第1章 数制与编码
数字电子技术 (佘新平 著) 华中科技大学出版社 课后答案

第一章数制与编码1.1 自测练习1.1.1、模拟量数字量1.1.2、(b)1.1.3、(c)1.1.4、(a)是数字量,(b)(c)(d)是模拟量1.2 自测练习1.2.1. 21.2.2. 比特bit1.2.3. 101.2.4. 二进制1.2.5. 十进制1.2.6. (a)1.2.7. (b)1.2.8. (c)1.2.9. (b)1.2.10. (b)1.2.11. (b)1.2.12. (a)1.2.13. (c)1.2.14. (c)1.2.15. (c)1.2.16. 1001001 1.2.17. 111.2.18. 110010 1.2.19. 1101 1.2.20. 8进制1.2.21. (a)1.2.22. 0,1,2,3,4,5,6,71.2.23. 十六进制1.2.24. 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 1.2.25. (b)1.3 自测练习1.3.1. 1221.3.2. 675.521.3.3. 011111110.011.3.4. 521.3.5. 1BD.A81.3.6. 1110101111.11101.3.7. 38551.3.8. 28.3751.3.9. 100010.111.3.10. 135.6251.3.11. 570.11.3.12. 120.51.3.13. 2659.A1.4 自测练习1.4.1. BCD Binary coded decimal 二—十进制码1.4.2. (a)1.4.3. (b)1.4.4. 8421BCD码,4221BCD码,5421BCD 1.4.5. (a)1.4.6. 011001111001.10001.4.7. 111111101.4.8. 101010001.4.9. 111111011.4.10. 61.051.4.11. 01011001.01110101 1.4.12. 余3码1.4.13. XS31.4.14. XS31.4.15. 1000.10111.4.16. 1001100000111.4.17. 521.4.18. 110101.4.19. 0101111.4.20. (b)1.4.21. ASCII1.4.22. (a)1.4.23. ASCII American Standard Code for Information Interchange美国信息交换标准码EBCDIC Extended Binary Coded Decimal Interchange Code 扩展二-十进制交换吗1.4.24. 10010111.4.25. ASCII1.4.26. (b)1.4.27. (b)1.4.28. 110111011.4.29. -1111.4.30. +231.4.31. -231.4.32. -861.5 自测练习1.5.1 略1.5.2 110111011.5.3 010001011.5.4 11100110 补码形式1.5.5 011111011.5.6 10001000 补码形式1.5.7 11100010 补码形式习题1.1 (a)(d)是数字量,(b)(c)是模拟量,用数字表时(e)是数字量,用模拟表时(e)是模拟量1.2 (a)7, (b)31, (c)127, (d)511, (e)40951.3 (a),(b),(c)(d)522104108×+×+320410910×+×+×26108108×+×+321102105100×+×+×+21+1.4 (a), (b), (c)(d)3212121×+×+984+12+12+×××4311212121×+×+×+212×64212+12+12+12+1××××1212+×2220110327.15310210710110510..=×+×+×+×+×3210-1-221011.0112+02+12+12+02+12=××××××210-18437.448+38+78+48=××××10-1-2163A.1C316+A16+116+C16=××××,,,1.6 (a)11110, (b)100110,(c)110010, (d)10111.7 (a)1001010110000, (b)10010111111.8 110102 = 2610, 1011.0112 = 11.37510,57.6438 = 71.81835937510,76.EB16 = 118. 91796875101.9 1101010010012 = 65118 = D4916,0.100112 = 0.468 = 0.9816,1011111.011012 = 137.328 = 5F.68161.10 168 = 1410,1728 = 12210,61.538 = 49.671875,126.748 = 86.9375101.11 2A16 = 4210 = 1010102 = 528,B2F16 = 286310 = 1011001011112 = 54578,D3.E16= 211.87510 = 11010011.11102 = 323.78,1C3.F916 = 451.9726562510 =111000011.111110012 = 703.76281.12 (a)E, (b)2E, (c)1B3, (d)3491.13 (a)22, (b)110, (c)1053, (d)20631.14 (a)4094, (b)1386, (c)492821.15 (a)23, (b)440, (c)27771.16 198610 = 111110000102 = 00011001100001108421BCD,67.31110 = 1000011.010012 =01100111.0011000100018421BCD, 1.183410 = 1.0010112 = 0001.00011000001101008421BCD ,0.904710 = 0.1110012 = 0000.10010000010001118421BCD1.17 1310 = 000100118421BCD = 01000110XS3 = 1011Gray, 6.2510 = 0110.001001018421BCD =1001.01011000 XS3 = 0101.01Gray,0.12510 = 0000.0001001001018421BCD =0.010*********XS3 = 0.001 Gray1.18 101102 = 