3.4可控硅应用电路

合集下载

可控硅参与电路原理的应用

可控硅参与电路原理的应用

可控硅参与电路原理的应用可控硅的基本原理可控硅(SCR)是一种半导体器件,由一条PNPN的结构组成。

它具有三个电极:主电流电极(Anode)、门电极(Gate)和控制电压引脚(Cathode)。

可控硅工作在三个状态:关断状态、导通状态和封锁状态。

在关断状态下,不传导电流;而在导通状态下,可以通过控制电压引脚的信号来控制电流的通过。

可控硅的应用可控硅在电路中具有广泛的应用,在各种电子设备和电力系统中发挥着重要的作用。

以下是可控硅参与电路原理的几个常见应用案例:1. 电阻调光电路可控硅可以用于调光电路中,通过控制可控硅的触发角度来控制灯光的亮度。

在电路中,可控硅与保持电路和触发电路相结合,通过改变触发角度来改变可控硅的导通时间,从而实现灯光的调光效果。

2. 交流电压调整电路可控硅可以用于调整交流电压的电路中。

通过改变可控硅的触发角度,可以控制交流电压的波形,从而实现对交流电压的调整。

这种电路常见于家用电器中,如电视机、音响等。

3. 直流电机调速电路可控硅可以用于直流电机调速电路中。

在这种电路中,可控硅与直流电机串联,通过改变触发角度来改变可控硅的导通时间,从而控制电机的转速。

这在工业自动化控制系统中特别常见。

4. 交流电压调制电路可控硅可以用于交流电压调制电路中。

在这种电路中,可控硅与调制信号相结合,通过改变可控硅的触发角度来调制交流电压,从而实现对信号的调制。

这在通信设备中广泛应用,如调制解调器、无线电台等。

5. 开关电路可控硅可以用于开关电路中,通过控制触发角度来实现开关电路的切换。

在这种电路中,可控硅相当于一个可控开关,可以控制电流的通断。

这种电路常用于电源开关、电机起动电路等。

6. 正弦波发生器可控硅可以用于正弦波发生器中,通过改变触发角度来控制可控硅的导通时间,从而实现正弦波的生成。

这种电路常用于音频设备和信号发生器中。

7. 电能控制器可控硅可以用于电能控制器中,通过控制可控硅的导通时间来控制电能的输出。

简单粗暴--5分钟搞定可控硅电路应用

简单粗暴--5分钟搞定可控硅电路应用

简单粗暴--5分钟搞定可控硅电路应用可控硅对于电子工程师来说是个重要的元器件,对于一个合格的硬件工程师来说,必须要掌握可控硅的电路设计。

可控硅在各个领域应用广泛,常用来做各种大功率负载的开关。

相比继电器,可控硅有很多优势,继电器在开关动作时会产生电火花,在某些工业环境由于安全原因这是不允许的,继电器在开关动作时触点会发生氧化,影响继电器寿命,而这些缺点可控硅都能避免。

可控硅(Silicon Controlled Rectifier) 简称SCR,可控硅分单向可控硅和双向可控硅两种。

双向可控硅也叫三端双向可控硅,简称TRIAC。

双向可控硅在结构上相当于两个单向可控硅反向连接,这种可控硅具有双向导通功能。

其通断状态由控制极G决定。

在控制极G上加正脉冲(或负脉冲)可使其正向(或反向)导通。

单向可控硅工作原理单向可控硅的电流是从阳极流向阴极,交流电过零点时截止,如图交流电的负半周时,单向可控硅是不导通的,在正半周时,只有控制栅极有触发信号时,可控硅才导通。

双向可控硅工作原理双向可控硅的电流能从T1极流向T2极,也能从T2极流向T1极,交流电过零点时截止,只有控制栅极有正向或负向的触发信号时,可控硅才导通。

接下来我们讲解下使用最多的双向可控硅的一些电路应用上图中,VCC和交流电其中一端是连接在一起的,这样就能保证单片机是输出低电平信号触发可控硅,这样可控硅触发工作在第3象限,上图中避免可控硅触发使用高电平信号,避免可控硅触发工作在第4象限。

若运行在第4象限由于双向可控硅的内部结构,门极离主载流区域较远,导致需要更高的Igt,由Ig 触发到负载电流开始流动,两者之间迟后时间较长,导致要求Ig 维持较长时间,另外一个缺点就是会导致低得多的 dIT/dt 承受能力,若控制负载具有高dI/dt 值(例如白炽灯的冷灯丝),门极可能发生强烈退化。

