2≥0”的否定是:“∀x∈R,x2﹣x﹣2<0”;②已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79)则P(ξ≤﹣2)=0.21;③函数f(x)=﹣()x的零点在区间(,)内;其中正确的命题的个数为()A.3个 B.2个 C.1个 D.0个9.已知函数y=f(x)定义在实数集R上的奇函数,且当x∈(﹣∞,0)时xf′(x)<﹣f(x)成立(其中f′(x)是f(x)的导函数),若a=f(),b=f(1),c=﹣2f(log2),则a,b,c的大小关系是()A.c>a>b B.c>b>a C.a>b>c D.a>c>b10.已知实数x,y满足:,则使等式(t+2)x+(t﹣1)y+2t+4=0成立的t取值范围为()A.[﹣,)B.(﹣∞,﹣]∪(﹣,+∞)C.[﹣,1)D.[﹣,1)11.已知四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,又AB=3,BC=2,BD=4,且∠CBD=60°,则球O的表面积为()A.12πB.16πC.20πD.25π12.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD.若动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,其中,下列判断正确的是()A.满足λ+μ=2的点P必为BC的中点B.满足λ+μ=1的点P有且只有一个C.λ+μ的最大值为3D.λ+μ的最小值不存在二、填空题(本大题共4小题,每小题5分,共20分).13.设a=dx,则二项式(ax2﹣)6展开式中的常数项为.14.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E 五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有种.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,其中A=120°,b=1,且△ABC的面积为,则= .16.对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(﹣1,2),解关于x的不等式ax2﹣bx+c>0”,给出如下一种解法:解:由ax2+bx+c>0的解集为(﹣1,2),得a(﹣x)2+b(﹣x)+c>0的解集为(﹣2,1),即关于x的不等式ax2﹣bx+c>0的解集为(﹣2,1).参考上述解法,若关于x的不等式+<0的解集为(﹣3,﹣1)∪(1,2),则关于x的不等式+<0的解集为.三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.在等比数列{a n}中,a3=,S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)记b n=log2,且{b n}为递增数列,若C n=,求证:C1+C2+C3+…C n<.18.一个盒子装有六张卡片,上面分别写着如下六个函数:,,f3(x)=2,,,f6(x)=xcosx.(Ⅰ)从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.19.已知某几何体直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,(Ⅰ)求证:BN⊥平面C1B1N;(Ⅱ)设θ为直线C1N与平面CNB1所成的角,求sinθ的值;(Ⅲ)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1并求的值.20.定长为3的线段AB两端点A、B分别在x轴,y轴上滑动,M在线段AB上,且.(1)求点M的轨迹C的方程;(2)设过且不垂直于坐标轴的动直线l交轨迹C于A、B两点,问:线段OF上是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明.21.对于函数y=f(x)的定义域为D,如果存在区间[m,n]⊆D,同时满足下列条件:①f(x)在[m,n]上是单调函数;②当f(x)的定义域为[m,n]时,值域也是[m,n],则称区间[m,n]是函数f(x)的“Z区间”.对于函数f(x)=(a>0).(Ⅰ)若a=1,求函数f(x)在(e,1﹣e)处的切线方程;(Ⅱ)若函数f(x)存在“Z区间”,求a的取值范围.选做题:(考生从以下三题中选做一题)选修4-1:几何证明选讲22.如图,AB是⊙O的直径,C、F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB 的延长线于点D.连接CF交AB于点E.(1)求证:DE2=DB•DA;(2)若DB=2,DF=4,试求CE的长.选修4-4:坐标系与参数方程.23.已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.选修4-5:不等式选讲.24.设函数f(x)=|x+1|+|x﹣5|,x∈R.(1)求不等式f(x)≤2x的解集;(2)如果关于x的不等式log a2<f(x)在R上恒成立,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x||x﹣2|≤2,x∈R},B={x|﹣1≤x≤2},则∁R(A∩B)等于()A.{x|﹣1<x<0} B.{x|2≤x<4} C.{x|x<0或x>2} D.{x|x≤0或x≥2}【考点】交、并、补集的混合运算.【专题】集合思想;综合法;集合.【分析】集合A为绝对值不等式的解集,由绝对值的意义解出,求出其和集合B的交集,求出后进行集合的运算即可.【解答】解:A=[0,2],B=[﹣1,2],所以A∩B=[0,2]=A,∁R(A∩B){x|x<0或x>2},故选:C.【点评】本题考查对集合的认识以及集合的基本运算,属基本题.2.在复平面内,复数z=的共轭复数对应的点所在的象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算;复数的代数表示法及其几何意义.【专题】计算题;规律型;数系的扩充和复数.【分析】利用复数的除法化简复数,求出对应点的坐标,即可判断选项.【解答】解:复数z===﹣1﹣2i.复数z=的共轭复数对应的点(﹣1,2),所在的象限是第二象限.故选:B.