11101 Gray,0101102 = 011101 Gray1.19 110110112 = 0010000110018421BCD,45610 = 0100010101108421BCD,1748=0010011101008421BCD,2DA16 = 0111001100008421BCD,101100112421BCD = 010*********BCD,11000011XS3 = 100100008421BCD1.20 0.0000原= 0.0000反= 0.0000补,0.1001原= 0.1001反= 0.1001补,11001原= 10110反= 10111补1.21 010100原= 010100补,101011原= 110101补,110010原= 101110补,100001原= 111111补1.22 1310 = 00001101补,11010 = 01101110补,-2510 = 11100111补,-90 =10100110补1.23 01110000补= 11210,00011111补= 3110,11011001补= -3910,11001000补= -56101.24 1000011 1000001 1010101 1010100 1001001 1001111 1001110 0100001 0100000 1001000 1101001 1100111 1101000 0100000 1010110 1101111 1101100 1110100 1100001 1100111 11001011.25 0100010 1011000 0100000 0111101 0100000 0110010 0110101 0101111 1011001 01000101.26 BEN SMITH1.27 00000110 100001101.28 01110110 10001110第二章逻辑门2.1 自测练习2.1.1. (b)2.1.2. 162.1.3. 32, 6 2.1.4. 与2.1.5. (d)2.1.6. 162.1.7. 32, 6 2.1.8. 或2.1.9. 非2.1.10. 12.2 自测练习2.2.1. FAB=.2.2.2. (b)2.2.3. 高2.2.4. 322.2.5. 16,52.2.6. 12.2.7. 串联2.2.8. (d)2.2.9. 不相同2.2.10. 高2.2.11. 相同2.2.12. (a)2.2.13. (c)2.2.14. 奇2.3 自测练习2.3.1. OC,上拉电阻2.3.2. 0,1,高阻2.3.3. (b)2.3.4. (c)2.3.5. ,FAB=. 高阻2.3.6. 不能2.4 自测练习2.4.1. TTL,CMOS2.4.2. Transisitor Transistor Logic2.4.3. Complementary Metal Oxide Semicoductor2.4.4. 高级肖特基TTL,低功耗和高级低功耗肖特基TTL 2.4.5. 高,强,小2.4.6. (c)2.4.7. (b)2.4.8. (c)2.4.9. 大2.4.10. 强2.4.11. (a)2.4.12. (a)2.4.13. (b)2.4.14. 高级肖特基TTL2.4.15. (c)习题2.1 与,或,与2.2 与门,或门,与门2.3 (a)F=A+B, F=AB (b)F=A+B+C, F=ABC (c)F=A+B+C+D, F=ABCD 2.4 (a)0 (b)1 (c)0 (d)02.5 (a)0 (b)0 (c)1 (d)02.6 (a)1 (b)1 (c)1 (d)12.7 (a)4 (b)8 (c)16 (d)322.8 (a)3 (b)4 (c)5 (d)6ABCF0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 11111112.9 (a)(b)ABCDF1110 1 1 1 0 1 0 0 00 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 00 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 111111112.10 YABAC=+ 2.11ABCY0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 11111112.122.13F1 = A(B+C), F2=A+BCA B C F1 F2 0 0 0 0 0 0 0 1 0 0 0 1 0 00 0 1 1 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 1 1 111112.142.15 (a)0 (b)1 (c)1 (d)02.16 (a)1 (b)0 (c)0 (d)12.17 (a)0 (b)02.182.19 CDEF.2.20 CY ABDF.2.21 102.22 402.23 当TTL反相器的输出为3V,输出是高电平,红灯亮。
数制与编码

8421BCD码和十进制的之间的转化
例:将十进制数768用8421BCD码表示。 十进制数 7 6 8 8421码 0111 0110 1000 (768)10=(0111 0110 1000)8421
注意:
1.编码是一种符号表示某个具体的实物,所以编码不能比较大小。 2.8421BCD码是使用最广泛的 一种编码,在用4位二进制数码来表示1位十制 数时,每1位二进制数的位权依次为23、22、21、20,即8421,所以称为8421码 8421码选取0000—1001前十种组合来表示十进制数,而后六种组合舍去不用,称 为伪码。
可将每个八进数用3位二进制数表示,然后按八进制的排序将这些3位二进
制数排列好,就可得到相应的二进制数。
例:将八进制数475转化为二进制数。
解: 八进制数 4
7
5
二进制数 100 111
101
所以(475)8=(100111101)8
二进制数换为十六进制数
可将二进制整数自右向左每4位分为一组,最后不足4位的,高位用零补
6、将下列的二进制转化为十进制
(1011)2
(11011)2
(110110)2
(110011110)2
7、将下列的十进制转化为二进制
(20) (38)
(100) (184)
8、完成下列二进制的运算
101+11
11111+101
110-11
1101-111
9、什么是二进制代码? 什么是8421编码?列出8421BCD码的真 值表?