查阅可控硅BT134器件规格书,也明确说明触发工作在第4象限,Igt需求更大。

可控硅调压电路原理

可控硅调压电路原理

可控硅调压电路原理
可控硅调压电路原理是一种常见的电子调节电压的方法。

它通过可控硅器件(又称二极管可控整流器)控制电流的导通时间来调节输出电压的大小。

可控硅器件是一种具有三个电极的半导体元件,包括主电极、控制电极和门极。

当在主电极与控制电极之间加上一定的正向电压,使得主电极与控制电极之间的结反向偏置矩形区域变窄,从而使得可控硅器件产生导通状态。

而若在主电极与控制电极间施加一定的反向电压,或是通过门极施加一个周期性的触发信号,可控硅器件将被迫断开导通状态。

可控硅调压电路主要由可控硅器件、控制电路和功率元件组成。

在控制电路中,通过对可控硅器件主、控制电极之间的脉冲信号的调节,控制器件导通时的时间和导通周期的比例。

在功率元件中,通过将可控硅器件与负载(如电阻、电感或电容)相连,使得输出电压与负载的关系得到控制。

可控硅调压电路的工作原理是将输入电源的交流电转换为直流电。

当输入电压施加到可控硅调压电路时,可控硅器件会在每个正弦周期的起始瞬间导通,从而导致电流在主电极和控制电极之间流通。

然后,可控硅器件会在每个正弦周期的结束瞬间断开导通。

因此,通过控制可控硅器件的导通时间和导通周期的比例,可以调节输出电压的大小。

总的来说,可控硅调压电路通过控制可控硅器件导通时间的长
短,实现对输出电压的调节。

这种电路具有简单、稳定、可靠的特点,在许多电子设备中广泛应用。

可控硅电路原理

可控硅电路原理

可控硅电路原理
可控硅电路由一对反向并联的晶体管和一个双极三层结构的可控硅管组成。

其原理是通过对可控硅管的控制信号进行调节,从而控制电流的通断。

可控硅管是一种具有耐压和耐电流能力较强的电子器件。

它由四层半导体材料构成,具有一个阴极、一个阳极和一个控制极。

其中,两个结构相反的PN结构形成一个“二极管”,而在PNPN结构中间有一个控制极。

当可控硅器件处于关闭状态时,两个结构相反的PN结构之间的势垒会完全封锁电流,不允许
通过。

而当施加一个正向触发电压时,PNPN结构中的电流传
输会被打开,使得电流可以通过。

因此,控制极上的信号决定了电流通断的状态。

可控硅电路常用于各种电子设备和电路中,如调光器、定时器等。

通过精确调节控制极上的触发电压,可控硅电路可以实现电流的精确控制,从而满足不同的需求。

总之,可控硅电路是一种通过调节控制信号来控制电流通断的电子器件。

它由可控硅管和晶体管构成,能够实现电流的精确控制。

这种电路在各种电子设备和电路中具有广泛应用。

可控硅工作原理及其应用新版

可控硅工作原理及其应用新版

可控硅工作原理及其应用新版可控硅(scr: silicon controlled rectifier)是可控硅整流器的简称。

可控硅有单向、双向、可关断和光控几种型别它具有体积小、重量轻、效率高、寿命长、控制方便等优点,被广泛用于可控整流、调压、逆变以及无触点开关等各种自动控制和大功率的电能转换的场合。

单向可控硅的工作原理单向可控硅原理可控硅是p1n1p2n2四层三端结构元件,共有三个pn结,分析原理时,可以把它看作由一个pnp管和一个npn管所组成当阳极a加上正向电压时,bg1和bg2管均处于放大状态。

此时,如果从控制极g输入一个正向触发讯号,bg2便有基流ib2流过,经bg2放大,其集电极电流ic2=β2ib2。

因为bg2的集电极直接与bg1的基极相连,所以ib1=ic2。

此时,电流ic2再经bg1放大,于是bg1的集电极电流ic1=β1ib1=β1β2ib2。

这个电流又流回到bg2的基极,表成正反馈,使ib2不断增大,如此正向馈迴圈的结果,两个管子的电流剧增,可控硅使饱和导通。

由于bg1和bg2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极g的电流消失了,可控硅仍然能够维持导通状态,由于触发讯号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。

由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化一、单向可控硅工作原理可控硅导通条件:一是可控硅阳极与阴极间必须加正向电压,二是控制极也要加正向电压。