【点评】本题考查复数的几何意义,复数的代数形式混合运算,考查计算能力.3.已知x>0,则“a=4“是“x+≥4”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】结合基本不等式的性质以及充分条件和必要条件的定义即可得到结论.【解答】解:若a=4,则根据基本不等式的性质可知x+=x+≥2=4,当且仅当x=,即x=2时取等号,即充分性成立.若a=16,x+=x+≥2=8,当且仅当x=,即x=4时取等号,此时满足x+≥4成立,但a=4不成立,即必要性不成立,故“a=4“是“x+≥4”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据基本不等式的性质是解决本题的关键.4.执行如图所示的程序框图,若输出的n=6,则输入整数p的最小值是.()A.17 B.16 C.18 D.19【考点】程序框图.【专题】计算题;图表型;分析法;算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算累加器S≥p时的n值,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序在运行过程中各变量的值如下表示:是否继续循环S n循环前/0 1第一圈是 1 2第二圈是 3 3第三圈是7 4第四圈是15 5第五圈是31 6第六圈否故当S值不大于16时继续循环,故p的最小整数值为16.故选:B【点评】处理此类问题时,一定要注意多写几步,从中观察得出答案;本题若将n=n+1与S=S+2n ﹣1的位置调换一下,则情况又如何呢?同学们可以考虑一下.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.5.在等差数列{a n}中,若a4+a6+a8+a10+a12=120,则2a10﹣a12的值为()A.6 B.12 C.24 D.60【考点】等差数列的通项公式.【专题】计算题;转化思想;综合法;等差数列与等比数列.【分析】利用等差数列的通项公式求解.【解答】解:∵在等差数列{a n}中,a4+a6+a8+a10+a12=120,∴5a1+35d=120,解得a1+7d=24,∴2a10﹣a12=2(a1+9d)﹣(a1+11d)=a1+7d=24.故选:C.【点评】本题考查等差数列的通项公式的应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.6.已知O为坐标原点,双曲线﹣=1(a>0,b>0)的右焦点F,以OF为直径作圆交双曲线的渐近线于异于原点O的两点A、B,若(+)•=0,则双曲线的离心率e为()A.2 B.3 C.D.【考点】双曲线的简单性质;平面向量数量积的运算.【专题】圆锥曲线的定义、性质与方程.【分析】先画出图形,如图,设OF的中点为C,则+=,由题意得AC⊥OF,根据三角形的性质可得AC=AF,又AF=OF,从而得出△AOF是正三角形,即双曲线的渐近线的倾斜角为60°,得出a,b的关系式,即可求出双曲线的离心率e.【解答】解:如图,设OF的中点为C,则+=,由题意得,•=0,∴AC⊥OF,∴AO=AF,又c=OF,OA:y=,A的横坐标等于C的横坐标,所以A(,),且AO=,AO2=,所以a=b,则双曲线的离心率e为=.故选C.【点评】本题给出以双曲线右焦点F为圆心的圆过坐标原点,在已知若(+)•=0的情况下求双曲线的离心率,着重考查了双曲线的标准方程与简单几何性质、直线与圆的位置关系等知识,属于基础题.7.在区间[﹣1,1]上随机取一个数k,使直线y=k(x+3)与圆x2+y2=1相交的概率为()A.B.C.D.【考点】几何概型.【专题】计算题;转化思想;综合法;概率与统计.【分析】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求.【解答】解:圆x2+y2=1的圆心为(0,0)圆心到直线y=k(x+3)的距离为要使直线y=k(x+3)与圆x2+y2=1相交,则<1,解得﹣<k<.∴在区间[﹣1,1]上随机取一个数k,使y=k(x+3)与圆x2+y2=1相交的概率为=.故选:C.【点评】本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.8.有以下命题:①命题“∃x∈R,x2﹣x﹣2≥0”的否定是:“∀x∈R,x2﹣x﹣2<0”;②已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79)则P(ξ≤﹣2)=0.21;③函数f(x)=﹣()x的零点在区间(,)内;其中正确的命题的个数为()A.3个 B.2个 C.1个 D.0个【考点】命题的真假判断与应用.【专题】综合题;转化思想;综合法;简易逻辑.【分析】①根据特称命题的否定进行判断;②根据正态分布的定义和性质判断;③利用根的存在性判断.【解答】解:①根据特称命题的否定是全称命题知:命题“存在x∈R,使x2﹣x﹣2≥0”的否定是:“对任意的x∈R,都有x2﹣x﹣2<0”;所以正确.②因为正态分布的对称轴为x=1,所以P(ξ≤﹣2)=P(ξ≥4)=1﹣P(ξ≤4)=1﹣0.79=0.21,所以正确.③因为f ()<0,f ()>0,所以根据根的存在性定理可知,正确. 故选A .【点评】本题主要考查命题的真假判断,综合性较强,涉及的知识点较多.9.已知函数y=f (x )定义在实数集R 上的奇函数,且当x ∈(﹣∞,0)时xf ′(x )<﹣f (x )成立(其中f ′(x )是f (x )的导函数),若a=f (),b=f (1),c=﹣2f (log 2),则a ,b ,c 的大小关系是( )A .c >a >bB .c >b >aC .a >b >cD .a >c >b 【考点】利用导数研究函数的单调性;函数奇偶性的性质.【专题】函数思想;分析法;函数的性质及应用;导数的概念及应用.【分析】由f (x )为奇函数得到f (﹣x )=﹣f (x ),有xf ′(x )+f (x )<0,由导数的积的运算得到[xf (x )]′<0,令F (x )=xf (x ),则F (x )为偶函数,且在(﹣∞,0)上是减函数,在(0,+∞)上是增函数,由c=﹣2f (﹣2)=2f (2)=g (2),a=f ()=g (),b=f (1)=g (1),即可得到所求大小关系.