二进制数换为八进制数
可将二进制整数自右向左每3位分为一组,最后不足3位的,高位用零补足,
再把每3位二进制数对应的八进制数写出即可。
数字逻辑期末复习资料

第一章 数制与编码1、二、八、十、十六进制数的构成特点及相互转换;二转BCD :二B 到十D 到BCD ,二B 到十六H ,二B 到八O2、有符号数的编码;代码的最高位为符号位,1为负,0为正3、各种进制如何用BCD 码表示;4、有权码和无权码有哪些?BCD 码的分类:有权码:8421,5421,2421 无权码:余3码,BCD Gray 码 例:1、〔1100110〕B =〔0001 0000 0010〕8421BCD =〔102〕D =〔 66 〕H =〔146〕O〔178〕10=〔10110010〕2=〔0001 0111 1000 〕8421BCD =〔B2 〕16=〔 262〕8 2、将数1101.11B 转换为十六进制数为〔 A 〕A. D.C HB. 15.3HC. 12.E HD. 21.3H 3、在以下一组数中,最大数是〔 A 〕。
A.(258)D1 0000 0010B.(100000001 )B 257C.(103)H 0001 0000 0011259D.(001001010111 )8421BCD 2574、假设用8位字长来表示,〔-62〕D =( 1011 1110)原5、属于无权码的是〔B 〕A.8421 码B.余3 码 和 BCD Gray 的码C.2421 码D.自然二进制码 6、BCD 码是一种人为选定的0~9十个数字的代码,可以有许多种。
〔√〕 第二章 逻辑代数根底1、根本逻辑运算和复合逻辑运算的运算规律、逻辑符号;F=AB 与 逻辑乘 F=A+B 或 逻辑加F=A 非 逻辑反2、逻辑代数的根本定律及三个规则;3、逻辑函数表达式、逻辑图、真值表及相互转换;4、最小项、最大项的性质;5、公式法化简;卡诺图法化简〔有约束的和无约束的〕。
例:1、一个班级中有四个班委委员,如果要开班委会,必须这四个班委委员全部同意才能召开,其逻辑关系属于〔 A 〕逻辑关系。
A 、与B 、或C 、非 2、数字电路中使用的数制是〔 A 〕。
1no 计算机中的数据和编码

之
进位计数制
表1.1 计算机中的数制对照表 0 1 2 3 4 5 6 7 十进制 二进制 8 1000 9 1001 10 1010 11 1011 12 1100 13 1101 14 1110 15 1111
十六进制
8 9 A B C D E F
1.1 计算机中的数制
之
进位计数制
在进位计数制中,一个数码处在数的不同位置时, 它所代表的数值是不同的。每一个数位赋予的数值称为 位权,简称权。 权的大小是以基数为底,数位的序号为指数的整数 次幂,用I 表示数位的序号,用R 表示数位的权。 例:342.54各数位的权分别为102, 101, 100, 10−1和 10−2; 1011.01B各数位的权分别为23,
X1 X2
…
【例1.11】 写出真值X1 = +1001110,X2 = −1001110的补码。 [X1]补= 01001110 [X2]补= 10110010 【例1.12】 写出8位补码表示的最大和最小整数。 Max[X]补= [01111111]补 =+1111111B =+127 Min[X]补 = [10000000]补 = −10000000B = −128 8位补码表示整数的范围是+127~−128。 用补码表示法能使减法运算转化为加法运算,并且在进行加减运算时, 能使符号位和数值位一起运算,从而简化运算规则。
Xn
+1)。
计算机中数的表示 1.2 计算机中数的
之
机器数的表示方法
4.移码表示法 . 移码也称作增码,就是在补码的基础上增加一个偏移量。根据多数高 级程序语言软件包的实数标准格式,字长为8位的移码,其偏移量为 127(7FH);字长为11位的移码,其偏移量为1023(3FFH)。 【例1.14】 写出X1 =+0000011B,X2 = −0000011B的移码。 [X1]移 = [X1]补+偏移量 = [00000011B]补+01111111B = [10000010B]移; [X2]移 = [X2]补+偏移量= [11111101B]补+01111111B = [01111100B]移。
《数字电子技术》详细目录

