2018秋八年级数学上册 第二章 实数 2.7 二次根式(2)习题

合集下载

北师大版八年级数学上册第二章实数知识点及习题

北师大版八年级数学上册第二章实数知识点及习题

知识点一、【平方根】如果一个数x的平方等于a,那么这个数x就叫做a的平方根;即:当x2 a(a 0)时,我们称x是a的平方根,记做:x ...a (a 0)。

因此:1、当a=0时,它的平方根只有一个,也就是0本身;2、当a>0时,也就是a为正数时,它有两个平方根,且它们是互为相反数,通常记做:x .. a。

3、当a v0时,即a为负数时,它不存在平方根。

例1: (1) ______ 的平方是64,所以64的平方根是 _________ 。

(2) _______ 的平方根是它本身。

(3) _____________________________ 若.x的平方根是立,则x= ; . 16的平方根是 ______________________________________ 。

(4)当x ________________ 时,3-2x有意义。

(5) ______________________________________________ 一个正数的平方根分别是m和叶4,则m的值是 ______________________________________ ,这个正数是_______ 。

知识点二、【算术平方根】:1、如果一个正数x的平方等于a,即x2a,那么,这个正数x就叫做a的算术平方根,记为:“订”,读作,根号a”,其中,a称为被开方数。

特别规定:0的算术平方根仍然为0。

2、算术平方根的性质:具有双重非负性,即:,a 0(a 0)。

3、算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:掐;而平方根具有两个互为相反数的值,表示为:Ja。

例2: (1)下列说法正确的是( )A、1的立方根是 1 ;B、•- 4 2 ;C、81的平方根是 3 ;D、0没有平方根•(2)下列各式正确的是( )A、陌9B、3.14 3.14 C"27 恥D、屈 V3 42(3) ________________________ ( 3)2的算术平方根是_______________________ 。

北师大版八年级数学上册第2章 实数 二次根式的混合运算

北师大版八年级数学上册第2章 实数 二次根式的混合运算
(2)(2022 3)0 + 3 12 - 6 . 2
解:(1) 原式 6 33 3 3 6 3 3 .
(2) 原式 1+2 3 3 3 3 2 .
归纳 有绝对值符号的,同括号一样,先去绝对值,注 意去掉绝对值后,得到的数应该为正数.
例2 计算:
(1) 3 2 ; (2) 18 8 1 ; (3)( 24 1 ) 3.
(2)已知 x 5 1,y 5 1,求 x2 xy y2的值.
2
2
解: x y 5 1 5 1 5,xy 5 1 5 1 1,
2
2
2
2
x2 xy y2 x y2 xy
2
5 1 4.
能力提升: 6. 阅读下列材料,然后回答问题:
在进行类似于二次根式 2 的运算时,通常有如下
a2 b2 2 (a b)2 2ab 2
(2 5)2 2 2 20 2 5.
练一练 已知 10 的整数部分是 a,小数部分是 b,求 a2 - b2 的值.
解: 3 10 4,
a 3,b 10 3. a2 b2 32 ( 10 3)2
3 10 3 3 10 3 10 6 10
如图所示.
S梯形ABCD 1 (CD AB) DE
2
E
16 23 2
2
1 ( 2 5 2)3 2 18.
2
归纳:利用二次根式可以简单便捷的求出结果.
例4 教师节就要到了,小欣同学准备做两张大小不同 的正方形贺卡送给老师以表示祝贺,其中一张面积为 288 平方厘米,另一张面积为 338 平方厘米. 如果用彩 带把贺卡镶边会更漂亮,她现在有 1.5 米的彩带,请你 帮忙算一算她的彩带够不够用.
1. 下列计算中正确的是( B )

北师版八年级上册数学第2章 实数 二次根式的混合运算

北师版八年级上册数学第2章 实数 二次根式的混合运算

2.(2019·滨州)计算:-12-2-| 3-2|+ 32÷ 118=_2_+__4__3__.
3.(2018·泰州)下列运算正确的是( D )
A. 2+ 3= 5 B. 18=2 3
C. 2· 3= 5
D. 2÷ 12=2
4.(2019·重庆)估计 5+ 2× 10的值应在( B ) A.5 和 6 之间 B.6 和 7 之间 C.7 和 8 之间 D.8 和 9 之间
【点拨】 5+ 2× 10= 5+2 5=3 5. 因为 3 5= 45,36<45<49,所以 6< 45<7.
5.(中考·聊城)计算5
15-2
45÷(-
5)的结果为(
A
)
A.5 B.-5 C.7 D.-7
【点拨】原式=( 5-6 5)÷(- 5)=(-5 5)÷(- 5)=5.
6.计算:
(1)(2019·泰州) 8-
8.(2019·孝感)下列计算正确的是( A )
A.x7÷x5=x2
B.(xy2)2=xy4
C.x2·x5=x10
D.( a+ b)( a- b)=b-a
9.已知 a=2 2+3,b=2 2-3 则:(1)a+b=4 2; (2)a-b=___6_____;(3)ab=___-__1___; (4)a2+b2=___3_4____;(5)a2-2ab+b2=___3_6____.
解:原式=9-7+2 2-2+(2- 3)[(2+ 3)(2- 3)]2 021 =2 2+2- 3.
12.已知 a= 51-2,b= 51+2,求 a2+b2+7的值.
解:由已知得 a= 5+2,b= 5-2,所以 a+b=2 5,ab=1. 所以原式= (a+b)2-2ab+7= (2 5)2-2+7=5.