【解答】解:当x ∈(﹣∞,0)时,xf ′(x )<﹣f (x ), 即xf ′(x )+f (x )<0, ∴[xf (x )]′<0, ∴令F (x )=xf (x ),由函数y=f (x )是定义在R 上的奇函数, 则F (x )为偶函数,且在(﹣∞,0)上是减函数,在(0,+∞)上是增函数, 由c=﹣2f (log 2)=﹣2f (﹣2)=2f (2)=g (2),a=f ()=g (),b=f (1)=g (1),由1<<2,可得b <a <c .故选:A .【点评】本题主要考查函数的性质及应用,考查奇偶函数的定义及应用,函数的单调性及应用,以及应用导数的运算法则构造函数的能力,是函数的综合题.10.已知实数x,y满足:,则使等式(t+2)x+(t﹣1)y+2t+4=0成立的t取值范围为()A.[﹣,)B.(﹣∞,﹣]∪(﹣,+∞)C.[﹣,1)D.[﹣,1)【考点】简单线性规划.【专题】计算题;作图题;数形结合;转化思想;不等式.【分析】由题意作平面区域,从而化简可得t==1﹣,而几何意义是点A(﹣2,0)与阴影内的点的连线的斜率,从而结合图象解得.【解答】解:由题意作平面区域如下,,∵(t+2)x+(t﹣1)y+2t+4=0,∴t(x+y+2)+2x﹣y+4=0,∴t==1﹣,几何意义是点A(﹣2,0)与阴影内的点的连线的斜率,而k AB==,k AC==1,故≤<1,故<≤,故﹣≤1﹣<﹣,故选:A.【点评】本题考查了数形结合的思想应用,同时考查了转化的思想应用,关键在于化简得到t=1﹣.11.已知四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,又AB=3,BC=2,BD=4,且∠CBD=60°,则球O的表面积为()A.12πB.16πC.20πD.25π【考点】球的体积和表面积.【专题】计算题;转化思想;综合法;球.【分析】由余弦定理求出CD=2,以AB、BC、CD、AB为长方体的长、宽、高构造长方体AGHF﹣BCDF,球O的半径R=,由此能求出球O的表面积.【解答】解:∵四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,又AB=3,BC=2,BD=4,且∠CBD=60°,∴CD==2,∴BC2+CD2=BD2,∴AB⊥平面BCD,BC⊥CD,∴以AB、BC、CD、AB为长方体的长、宽、高构造长方体AGHF﹣BCDF,则球O的半径R===,∴球O的表面积S=4=25π.故选:D.【点评】本题考查球的表面积的求法,是中档题,解题时要认真审题,注意构造法的合理运用.12.如图,四边形ABCD是正方形,延长CD至E,使得DE=CD.若动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,其中,下列判断正确的是()A.满足λ+μ=2的点P必为BC的中点B.满足λ+μ=1的点P有且只有一个C.λ+μ的最大值为3D.λ+μ的最小值不存在【考点】向量的加法及其几何意义.【专题】平面向量及应用.【分析】建立坐标系可得=(λ﹣μ,μ),A,B选项可举反例说明,通过P的位置的讨论,结合不等式的性质可得0≤λ+μ≤3,进而可判C,D的正误,进而可得答案.【解答】解:由题意,不妨设正方形的边长为1,建立如图所示的坐标系,则B(1,0),E(﹣1,1),故=(1,0),=(﹣1,1),所以=(λ﹣μ,μ),当λ=μ=1时,=(0,1),此时点P与D重合,满足λ+μ=2,但P不是BC的中点,故A错误;当λ=1,μ=0时,=(1,0),此时点P与B重合,满足λ+μ=1,当λ=,μ=时,=(0,),此时点P为AD的中点,满足λ+μ=1,故满足λ+μ=1的点不唯一,故B错误;当P∈AB时,有0≤λ﹣μ≤1,μ=0,可得0≤λ≤1,故有0≤λ+μ≤1,当P∈BC时,有λ﹣μ=1,0≤μ≤1,所以0≤λ﹣1≤1,故1≤λ≤2,故1≤λ+μ≤3,当P∈CD时,有0≤λ﹣μ≤1,μ=1,所以0≤λ﹣1≤1,故1≤λ≤2,故2≤λ+μ≤3,当P∈AD时,有λ﹣μ=0,0≤μ≤1,所以0≤λ≤1,故0≤λ+μ≤2,综上可得0≤λ+μ≤3,故C正确,D错误.故选C【点评】本题考查向量加减的几何意义,涉及分类讨论以及反例的方法,属中档题.二、填空题(本大题共4小题,每小题5分,共20分).13.设a=dx,则二项式(ax2﹣)6展开式中的常数项为15 .【考点】二项式定理的应用.【专题】转化思想;综合法;二项式定理.【分析】先利用定积分求出a的值,再利用二项展开式的通项公式求出展开式中的常数项.【解答】解:a=dx=lnx=2﹣1=1,则二项式(ax2﹣)6 =(x2﹣)6 的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=0,求得r=4,可得展开式中的常数项为=15,故答案为:15.【点评】本题主要考查定积分的计算,二项式定理的应用,二项展开式的通项公式,属于基础题.14.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E 五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有45 种.【考点】计数原理的应用.【专题】计算题;整体思想;分析法;排列组合.【分析】设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符座位的坐法,设E同学坐在自己的座位上,则其他四位都不是自己的座位,一一列举,根据分步计算原理可得.【解答】解:设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符座位的坐法,设E同学坐在自己的座位上,则其他四位都不是自己的座位,则有BADC,CADB,DABC,BDAC,CDAB,DCAB,BCDA,DCBA,CDBA共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有5×9=45种,故答案为:45.【点评】本题考查错位排序法,需要分类讨论,列举要不重不漏,属于中档题.15.在△ABC中,内角A,B,C所对的边分别为a,b,c,其中A=120°,b=1,且△ABC的面积为,则= 2.【考点】正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】先利用面积公式,求出边a=4,再利用正弦定理求解比值.【解答】解:由题意,=×c×1×sin120°∴c=4,∴a2=b2+c2﹣2bccosA=1+16﹣2×1×4×(﹣)=21.