《数字电子技术》目录第1章数制与编码1.1 数字电路基础知识1.1.1 模拟信号与数字信号1.1.2 数字电路的特点1.2 数制1.2.1 十进制数1.2.2 二进制数1.2.3 八进制数1.2.4 十六进制数1.3 数制转换1.3.1 二进制数与八进制数的相互转换1.3.2 二进制数与十六进制数的相互转换1.3.3 十进制数与任意进制数的相互转换1.4 二进制编码1.4.1 加权二进制码1.4.2 不加权的二进制码1.4.3 字母数字码1.4.4 补码1.5带符号二进制数的加减运算1.5.1 加法运算1.5.2 减法运算第2章逻辑门2.1 基本逻辑门2.1.1 与门2.1.2 或门2.1.3 非门2.2 复合逻辑门2.2.1 与非门2.2.2 或非门2.2.3 异或门2.2.4 同或门2.3 其它逻辑门2.3.1 集电极开路逻辑门2.3.2 集电极开路逻辑门的应用2.3.3 三态逻辑门2.4 集成电路逻辑门2.4.1 概述2.4.2 TTL集成电路逻辑门2.4.3 CMOS集成电路逻辑门2.4.4 集成逻辑门的性能参数2.4.5 TTL与CMOS集成电路的接口*第3章逻辑代数基础3.1 概述3.1.1 逻辑函数的基本概念3.1.2 逻辑函数的表示方法3.2 逻辑代数的运算规则3.2.1 逻辑代数的基本定律3.2.2 逻辑代数的基本公式3.2.3 摩根定理3.2.4 逻辑代数的规则3.3 逻辑函数的代数化简法3.3.1 并项化简法3.3.2 吸收化简法3.3.3 配项化简法3.3.4 消去冗余项法3.4 逻辑函数的标准形式3.4.1 最小项与最大项3.4.2 标准与或表达式3.4.3 标准或与表达式3.4.4 两种标准形式的相互转换3.4.5 逻辑函数表达式与真值表的相互转换3.5 逻辑函数的卡诺图化简法3.5.1 卡诺图3.5.2 与或表达式的卡诺图表示3.5.3 与或表达式的卡诺图化简3.5.4 或与表达式的卡诺图化简3.5.5 含无关项逻辑函数的卡诺图化简3.5.6 多输出逻辑函数的化简*第4章组合逻辑电路4.1 组合逻辑电路的分析4.1.1 组合逻辑电路的定义4.1.2 组合逻辑电路的分析步骤4.1.3 组合逻辑电路的分析举例4.2 组合逻辑电路的设计4.2.1 组合逻辑电路的一般设计步骤4.2.2 组合逻辑电路的设计举例4.3 编码器4.3.1 编码器的概念4.3.2 二进制编码器4.3.3 二-十进制编码器4.3.4 编码器应用举例4.4 译码器4.4.1 译码器的概念4.4.2 二进制译码器4.4.3 二-十进制译码器4.4.4 用译码器实现逻辑函数4.4.5 显示译码器4.4.6 译码器应用举例4.5 数据选择器与数据分配器4.5.1 数据选择器4.5.2 用数据选择器实现逻辑函数4.5.3 数据分配器4.5.4 数据选择器应用举例4.6 加法器4.6.1 半加器4.6.2 全加器4.6.3 多位加法器4.6.4 加法器应用举例4.6.5 加法器构成减法运算电路*4.7 比较器4.7.1 1位数值比较器4.7.2 集成数值比较器4.7.3 集成数值比较器应用举例4.8 码组转换电路4.8.1 BCD码之间的相互转换4.8.2 BCD码与二进制码之间的相互转换4.8.3 格雷码与二进制码之间的相互转换4.9 组合逻辑电路的竞争与冒险4.9.1 冒险现象的识别4.9.2 消除冒险现象的方法第5章触发器5.1 RS触发器5.1.1 基本RS触发器5.1.2 钟控RS触发器5.1.3 RS触发器应用举例5.2 D触发器5.2.1 电平触发D触发器5.2.2 边沿D触发器5.3 JK触发器5.3.1 主从JK触发器5.3.2 边沿JK触发器5.4 不同类型触发器的相互转换5.4.1 概述5.4.2 D触发器转换为JK、T和T'触发器5.4.3 JK触发器转换为D触发器第6章寄存器与计数器6.1 寄存器与移位寄存器6.1.1 寄存器6.1.2 移位寄存器6.1.3移位寄存器应用举例6.2 异步N进制计数器6.2.1 异步n位二进制计数器6.2.2 异步非二进制计数器6.3 同步N进制计数器6.3.1 同步n位二进制计数器6.3.2 同步非二进制计数器6.4 集成计数器6.4.1 集成同步二进制计数器6.4.2 集成同步非二进制计数器6.4.3 集成异步二进制计数器6.4.4 集成异步非二进制计数器6.4.5 集成计数器的扩展6.4.6 集成计数器应用举例第7章时序逻辑电路的分析与设计7.1 概述7.1.1 时序逻辑电路的定义7.1.2 时序逻辑电路的结构7.1.3 时序逻辑电路的分类7.2 时序逻辑电路的分析7.2.1时序逻辑电路的分析步骤7.2.2 同步时序逻辑电路分析举例7.2.3 异步时序逻辑电路分析举例7.3 同步时序逻辑电路的设计7.3.1 同步时序逻辑电路的基本设计步骤7.3.2 同步时序逻辑电路设计举例第8章存储器与可编程器件8.1 存储器概述8.1.1 存储器的分类8.1.2 存储器的相关概念8.1.3 存储器的性能指标8.2 RAM8.2.1 RAM分类与结构8.2.2 SRAM8.2.3 DRAM8.3 ROM8.3.1 ROM分类与结构8.3.2 掩膜ROM8.3.3 可编程ROM8.3.4 可编程ROM的应用8.4 快闪存储器(Flash Memory)8.4.1 快闪存储器的电路结构8.4.2 闪存与其它存储器的比较8.5 存储器的扩展8.5.1 存储器的位扩展法8.5.2 存储器的字扩展法8.6 可编程阵列逻辑8.6.1 PAL的电路结构8.6.2 PAL器件举例8.6.3 PAL器件的应用8.7 通用阵列逻辑8.7.1 GAL的性能特点8.7.2 GAL的电路结构8.7.3 OLMC8.7.4 