以上两个条件必须同时具备,可控硅才会处于导通状态。

另外,可控硅一旦导通后,即使降低控制极电压或去掉控制极电压,可控硅仍然导通。

可控硅关断条件:降低或去掉加在可控硅阳极至阴极之间的正向电压,使阳极电流小于最小维持电流以下。

二、单向可控硅的引脚区分对可控硅的引脚区分,有的可从外形封装加以判别,如外壳就为阳极,阴极引线比控制极引线长。

从外形无法判断的可控硅,可用万用表r×100或r×1k 挡,测量可控硅任意两管脚间的正反向电阻,当万用表指示低阻值(几百欧至几千欧的範围)时,黑表笔所接的是控制极g,红表笔所接的是阴极c,余下的一只管脚为阳极a。

单向可控硅应用电路

单向可控硅应用电路

单向可控硅应用电路
单向可控硅(thyristor)是一种触发电极触发,使之导通的且
在导通后维持导通状态的半导体开关。

它可以用于控制交流电流或直流电流。

单向可控硅应用电路可以有多种形式,以下是其中一些常见的应用电路:
1. 单相交流电路控制:将单向可控硅连接在交流电源和负载之间,可以实现对交流电流的控制。

通过触发电极施加适当的触发脉冲,使可控硅导通,将电流传递给负载。

通过控制触发角来控制导通的时间。

2. 直流电源控制:将单向可控硅连接在直流电源和负载之间,可以实现对直流电流的控制。

通过触发电极施加适当的触发脉冲,使可控硅导通,将电流传递给负载。

通过控制触发角来控制导通的时间。

3. 灯光控制:在灯光控制中,单向可控硅可以用于控制灯的亮度。

通过控制可控硅的导通角和导通时间,可以调整灯光的亮度。

4. 电动机控制:单向可控硅可以用于控制电动机的启停和运行。

通过控制可控硅的导通时间和触发角,可以实现对电动机的速度和转向的控制。

以上只是在单向可控硅应用电路中的几个例子,实际应用中还
有更多其他的应用。

这些电路需要根据具体的需求和系统要求进行设计和优化。

可控硅控制电路图解

可控硅控制电路图解

可控硅控制电路图解可控硅是可控硅整流器的简称。

可控硅有单向、双向、可关断和光控几种类型。

它具有体积小、重量轻、效率高、寿命长、控制方便等优点,被广泛用于可控整流、调压、逆变以及无触点开关等各种自动控制和大功率的电能转换的场合。

单向可控硅是一种可控整流电子元件,能在外部控制信号作用下由关断变为导通,但一旦导通,外部信号就无法使其关断,只能靠去除负载或降低其两端电压使其关断。

单向可控硅是由三个PN结PNPN 组成的四层三端半导体器件与具有一个PN结的二极管相比,单向可控硅正向导通受控制极电流控制;与具有两个PN结的三极管相比,差别在于可控硅对控制极电流没有放大作用。

可控硅导通条件:一是可控硅阳极与阴极间必须加正向电压,二是控制极也要加正向电压。

以上两个条件必须同时具备,可控硅才会处于导通状态。

另外,可控硅一旦导通后,即使降低控制极电压或去掉控制极电压,可控硅仍然导通。

可控硅关断条件:降低或去掉加在可控硅阳极至阴极之间的正向电压,使阳极电流小于最小维持电流以下。

简易单向可控硅12V触摸开关电路触摸一下金属片开,SCR1导通,负载得电工作。

触摸一下金属片关,SCR2导通,继电器J得电工作,K断开,负载失电,SCR2关断后,电容对继电器J放电,维持继电器吸合约4秒钟,故电路动作较为准确。

如果将负载换为继电器,即可控制大电流工作的负载。

可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,活动导入以可控硅实际应用案例的展示,以激发学生的活动兴趣。

可控硅控制电路的制作13例1:可调电压插座电路如图,可用于调温(电烙铁)、调光(灯)、调速(电机),使用时只要把用电器的插头插入插座即可,十分方便。

V1为双向二极管2CTS,V2为3CTSI双向可控硅,调节RP可使插座上的电压发生变化。

2:简易混合调光器根据电学原理可知,电容器接入正弦交流电路中,电压与电流的最大值在相位上相差90°。

可控硅应用电路举例

可控硅应用电路举例

可控硅应用电路举例 1. 可控硅应用电路_直流可控硅触发电路:如图G2是一个电视机常用的过压保护电路,当E+电压过高时A点电压也变高,当它高于稳压管DZ的稳压值时DZ道通,可控硅D受触发而道通将E+短路,使保险丝RJ熔断,从而起到过压保护的作用。

2. 可控硅应用电路_相位可控硅触发电路:相位触发电路实际上是交流触发电路的一种,如图G3,这个电路的方法利用是RC回路控制触发信号的相位。

当R值较少时,RC时间常数较少,触发信号的相移A1较少,因此负载获得较大的电功率;当R值较大时,RC时间常数较大,触发信号的相移A2较大,因此负载获得较少的电功率。