∴a=∴==2.故答案为:2.【点评】本题的考点是正弦定理,主要考查正弦定理的运用,关键是利用面积公式,求出边,再利用正弦定理求解.16.对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(﹣1,2),解关于x的不等式ax2﹣bx+c>0”,给出如下一种解法:解:由ax2+bx+c>0的解集为(﹣1,2),得a(﹣x)2+b(﹣x)+c>0的解集为(﹣2,1),即关于x的不等式ax2﹣bx+c>0的解集为(﹣2,1).参考上述解法,若关于x的不等式+<0的解集为(﹣3,﹣1)∪(1,2),则关于x的不等式+<0的解集为(﹣1,﹣)∪(,1).【考点】类比推理.【专题】计算题;转化思想;综合法;推理和证明.【分析】观察发现ax2+bx+c>0将x换成﹣x得a(﹣x)2+b(﹣x)+c>0,则解集也相应变化,﹣x∈(﹣1,2),则x∈(﹣2,1),不等式+<0可看成前者不等式中的x用代入可得,分析可得答案.【解答】解:由ax2+bx+c>0的解集为(﹣1,2),得a(﹣x)2+b(﹣x)+c>0的解集为(﹣2,1),发现﹣x∈(﹣1,2),则x∈(﹣2,1)若关于x的不等式+<0的解集为(﹣3,﹣1)∪(1,2),则关于x的不等式+<0可看成前者不等式中的x用代入可得,则∈(﹣3,﹣1)∪(1,2),∴x∈(﹣1,﹣)∪(,1),故答案为:(﹣1,﹣)∪(,1).【点评】本题考查了类比推理,通过已知条件发现规律,属于基础题.三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.在等比数列{a n }中,a 3=,S 3=. (Ⅰ)求{a n }的通项公式;(Ⅱ)记b n =log 2,且{b n }为递增数列,若C n =,求证:C 1+C 2+C 3+…C n <.【考点】数列的求和;等比数列的通项公式.【专题】分类讨论;作差法;等差数列与等比数列;不等式的解法及应用.【分析】(Ⅰ)讨论q=1,q ≠1,由等比数列的通项公式和求和公式,解方程即可得到q ,和a 1,进而得到通项公式;(Ⅱ)由对数的运算性质,求得b n =2n ,化C n ===(﹣),再由数列的求和方法:裂项相消求和,预计不等式的性质,即可得证.【解答】解:(Ⅰ)∵a 3=,S 3=,∴当q=1时,S 3=3a 1=,满足条件,∴q=1.当q ≠1时,a1q2=, =,解得a 1=6,q=﹣.综上可得:a n =或a n =6•(﹣)n ﹣1;(Ⅱ)证明:由题意可得b n =log 2=log 2=log 222n =2n ,则C n ===(﹣),即有C 1+C 2+C 3+…C n =(1﹣+﹣+﹣+…+﹣)=(1﹣)=﹣<.故原不等式成立.【点评】本题考查了等比数列的通项公式、前n 项和公式,考查了分类讨论方法、和不等式的证明,注意运用裂项相消求和和不等式的性质,考查推理能力与计算能力,属于中档题.18.一个盒子装有六张卡片,上面分别写着如下六个函数:,,f3(x)=2,,,f6(x)=xcosx.(Ⅰ)从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;排列、组合的实际应用.【专题】计算题;概率与统计.【分析】(Ⅰ)所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数,先求出基本事件总数为,满足条件的基本事件为两张卡片上写的函数均为奇函数,再求出满足条件的基本事件个数为,由此能求出结果.(Ⅱ)ξ可取1,2,3,4.分别求出对应的概率,由此能求出ξ的分布列和数学期望.【解答】(本小题满分12分)解:(Ⅰ)为奇函数;为偶函数;f3(x)=2为偶函数;为奇函数;为偶函数;f6(x)=xcosx为奇函数…所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;故基本事件总数为满足条件的基本事件为两张卡片上写的函数均为奇函数,故满足条件的基本事件个数为故所求概率为.…(Ⅱ)ξ可取1,2,3,4.…,;故ξ的分布列为ξ 1 2 3 4P….∴ξ的数学期望为.…【点评】本题考查离散型随机变量的分布列和数学期望的求法,是历年高考的必考题型.解题时要注意排列组合和概率知识的合理运用.19.已知某几何体直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,(Ⅰ)求证:BN⊥平面C1B1N;(Ⅱ)设θ为直线C1N与平面CNB1所成的角,求sinθ的值;(Ⅲ)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1并求的值.【考点】直线与平面平行的判定;直线与平面平行的性质;直线与平面所成的角.【专题】计算题;转化思想;向量法;空间位置关系与距离.【分析】(Ⅰ)以BA,BB1,BC分别为x,y,z轴建立空间直角坐标系,利用向量法能证明BN ⊥平面C1B1N.(Ⅱ)求出平面NCB1的一个法向量,利用向量法能求出sinθ.(Ⅲ)设P(0,0,a)为BC上一点,利用向是琺能求出当PB=时,MP∥平面CNB1及此时的值.【解答】证明:(Ⅰ)∵该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,∴BA,BC,BB1两两垂直.…以BA,BB1,BC分别为x,y,z轴建立空间直角坐标系,则N(2,2,0),B1(0,4,0),C1(0,4,2),C(0,0,2),∵=4﹣4+0=0,=0,∴BN⊥NB1,BN⊥B1C1且NB1,∵B1C1相交于B1,∴BN⊥平面C1B1N.解:(Ⅱ)设=(x,y,z)为平面NCB1的一个法向量,则,取x=1,得=(1,1,2),∵=(2,﹣2,﹣2),∴sinθ===.(Ⅲ)∵M(1,0,0).设P(0,0,a)为BC上一点,则=(﹣1,0,a),∵MP∥平面CNB1,∴,=﹣1+2a=0,解得a=,又PM⊄平面CNB1,∴MP∥平面CNB1,∴当PB=时,MP∥平面CNB1,∴=.…【点评】本题考查线面垂直的证明,考查线面角的正弦值的求法,考查满足线面平行的点是否存在的判断与求法,是中档题,解题时要认真审题,注意向量法的合理运用.20.定长为3的线段AB两端点A、B分别在x轴,y轴上滑动,M在线段AB上,且.(1)求点M的轨迹C的方程;(2)设过且不垂直于坐标轴的动直线l交轨迹C于A、B两点,问:线段OF上是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明.