GAL器件的编程与开发8.8 CPLD、FPGA和在系统编程技术8.8.1 数字可编程器件的发展概况8.8.2数字可编程器件的编程语言8.8.3数字可编程器件的应用实例第9章D/A转换器和A/D转换器9.1 概述9.2 D/A转换器9.2.1 D/A转换器的电路结构9.2.2 二进制权电阻网络D/A转换器9.2.3 倒T型电阻网络D/A转换器9.2.4 D/A转换器的主要技术参数9.2.5 集成D/A转换器及应用举例9.3 A/D转换器9.3.1 A/D转换的一般步骤9.3.2 A/D转换器的种类9.3.3 A/D转换器的主要技术参数9.3.4 集成A/D转换器及应用举例第10章脉冲波形的产生与整形电路10.1 概述10.2 多谐振荡器10.2.1 门电路构成的多谐振荡器10.2.2 采用石英晶体的多谐振荡器10.3 单稳态触发器10.3.1 门电路构成的单稳态触发器10.3.2 集成单稳态触发器10.3.3 单稳态触发器的应用10.4 施密特触发器10.4.1 概述10.4.2 施密特触发器的应用10.5 555定时器及其应用10.5.1 电路组成及工作原理10.5.2 555定时器构成施密特触发器10.5.3 555定时器构成单稳态触发器10.5.4 555定时器构成多谐振荡器第11章数字集成电路简介11.1 TTL门电路11.1.1 TTL与非门电路11.1.2 TTL或非门电路11.1.3 TTL与或非门电路11.1.4 集电极开路门电路与三态门电路11.1.5 肖特基TTL与非门电路11.2 CMOS门电路11.2.1 概述11.2.2 CMOS非门电路11.2.3 CMOS与非门电路11.2.4 CMOS或非门电路11.2.5 CMOS门电路的构成规则11.3 数字集成电路的使用。
1数制与编码

二进制数的特点:
• 只有两个数码, 很容易用物理器件来实现。
• 运算规则简单。
• 可使用逻辑代数这一数学工具。
• 节省设备
例:如需表示数字0~999,共有1000个信息量。
十进制:用3位,每位10个数字,共需30个数字设备。
二进制:用10位,每位2个数字,共需20个数字设备。
⒈真值:在数值前加“+”号表示正数; 在数值前加“-”号表示负数。 ⒉机器数:把符号数值化的表示方法称~。 用“0”表示正数,用“1”表示负数。 例: 真值 机器数 +9 +1001 01001 -9 -1001 11001
符号位
常用的机器数有:原码、反码、补码 其符号位规则相同,数值部分的表示形式有差异。
几种常用数制的 表示方法(P5)
R=10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
二进制 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000
八进制 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20
X ⑷数值范围 [X]反= n 1 (2 1) X ;0 X 2n ;-2n X 0
00000 [0]反= 11111
⒉ 特点(续)
⑸两数和的反码等于两数反码之和; ⑹符号位参与运算,有进位时循环相加。
循环相 加
例:已知 X1=1100 X2=1010 求 Y1= X1- X2 ; Y2= X2- X1
⑴等精度转换
设α进制有 i位小数,转换后β进制有 j位小数。 (0.0…01)α= (1×α-i)10 i位 (0.01)2= (1×2-2)10 (0.0…01)β = (1×β-j)10 j位 (0.1)4= (1×4-1)10
数制与编码专业知识讲座
整数 小数 整数部分 部分 部分 取1或0
小数部分
由(2)式知:等号两边旳整数部分和小数部分应分别相等。a-1=1。
(2)式等号两边分别减去a-1 =1,再分别乘以2得到:
0.252 = a-2 + a-3. 2-1 +……+ a-m+1. 2-m+3 + a-m. 2-m+2 =0. 5 (3)
整数部分 取1或0
因为24=16。
0000
0001
所以每四位二进制数就是一位十六进制数,如右表所示。 0 0 1 0
0011
转换措施:从小数点开始,分别向左、右方向每 四位一组地划分二进制数;然后把每四位一组旳 二进制数作为一位十六进制数。
0100 0101 0110 0111
1000
1001
例:(1 1 0 1 0 0 1 . 1 1 1)2 = ( 6 9 . E)16
(0.625)10 2进制数整数:
0.625-0.5(2-1)=0.125 a-1=1 0.125-0.125(2-3)=0 a-3=1
a-1=1; a-3=1。
a-2=0。
a-1a-2a-3=101
(43.625)10 =(101011.101)2
2. 10进制
8进制、16进制
转换措施:先由10进制转换为2进制,再由2进制转换为8进制或16进制。
16进制旳特点:逢16进1。有16个符号(数字):0,1, 2,3,4,5,6,7,8,9,A,B,C, D,E,F(没有16)