这个典型的电功率无级调整电路在日常生活中有很多电气产品中都应用它。

可控硅的3种触发方式:1.强电触发: 采用MOC3061、MOC3021等高压光耦,从可控硅的A极引入触发电压,这种触发不需要其他触发电源,电路非常简单,主要元器件工作在400V强脉冲环境,可靠性最差。

采用触发二极管(DB3)电路与这种结构相似。

2.变压器隔离触发: 这是工业上最常用结构,优点是强弱电隔离触发波形好,缺点是长脉冲触发时变压器体积太大,成本高电路复杂。

元器件工作在100V脉冲环境,可靠性一般。

3.隔离电源直流触发: 图片上的这种触发结构,缺点是功耗较大,发热量大。

优点是强弱隔离触发电流大,低频长脉冲、高频脉冲串等都适用,电路简单成本低,元器件工作在20V脉冲环境。

可靠性好。

这种机构的移相触发器经半年多实际使用(10kw变压器负载,镀铝机蒸发舟加热),极少出现烧保险丝和烧可控硅现象,原来是采用变压器触发结构,经常烧保险丝,可控硅也有损坏。

以上仅是一己拙见,请大家谈谈各自看法。

 4.SCR全波整流稳压电源。

上述的半波整流稳压电源,其缺点是电源的低,其纹波也较大。

图5的SCR全波整流稳压电源,完全克服了上述的缺点。

该路的输出电压也为12V(也可改接成其他电压输出)。

该电路实际是由(上期第一版)图4的两个半波整流和稳压电路组合而成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可控硅应用电路
教学目的:1、掌握可控硅整流电路的工作原理。

2、了解音乐彩灯控制器的工作原理。

3、了解安全感应开关电路的工作原理。

教学重点:可控硅整流电路的工作原理。

教学难点:安全感应开关电路的工作原理。

教学方法与手段:1、教师讲授与多媒体课件相结合;实习实训相结合。

1、双向可控硅的触发特性和工作过程:
双向可控硅的电路符号是VS ,有三个电极阳极A1、A2、控制极G ; 如图9.13所示
图 9.13 双向可控硅电路符号
(2)触发条件:当A1—A2间加有电压(不论极性),A1—G 间加足够大的触发电压和电流时(不论极性),可控硅双向导通; (3) 可控硅导通后,去掉A1—G 间的触发电压,可控硅仍一直保持导通;
(4)当A1—A2
时,可控硅退出导通,A1—A2间呈高阻截止状态。

2、用多用电表检测双向可控
A1 A2 G
如图9.14为双向可控硅的管脚电极。

(1)检测控制极G与主电极A1、A2之间的电阻:
将多用电表置“R×1Ω”挡,测G与A1之间的
正、反向电阻均应为较小阻值;图9.14 双向可控硅正面引脚图
测G与A2之间的正、反向电阻,均应为无穷大。

(2)检测导通特性:
将多用电表黑表笔接A1,红表笔接A2,阻值应为无穷大,用螺丝刀将G与A2短接一下,表针应向右偏转并保持在十几欧姆处,否则说明可控硅已损坏。

如TLC386A双向可控硅,其耐压为700V,额定导通电流为3A。

3、应用
(2)用可控硅设计、安装可调光台灯试验
电路如图9.15所示
(1)元器件的选择与作用:
双向可控硅VS选用TLC386A,
双向二极管VD选用
VD
极性)高于VD
(2)工作原理:
交流电经灯泡、W、R对A2 VS A1
电容C 充电,当C 上的电压高于 VD 的击穿电压时,C 通过VD 向 可控硅的控制极G 放电, 触发双向可控硅VS 导通。

改变W 值,就改变了C 的充电速度, 图 9.15 双向可控硅调压电路
也就改变了双向可控硅的导通角,本电路在交流电的正、负两个半周都能工作,改变双向可控硅的导通角,完成交流调压。

在作本电路试验时,要注意安全、防止触电。

可将电路安装在台灯的绝缘底座内,检查焊接和绝缘没问题时,再通电试验。

(2)音乐彩灯控制器
从收录机等音响设备的扬声器两端,引出音频信号,经升压变压器T 升压后,作为单向可控硅的触发信号。

由于音频信号的幅度会随着音乐的节奏而不断变化,因此,当幅度大时,使可控硅导通,而幅度小
时,可控硅仍处于阻断状态。

这样可控硅就工作在导通、阻断或非全
R P。

相关文档
最新文档