【考点】直线与圆锥曲线的综合问题;轨迹方程.【专题】综合题.【分析】(1)设A(x1,0),B(0,y1),M(x,y),则,由此能求出点M的轨迹C的方程.(2)设满足条件的点D(0,m),设l的方程为:,代入椭圆方程,得,设,.由以DA、DB为邻边的平行四边形为菱形,知,由此能导出存在满足条件的点D.【解答】解:(1)设A(x1,0),B(0,y1),M(x,y)则,|AB|=3==1(2)存在满足条件的D点.设满足条件的点D(0,m),则,设l的方程为:y=kx+,(k≠0),代入椭圆方程,得(k2+4)x2+2kx﹣1=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,∴y1+y2=k(x1+x2)+2.∵以DA、DB为邻边的平行四边形为菱形,∴,=,的方向向量为(1,k),=0,∴﹣﹣2mk=0即m=∵k2>0,∴m=,∴0<m<,∴存在满足条件的点D.【点评】本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与椭圆的相关知识,解题时要注意合理地进行等价转化.21.对于函数y=f(x)的定义域为D,如果存在区间[m,n]⊆D,同时满足下列条件:①f(x)在[m,n]上是单调函数;②当f(x)的定义域为[m,n]时,值域也是[m,n],则称区间[m,n]是函数f(x)的“Z区间”.对于函数f(x)=(a>0).(Ⅰ)若a=1,求函数f(x)在(e,1﹣e)处的切线方程;(Ⅱ)若函数f(x)存在“Z区间”,求a的取值范围.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】综合题;分类讨论;分类法;导数的概念及应用.【分析】(Ⅰ)若a=1,则f(x)=lnx﹣x,f′(x)=,求出切线斜率,代入点斜式方程,可得答案;(Ⅱ)结合函数f(x)存在“Z区间”的定义,分类讨论满足条件的a的取值范围,综合讨论结果,可得答案.【解答】解:(Ⅰ)若a=1,x=e,则f(x)=lnx﹣x,f′(x)=,则切点坐标为(e,1﹣e),切线斜率k=f′(e)=﹣1,∴函数f(x)在(e,1﹣e)处的切线方程为y﹣(1﹣e)=(﹣1)(x﹣e),即(e﹣1)x+ey=0.(Ⅱ)∵f(x)=(a>0).∴f′(x)=(a>0).列表如下x (﹣∞,0)(0,a) a (a,+∞)f′(x)﹣﹣0 ﹣f(x)减增极大值减设函数f(x)存在“Z区间”是[m,n],(1)当0<m<n时,由f′(x)≥0得:≥0,解得0<x≤a,即0<x≤a时函数f(x)为增函数,当x=n时,取得最大值,当x=m时,取最小值,即,即方程alnx﹣x=x有两个解,即方程a=有两个解,做出y=的图象,由图象以及函数的导数可知,当x>1时,y=在x=e处取得最小值2e,在x=a时,y=,故方程a=有两个解,由a≤得:a≤e2,此时正数a的取值范围是(2e,e2].由f′(x)<0得:<0,解得x>a,即x>a时,函数f(x)为单调减函数,则当x=m时,取得最大值,当x=n时,取得最小值,即,两式相减可得,alnm﹣alnn=0,即m=n,不符合;当x≤0时,函数f(x)为减函数,则当x=m时取最大值,当x=n时,取得最小值,即,两式相减,可以得到+=1,回代到方程组的第一个式子得到1﹣﹣a=n,整理得到1﹣﹣n=a,由图象可知,方程由两个解,则a∈(,1],综上正数a的取值范围是(,1]∪(2e,e2]【点评】本题考查的知识点是曲线在某点处的切线方程,新定义,分类讨论思想,难度稍大,中档偏上.选做题:(考生从以下三题中选做一题)选修4-1:几何证明选讲22.如图,AB是⊙O的直径,C、F是⊙O上的两点,OC⊥AB,过点F作⊙O的切线FD交AB 的延长线于点D.连接CF交AB于点E.(1)求证:DE2=DB•DA;(2)若DB=2,DF=4,试求CE的长.【考点】与圆有关的比例线段.【专题】计算题;证明题;选作题;转化思想;综合法.【分析】(1)连接OF,利用切线的性质及角之间的互余关系得到DF=DE,再结合切割线定理证明DE2=DB•DA,即可求出DE.(2)求出BE=2,OE=1,利用勾股定理求CE的长.【解答】(1)证明:连接OF.因为DF切⊙O于F,所以∠OFD=90°.所以∠OFC+∠CFD=90°.因为OC=OF,所以∠OCF=∠OFC.因为CO⊥AB于O,所以∠OCF+∠CEO=90°.所以∠CFD=∠CEO=∠DEF,所以DF=DE.因为DF是⊙O的切线,所以DF2=DB•DA.所以DE2=DB•DA.(2)解:∵DF2=DB•DA,DB=2,DF=4.∴DA=8,从而AB=6,则OC=3.又由(1)可知,DE=DF=4,∴BE=2,OE=1.从而在Rt△COE中,.【点评】本题主要考查了与圆有关的比例线段、圆的切线的性质定理的应用,属于中档题.选修4-4:坐标系与参数方程.23.已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.【考点】直线的参数方程;简单曲线的极坐标方程.【专题】坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程;(2)直线l的参数方程(t为参数,0≤α<π).可得l经过点(0,1);若直线l经过点(1,0),得到,得到直线l新的参数方程为(t为参数).代入抛物线方程可得t+2=0,设A、B对应的参数分别为t1,t2,利用|AB|=即可得出.【解答】解:(1)曲线C的极坐标方程ρ=化为ρ2sin2θ=4ρcosθ,得到曲线C的直角坐标方程为y2=4x,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)直线l的参数方程为(t为参数,0≤α<π).故l经过点(0,1);若直线l经过点(1,0),则,∴直线l的参数方程为(t为参数).代入y2=4x,得t+2=0设A、B对应的参数分别为t1,t2,则t1+t2=﹣6,t1t2=2.|AB|=|t1﹣t2|===8.【点评】本题考查了极坐标方程和直角坐标方程的转换、直线的参数方程及其应用,考查了计算能力,属于中档题..选修4-5:不等式选讲.。
(完整版)2018年高考全国卷1文科数学试题及含答案
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出の四个选项中,只有一项是符合题目要求の。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。