12/30/2023
7
数字电路——分析与设计
第1章 数制与编码
每一种数制旳“逢几进1”, 这个“几”就叫作该数制旳基数 , 用r表达。 10进制数旳基数r是10 ; 2进制数旳基数r是2 ; 8进制数旳基数r是8 ; 16进制数旳基数r是16 ; …… ; n进制数旳基数r是n 。
第1章 数制和码制ppt
21 2 157 128 29 16 13 8 5 4 1 1 0
22 4 27 24 23 22 20
23 8
24 16
25 32
26
27
28
29
210
64 128 256 512 1024
28 = 256 > 157 > 27 = 128
2 = 32 > 29 > 2 = 16
5 4
2 4 = 16 > 13 > 2 3 = 8
CopyRight @安阳师范学院物理与电气工程学院_2011
几种常用的BCD码 码 几种常用的 十进制数 0 1 2 3 4 5 6 7 8 9 权 8421码 余3码 码 码 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 8421 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 2421码 码 0000 0001 0010 0011 0100 1011 1100 1101 1110 1111 2421 5211码 码 0000 0001 0100 0101 0111 1000 1001 1100 1101 1111 5211
1. (1001)8421BCD=( ? )10 (1001)8421BCD=1×8+0×4+0×2+1×1=(9)10 2. (1011)2421BCD=( ? )10 (1011)2421BCD=1×2+0×4+1×2+1×1=(5)10
CopyRight @安阳师范学院物理与电气工程学院_2011
i =− m n −1
∑
第1章 数制与编码
常用BCD 常用 BCD 码
十进制数 8421 码 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 8 1000 9 1001 8421 权 余 3 码 格雷码 2421 码 0011 0000 0000 0100 0001 0001 0101 0011 0010 0110 0010 0011 0111 0110 0100 1000 0111 1011 1001 0101 1100 1010 0100 1101 1011 1100 1110 1100 1101 1111 2421 5421 码 0000 0001 0010 0011 0100 1000 1001 1010 1011 1100 5421
生 变 化 。 一 个 代 码 时 只 有 一 位 发 另 的 邻
相
格 雷 码 的 特 点 : 从 一 个 代 码 变 为
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2.奇偶校验码 奇偶校验码分为奇校验码和偶校验码两种。校验位的编码规 校验位的编码规 则是: 则是:对于奇校验码,若信息位中有偶数个1,则校验位为1; 对于偶校验码,若信息位中有奇数个1,则校验位为1。
5 5
5
5
5×100= 5 + =5555
同样的数码在不同的数 位上代表的数值不同。
即:(5555)10=5×103 +5×102+5×101+5×100 又如:(209.04)10= 2×102 +0×101+9×100+0×10-1+4 ×10-2
2、二进制 、
数码为:0、1;基数是2。 运算规律:逢二进一,即:1+1=10。 二进制数的权展开式: 如:(101.01)2= 1×22 +0×21+1×20+0×2-1+1 ×2-2 =(5.25)10
数制和码制
十进制转换为R进制: 需要将整数部分和小数部 分分别进行转换,然后再将它们合并起来。
整数依次除以R,用余数构成各位。 小数依次乘以R,用积的整数部分构成各位。 小数部分的转换有一个精度问题,不可能都十分准确 只要满足所提要求即可。 例如要求精度为 0.1% ,二进制数的小数点后第九位为 1 / 512,第十位为 1/ 1024。所以要保留到小数点后第 十位,第九位达不到要求,第十一位太多了。
结论: 1)减法运算=两数的补码相加 例如:13-10 这样的减法运算等价于13的补码与-10 的补码相加 2)两个加数的符号位、最高有效数字位的进位 这三 个数相加,得到的结果就是和的符号位。
1.5 几种常用的编码
一、十进制代码 我们常用的数字1、2、3……9、0 通常有两大用途: 表示大小: 10000(一万), 8848米。 表示编码:000213班, 8341部队。 我们习惯使用十进制,计算机硬件却是基于二进制的 ,所以我们需要考虑: 如何用二进制编码来表示十进制的十个码元0 ~ 9?