2018年全国高考新课标1卷理科数学试题(解析版)
2018年普通高等学校招生全国统一考试新课标1卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设z=1-i1+i +2i ,则|z|=A .0B .12 C .1 D .2 解析:选C z=1-i1+i +2i=-i+2i=i 2.已知集合A={x|x 2-x-2>0},则∁R A =A .{x|-1<x<2}B .{x|-1≤x ≤2}C .{x|x<-1}∪{x|x>2}D .{x|x ≤-1}∪{x|x ≥2} 解析:选B A={x|x<-1或x>2}3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:选A4.设S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5= A .-12B .-10C .10D .12解析:选 ∵3(3a 1+3d)=(2a 1+d )+(4a 1+6d) a 1=2 ∴d=-3 a 5=-105.设函数f(x)=x 3+(a-1)x 2+ax ,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为 A .y=-2xB .y=-xC .y=2xD .y=x解析:选D ∵f(x)为奇函数 ∴a=1 ∴f(x)=x 3+x f′(x)=3x 2+1 f′(0)=1 故选D 6.在ΔABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →= A .34AB → - 14AC →B . 14AB → - 34AC →C .34AB → + 14AC →D . 14AB → + 34AC →解析:选A 结合图形,EB →=- 12(BA →+BD →)=- 12BA →-14BC →=- 12BA →-14(AC →-AB →)=34AB → - 14AC → 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .2 5C .3D .2解析:选B 所求最短路径即四份之一圆柱侧面展开图对角线的长8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →= A .5B .6C .7D .8解析:选D F(1,0),MN 方程为y=23 (x+2),代入抛物线方程解得交点M(1,2),N(4,4),则FM →=(0,2),FN →=(3,4) ∴FM→·FN →=8 9.已知函数f(x)= ⎩⎪⎨⎪⎧e x , x ≤0lnx ,x>0,g(x)=f(x)+x+a .若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)解析:选C g(x)=0即f(x)=-x-a ,即y=f(x)图象与直线y=-x-a 有2个交点,结合y=f(x)图象可知-a<110.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p1,p2,p3,则A .p1=p2B .p1=p3C .p2=p3D .p1=p2+p3解析:选A ∵AC=3,AB=4,∴BC=5,∴12AC=32,12AB=2 , 12BC=52∴以AC 和AB 为直径的两个半圆面积之和为12×π×(32)2+12×π×22=258π∴以BC 为直径的半圆面积与三角形ABC 的面积之差为12×π×(52)2- 12×3×4=258π-6; ∴两个月牙形(图中阴影部分)的面积之和等于258π-(258π-6)=6=ΔABC 面积 ∴p1=p211.已知双曲线C :x 23 - y 2 =1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N.若ΔOMN 为直角三角形,则|MN|= A .32B .3C .2 3D .4解析:选B 依题F(2,0),曲线C 的渐近线为y=±33x,MN 的斜率为3,方程为y=3(x-2),联立方程组解得M(32,- 32),N(3,3),∴|MN|=312.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 A .334B .233C .324D .32解析:选A 如图正六边形与正方体每条棱缩成角相等。
2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
关注公众号”一个高中僧“获取更多高中资料
第 3 页(共 28 页)
18.(12 分)如图,在平行四边形 ABCM 中,AB=AC=3,∠ACM=90°,以 AC 为 折痕将△ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA.
(1)证明:平面 ACD⊥平面 ABC; (2)Q 为线段 AD 上一点,P 为线段 BC 上一点,且 BP=DQ= DA,求三棱锥
A.12 π
B.12π
C.8 π
D.10π
【考点】LE:棱柱、棱锥、棱台的侧面积和表面积. 菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.
【分析】利用圆柱的截面是面积为 8 的正方形,求出圆柱的底面直径与高,然后
求解圆柱的表面积.
【解答】解:设圆柱的底面直径为 2R,则高为 2R,
(2)估计该家庭使用节水龙头后,日用水量小于 0.35m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,
同一组中的数据以这组数据所在区间中点的值作代表)
20.(12 分)设抛物线 C:y2=2x,点 A(2,0),B(﹣2,0),过点 A 的直线 l 与 C 交于 M,N 两点.
参考答案与试题解析
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选 项中,只有一项是符合题目要求的。
1.(5 分)已知集合 A={0,2},B={﹣2,﹣1,0,1,2},则 A∩B=( )
A.{0,2}
B.{1,2}
C.{0}
D.{﹣2,﹣1,0,1,2}
【考点】1E:交集及其运算. 菁优网版权所有
问题解决问题的能力.
2018年高三最新 高考数学第一轮总复习试卷(二十) 精品
高考数学第一轮总复习试卷(二十)解析几何综合训练第I 卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知)y x (00,是方程x+y=2任一组解,则圆22022y x y x +=+的最小半径是( ) A .1 B .2 C .2 D .422.点P (x ,y )在经过A (3,0)、B (1,1)两点的直线上,那么y x 42+的最小值是( )A .22B .24C .16D .不存在 3.若直线l 与直线2x-y+1=0互相垂直,则直线l 的倾斜角的大小为( ) A .arctan2 B .π-arctan2 C .21arctan-π D .21arctan 4.若实数x ,y 满足0y x 6x 222=+-,则x 2y x 22++的最大值为( ) A .14 B .15 C .16 D .无法确定5.已知直线l :3x-y=0,则直线x+y=4关于l 对称的直线方程是( ) A .x-7y+20=0 B .x+7y-20=0 C .x-7y-20=0 D .x+7y+20=06.如图,阴影部分的点(x ,y )满足不等式组⎪⎩⎪⎨⎧≥≥≤+≤+0y 0x 6y x 25y x ,在这些点中,使关于x ,y的二元函数u (x ,y )=2x-y 取得最小值的点的坐标是( )A .(0,0)B .(0,5)C .(1,4)D .(3,0)7.21F F ,是椭圆的两个焦点,Q 是椭圆上的任一点,从任一焦点向21QF F ∆的顶点Q 的外角平分线作垂线,垂足为P ,点P 的轨迹是曲线C 的一部分,则曲线C 是( ) A .圆 B .椭圆 C .双曲线 D .抛物线8.过双曲线12y x 22=-的右焦点F 作直线l 交双曲线于A ,B 两点,若|AB|=4,则这样的直线l 有( )A .1条B .2条C .3条D .4条9.设21F F ,为椭圆1by a x 2222=+(a>b>0)的两个焦点,以1F 为圆心且过椭圆中心的圆与椭圆的一个交点为M ,若直线M F 2与圆1F 相切,则椭圆的离心率是( )A .13-B .32-C .23 D .2210.一广告气球被一束平行光线投射到水平面上的椭圆的离心率为23,则这束光线与水平面所成的角的余弦值为( )A .21 B .23 C .31D .2211.如图直角坐标系中,21O O ΘΘ和是某车床的两个转动齿轮的对应截面,半径分别为1和2,忽略两齿轮的间隙,已知1O Θ上某一点A 顺时针方向旋转的角速度为3π弧度/秒,当t=0时,2O Θ上一点B 的坐标为(5,0),当t=14秒时,点B 运动到点B ′,此时点B ′的坐标为( )A .),(3 4B .),(34- C .),(3 2 D .),(32-12.某县位于山区,居民居住区域大致呈右图所示的五边形,近似由一个正方形和两个等腰直角三角形组成,若AB=60km ,AE=CD=30km ,为了解决当地人民看电视难的问题,准备建一个电视传播台,理想方案是转播台距五边形的顶点的距离平方和最小,图中4321P P P P 、、、是AC 的五等分点,则转播台建在( )A .1P 处B .2P 处C .3P 处D .4P 处第II 卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把答案填在题中横线上) 13.点P (a ,4)到直线x-2y+2=0的距离等于52,且在不等式3x+y-3>0表示的平面区域内,则P 点的坐标为________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学第一轮总复习试卷(一)
集合与简易逻辑
第I 卷(选择题 共60分)
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知全集U=R ,M={x||x-2|<1},}05x 11x 2|x {N 2>+-=,则N C M U 等于( )
A .{x|-1≤x ≤5}
B .}2
1x 1|x {<<-
C .}3x 2
1
|
x {<< D .{x|1<x<3} 2.不等式0a x )a a (x 322<++-(a>1)的解集是( ) A .}a x a |x {2<< B .}a x a |x {2<< C .}a x a x |x {2><或 D .}a x a x |x {2><或 3.不等式1|1x x |2≥+-的解集为( ) A .Φ B .{x|x ≤0或x ≥1} C .{x| 0≤x ≤1} D .R
4.不等式01ax ax 2<-+恒成立,则a 的取值范围是( ) A .-4≤a ≤0 B .-4<a<0 C .-4≤a<0 D .-4<a ≤0
5.不等式0b ax x 2<--的解集为{x|2<x<3},则不等式01ax bx 2>--的解集为( ) A .{x|-3<x<-2} B .}2
1
x 31|x {<< C .}3
1
x 21|x {-<<-
D .Φ 6.二次函数m 6x 2mx y 2+-=的值恒为负的充要条件是( )
A .66
m 66m -
<>
或 B .m<0 C .66m > D .6
6
m -<
7.下列命题中,正确的是( )
A .x=1且x=2是方程02x 3x 2=+-的根
B .x>1且x<2是不等式02x 3x 2<+-的解
C .对非空集M ,N ,N M a N M a ∈∈是的充分条件
D .x 是整数的否命题是x 的分数
8.已知A={x|x<1},B={x|(x-a)(x-2)≤0},且}2x |x {B A ≤= ,则a 的取值范围是( ) A .(-∞,1) B .(-∞,1] C .(1,+∞) D .(1,+∞) 9.不等式02
x 1
x ≥+-的解集是( ) A .{x|x>1,或x<-2} B .{x|x ≥1,或x ≤-2} C .{x|x>1,或x ≤-2} D .{x|x ≥1,或x<-2}
10.若a>0,不等式|x-4|+|x-3|<a 的解集不是空集,则a 的取值范围是( )
A .0<a<1
B .a=1
C .a>1
D .a ≥1
11.方程01x 2ax 2=++至少有一个负根的充分条件是( ) A .0<a ≤1 B .a<1 C .a ≤1 D .a ≤1且a ≠0 12.设命题p :“对一切实数x ,03x 2x 2≥+-”,则“非p ”命题是( ) A .对一切实数x ,03x 34x 2<+- B .存在一个实数x ,使03x 2x 2≥+- C .存在一个实数x ,使03x 2x 2<+- D .以上都不正确
第II 卷 (非选择题 共90分)
二、填空题(本大题共4个小题,每小题4分,共16分,把答案填在题中横线上) 13.不等式3x 2x |x x 23|22-+>--的解集为________________。
14.不等式0k x )1k (x )1k (2<+---的解集是空集,则k 的取值范围是________________。
15.如果
B ⇔,那么A 是的________________条件。
16.“对任意实数x ,不等式)0a (0c bx ax 2≠>++成立,则a>0,0ac 4b 2<-的逆命题是________________。
三、解答题(本大题共6个小题,共74分,解答应写出必要文字说明、证明过程或演算步骤) 17.(本小题满分12分) 解关于x 的不等式)1x (a 1ax 2-≤-。
18.(本小题满分12分)
如果关于x 的不等式04x )2a ((2x )2a (2<--+-的解集为R ,求实数a 的取值范围。
19.(本小题满分12分) 若关于x 的不等式2
3
ax x +>的解集为{x|4<x<b},求a ,b 的值。
20.(本小题满分12分) 已知p :43
|21x 2|>--
,q :03x 2
3x 312<-+,则非p 是非q 的什么条件?