低位
所以:(44.375)10=(101100.011)2
采用基数连除、连乘法,可将十进制数转换为任意的N进制数。
二、二进制数与八进制数的相互转换
(1)二进制数转换为八进制数: 将二进制数由小数点开始, 整数部分向左,小数部分向右,每3位分成一组,不够3位补 零,则每组二进制数便是一位八进制数。
0 0 1 1 0 1 0 1 0. 0 1 0
0.375 × 2 整数 0.750 „„„ 0=K-1 0.750 × 2 1.500 „„„ 1=K-2 0.500 × 2 1.000 „„„ 1=K-3 高位
22 „„„ 0=K0 11 „„„ 0=K1 5 „„„ 1=K2 2 „„„ 1=K3 1 „„„ 0=K4 0 „„„ 5 1=K 高位
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电路应用
精度高、抗干扰能力强 0~+0V 1~+5V 结构简单、容易制造,便于集成及系列化生产 可以抽象到系统级、寄存器级、门级、物理级 疯狂的数字 音乐:CD、MP3 电影:MPEG、RM、DVD 数字电视 数字电路在日常生活、自动控 数字照相机 制、测量仪器、通信等领域得 数字摄影机 到广泛应用 手机
H B
=0101
1110. 1100=(5E.C) H
=0010
0011.0100 0010
= (100011.0100001)B
数字技术的发展过程
数字技术是一门应用学科,它的发展可分为5个阶段
① 产生:20世纪30年代在通讯技术(电报、电话)首 先引入二进制的信息存储技术。而在1847年由英国科学 家乔治.布尔(George Boole)创立布尔代数,并在电子电 路中的得到应用,形成开关代数,并有一套完整的数字 逻辑电路的分析和设计方法.
1958年第一块集成电路:TI公司的Kilby,12个器件,Ge晶片
数字电路分类
一、按集成电路规模分类 集成度:每块集成电路芯片中包含的元器件数目 小规模集成电路(Small Scale IC,SSI) 中规模集成电路(Medium Scale IC,MSI)
大规模集成电路(Large Scale IC,LSI)
电子管(真空管)
③第二阶段:20世纪60年代晶体管的出现,使得数字 技术有一个飞跃发展,除了计算机、通讯领域应用外, 在其它如测量领域得到应用
晶体管图片
获得1956年 Nobel物理奖
1947年12月23日 第一个晶体管 NPN Ge晶体管 W. Schokley J. Bardeen W. Brattain
超大规模集成电路(Very Large Scale IC,VLSI) 特大规模集成电路(Ultra Large Scale IC,ULSI)
巨大规模集成电路(Gigantic Scale IC,GSI)
划分集成电路规模的标准
类 别 SSI MSI LSI VLSI ULSI GSI 数字集成电路 MOS IC 双极IC <102 102~103 103~105 105~107 107~109 >109 <100 100~500 500~2000 >2000 模拟集成电路 <30 30~100 100~300 >300
1、N——〉十进制(权展开相加)
(123.4)10=1x102+2x101+3x100+4x10-1
(123.4)8 =1x82+2x81+3x80+4x8-1
=(83.4) 10
(123.4)16=1x162+2x161+3x160+4x16-1
=(291.25) 10 (1010.11) 2= 1x23+1x21+1x2-1 +1x2-2 =(10.75) 10
数字信号是一种二值信号,用两个电平(高电平和低电
平)分别来表示两个逻辑值(逻辑1和逻辑0)。
逻辑1
逻辑1
逻辑0
逻辑0
逻辑0
二、波形参数
1、理想数字信号的主要参数
V
Vm 0 tw T t (ms)
一个理想的周期性数字信号,可用以下几个参数来描绘: Vm——信号幅度。 T——信号的重复周期。 tW——脉冲宽度。 tW q ( ß )——占空比。其定义为: (%) q 100% T
第一台通用电 子计算机:
ENIAC
Electronic Numerical Integrator and Calculator
1946年2月14日
Moore School, Univ. of Pennsylvania
18,000个电子 管组成
②初级阶段:20世纪40年代电子计算机中的应用,此 时以电子管(真空管)作为基本器件。另外在电话交 换和数字通讯方面也有应用
1、工作任务不同:
模拟电路研究的是输出与输入信号之间的大小、相位、失 真等方面的关系;数字电路主要研究的是输出与输入间的逻辑 关系(因果关系)。
2、三极管的工作状态不同:
模拟电路中的三极管工作在线性放大区,是一个放大元件; 数字电路中的三极管工作在饱和或截止状态,起开关作用。 因此,基本单元电路、分析方法及研究的范围均不同。