21.(本小题满分12分)
用反证法证明:如果一个四边形一组对角互补,那么这个四边形内接于圆。
22.(本小题满分14分) 已知4x )2a (2x )x (f 2+-+=。
(1)如果对一切x ∈R ,f(x)>0恒成立,求实数a 的范围; (2)如果对x ∈[-3,1],f(x)>0成立,求实数a 的范围。
参考答案
一、选择题 1.D
2.A 0a x )a a (x 322<++-可分解为0)a x )(a x (2<--
3.B 04
3
)21x (1x x 22>+-=+- 恒成立,11x x 1|1x x |22≥+-⇔≥+-∴ ∴x
≥1或x ≤0,故选B 。
4.D 由01ax ax 2<-+恒成立知:⎩⎨
⎧<+=--=∆<0
a 4a )1(a 4a 0
a 2
2
或a=0。
5.C 0b ax x 2<--的解集为{x|2<x<3}。
⎩⎨⎧⨯=-+=∴32b 32a 即⎩
⎨⎧-==6b 5
a
01ax bx 2>--∴即01x 5x 62>---即0)1x 2)(1x 3(01x 5x 62<++⇔<++
3
1x 21-<<-
∴ 6.D m 6x 2mx y 2+-=的值恒负⎩
⎨⎧<∆<⇔00m 解之得66
m -<
7.B
8.B 9.D ⎩
⎨⎧≠+≥+-⇔≥+-02x 0)2x )(1x (02x 1
x ∴x ≥1或x<-2。
10.C |x-4|+|x-3|表示数轴上点x 到点4和点3的距离之和,
∴|x-4|+|x-3|≥1。
∴a>1。
11.C
12.C
二、填空题 13.{x|-3<x<1}
提示:0)1x )(3x (03x 2x 3x 2x |x x 23|222<-+⇔<-+⇔-+>-- ∴-3<x<1 14.[1,+∞]
提示:0k x )1k (x )1k (2<+--- 无解
∴k=1或⎩
⎨⎧<∆>-00
1k ∴k ≥1
15.必要
16.若a>0,0ac 4b 2<-,则对任意实数x ,0c bx ax 2>++。
三、解答题
17.当a>1或a<0时,}a 1
x |x {-≤;当a=0或1时,x ∈R ;当0≤a ≤1时,}a
1x |x {-≥。
18.A ∈(-2,2)
19.8
1
a =
,b=36。
20.非p 是非q 的充分不必要条件。
21.证明:设⊙O 是过四边形ABCD 的三个顶点A ,B ,C 。
①设D 在⊙O 外,AD 与⊙O 交于E 点,如图(1)所示
由已知不妨设∠B+∠D=180°。
又四边形ABCE 为圆内接四边形,所以∠B+∠AEC=180°。
因而∠AEC=∠D 。
而∠AEC 是△DEC 的一个外角,这与三角形的一个外角大于它的不相邻的内角相矛盾。
②设D 在⊙O 内,延长AD 与⊙O 交于E 点,如图(2)所示。
由已知的四边形一组对角互补,不妨设∠B+∠ADC=180°。
又知四边形ABCE 为圆的内接四边形,所以∠B+∠AEC=180°。
因而由以上两结论推出∠AEC=∠ADC 。
而∠ADC 是△DEC 的一个外角,这与三角形的一个外角大于它的不相邻的内角的规律相矛盾。
由①和②的结论可推出:如果一个四边形的一组对角互补,那么四边形内接于圆。
22.(1)y=f(x)是开口向上的抛物线,对一切x ∈R ,f(x)>0恒成立,函数图象必须在x 轴上方,所以016)]2a (2[2<--=∆,∴0<a<4。
(2)对称轴x=2-a ,由于f(0)=4>0,要使x ∈[-3,1],f(x)>0恒成立,有三种情况:
4a 21
- 0
)1(f 1a 2 0)a 2(f 3a 2 0)a 2(f 1a 23<<∴⎩⎨⎧>>-⎩⎨⎧>--<-⎩⎨
⎧>-≤-≤-③或②①。