BPRZ 曼彻斯特码 交替双极归零 1极性交替脉冲,0零电平 1下降沿,0上升沿
MVL 多值逻辑 不同电平代表不同数值
1.2、数制及变换
一 、数制
十进制 二进制 八进制 十六进制 N进制
0~9 0,1 0~7 0~9,A,B,C,D,E,F
逢十进位 逢二进位 逢八进位 逢十六进位
二 、数制及变换
Property)
本课程学习要求
深入掌握数字电路领域的基本概念和基本理论。 熟练掌握数字电路的分析和设计方法。 分析和设计方法是贯穿本课程的主线 逐步提高阅读集成电路产品手册的能力,以便从中 获取更多的信息。 积极实践,提高使用仪器、测试电路和排除故障的 能力
先修课程有:电路分析 线性电子电路等。 后续课程为:计算机组成原理、微机原理, EDA技术等。 数字逻辑电路是工学电子信息类专业、通讯类专业的重要 专业 基础课,主要讲述数字电路原理、方法和应用。
3、认真按时亲自做作业。对缺交1/3以上者,取消考试资格。
4、平时成绩:共20分 (1)作业:每次作业占1~2分 (2)平时表现:包括到课情况,课堂纪律。
第一章
数 制 与 编 码
教材原著:《数字电路》 龚之春 编著 主讲人:徐丽燕/牛小燕
杭州电子科技大学电子信息学院
第一章
数制与编码
一、信号(模拟信号、脉冲信号、数字信号) 1、模拟信号
课程内容包括: (一)数制与编码 (二)逻辑代数 (三)逻辑门 (四)双极型和单极型晶体管开关特性 (五)脉冲波形产生和整形电路 (六)组合逻辑电路 (七)触发器 (八)时序逻辑电路 (九)半导体存储器及可编程逻辑器件PLD (十)数模(D/A)及模数(A/D)转换
平时要求 1、坚持上课,无故旷课8学时以上,取消考试资格。 2、遵守课堂纪律,认真听课。课堂上讲话影响他人听课的, 作旷课处理。
下图所示为三个周期相同(T=20ms),但幅度、脉冲宽度 及占空比各不相同的数字信号。
V (V) 5 (a) 0 10 V (V) 20 30 40 50 t (ms)
(b)
3.6
0 10 10 (c) V (V) 20 30 40 50
t (ms)
0 10 20 30 40 50
t (ms)
2、实际数字信号波形参数 V0 起始电位 Vm脉冲幅度 VP脉冲峰值 Δ 平顶下降 δ 超量(过冲) t0起始时间 tr上升时间 tf下降时间 tw脉冲底部宽度 twA脉冲平均宽度 T 脉冲占空比 周期
(0.71) D (0.101101 ) B e
e 26
例 将(173.39)D转化成二进制数,要求精度为1%。
2 2 2 2 2 2 2 2 173 86 43 21 10 5 2 1 0
解:其过程如下 a. 整数部分 即(173)D=(10101101) B
1 (k ) 0 (k ) 1 (k ) 1 (k ) 0 (k ) 1(k ) 0 (k ) 1(k )
④第三阶段:20世纪60年代集成电路的出现,使得数 字技术有了更广泛的应用,在各行各业医疗、雷达、 卫星等领域都得到应用
⑤第四阶段:20世纪70年代中期到80年代中期,微电子 技术的发展,使得数字技术得到迅猛的发展,产生了大 规模和超大规模的集成数字芯片,应用在各行各业和我 们的日常生活
获得2000年Nobel物理奖
=(10101101.0110001)B
4、二进制、八进制、十六进制转换 每3位二进制变1位八进制 (1011110.11) (23.42)
O B
=001
011
110. 110=(136.6)O
=010
011. 100 010=(10011.10001)B
每4位二进制变1位十六进制 (1011110.11) (23.42)
互补金属氧化物半导体(CMOS)
镓砷化物(GaAs)
低
高
中
高
三、按电路结构分类
组合逻辑电路
时序逻辑电路
四、当前数字设计的趋势
越来越大的设计 越来越短的推向市场的时间
越来越低的价格
大量使用计算机辅助设计工具(EDA技术) 多层次的设计表述 大量使用复用技术
IP(Intellectual
二、按集成工艺分类
工艺类型 电阻晶体管逻辑(RTL) 二极管晶体管逻辑(DTL) 晶体管晶体管逻辑(TTL) 发射极耦合逻辑(ECL) 负金属氧化物半导体(pMOS) 正金属氧化物半导体(nMOS)
电源 速度 消耗 高 低 高 低 中 中 高 高
中 中 低 中
封装 分立 分立,SSI SSI,MSI SSI,MSI,LSI MSI,LSI MSI,LSI,VLSI SSI,MSI,LSI, VLSI SSI,MSI,LSI
特点: 幅值随时间 连续变化
2、脉冲信号
3、数字信号
特点:
幅值随时间离散变化
高电平 低电平 数字信号 V(t) 上升沿 下降沿
t
数字信号的特点 数字信号在时间上和数值上均是离散的。 数字信号在电路中常表现为突变的电压或电流。
V (V)
5
0 10 20 30 40 50
t (ms)
典型的数字信号
tw T
VPP
V0 起始电位
t0起始时间
Vm脉冲幅度
VP脉冲峰值 Δ 平顶下降
tr上升时间