北师大版数学八年级上册 二次根式的运算

北师大版数学八年级上册  二次根式的运算

的值. 解:由题意得 32mn21n2,3, 解得
m
n
4, 3 1, 2
即 mn 4 1 6 .
32 3
归纳 确定可以合并的二次根式中字母取值的方法:利 用被开方数相同,指数都为 2 ,列关于待定字母的方 程求解即可.
【变式题】如果最简二次根式 2 3a 8与 17 2a 可以合
并,那么要使式子 4a 2x 有意义,求 x 的取值范围.
3. 下列二次根式,不能与 12 合并的是__②__⑤___ (填
序号).
① 48 ;②- 125 ;③ 11 ;④ 3 ;⑤ 18.
3
2
例7
已知 a,b,c 满足 a
2
8
b5 c3
2 0.
(1) 求 a,b,c 的值;
(2) 以 a,b,c 为三边长能否构成三角形?若能构成
三角形,求出其周长;若不能,请说明理由. 解分:析(:1)(1由)若题几意个得非a 负 式8 的 2和2为,零b , 5则,这c 几3个2非. 负式 (必2)然能都. 理为由零如;下(2:)根∵据2三2角<3形2的<三5,边即关a<系c来<判b.断.
又∵ a c 5 2 5,∴ a + c>b.
∴ 能够成三角形,周长为 a b c 5 2 5.
【变式题】有一个等腰三角形的两边长分别为
5 2,2 6,求其周长. 解:当腰长为 5 2 时, ∵ 5 2 5 2 10 2>2 6, ∴ 此时能构成三角形,周长为 10 2+2 6; 当腰长为 2 6 时, ∵ 2 6 2 6 4 6>5 2, ∴ 此时能构成三角形,周长为 5 2+4 6.
C. 2 3 5
D. 4 5 5 5 20 5
3. 计算:

2.7.2二次根式

2.7.2二次根式
根据以上法则化简下列各式:(两种方法)
① 2 4
② 5 9
2 ③ 4
2 2
3 5
2 2
教师精讲
例1 化简:
① 50
5 2
② 48 3 ③ 5
3 3
1 5
4 5 5
小老师讲解
1 化简: ① 8 8 ② 27
2 4
2 6 9
2 3
③ 2 6
随堂练习
① 18
化简: 3 2
-2 3
②3 3 75
41 7 7
当堂检测
① 2 10 3 30
1 ② 5 16
-60 3
9 4
5 2
③ 8 18
④3 6(3 2 15)
18 3-9 10
⑤(5 6)(5 2 2 3)
解:原式=25 2-10 3+10 3-6 2 =19 2
作业布置
完成《全品学练考》 (课时作业)
③ 2 7
14 7
归纳提升
最简二次根式:①被开方数的因数是整数,因式 是整式②被开方数中不含开得尽方的因数或因式. (1)当被开方数是整数时,应先将它分解因数, 再进行开方运算 (2)当被开方数是小数或带分数时,应先将小 数化为分数的形式,或者将带分数化为假分数的 形式,再进行开方运算.
每日一题 1 化简2 28+ - 700 7
第二章
二次根式(二)
北大附中河南分校
学习目标
1.公式
a b
a b a b(a≥0,b≥0),
a b (a≥0,b>0)从右往左的运用.
2.了解含根号的数的化简,利用化简对实 数进行简单的四则运算. 3.灵活运用两个法则进行有关实数的四则 运算.

八年级数学上册第二章实数知识点总结+练习

八年级数学上册第二章实数知识点总结+练习

第二章:实数【无理数】1. 定义:无限不循环小数的小数叫做无理数;注:它必须满足“无限”以及“不循环”这两个条件。

2. 常见无理数的几种类型:(1)特殊意义的数,如:圆周率π以及含有π的一些数,如:2-π,3π等;(2)特殊结构的数(看似循环而实则不循环):如: 010 001 000 01…(两个1之间依次多1个0)等。

(3)无理数与有理数的和差结果都是无理数。

如:2-π是无理数 (4)无理数乘或除以一个不 为0的有理数结果是无理数。

如2π,(5)开方开不尽的数,如:39,5,2等;应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:π)(3.有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。

例:(1)下列各数:①、②……、③75-、④π、⑤252.±、⑥32-、⑦……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有____;是无理数的有___。

(填序号) (2)有五个数:…,…,-π,4,32其中无理数有 ( )个 【算术平方根】:1. 定义:如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”,读作,“根号a ”,其中,a 称为被开方数。

例如32=9,那么9的算术平方根是3,即39=。

特别规地,0的算术平方根是0,即00=,负数没有算术平方根。

2.算术平方根具有双重非负性:(1)若a 有意义,则被开方数a 是非负数。

(2)算术平方根本身是非负数。

3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个例:(1)下列说法正确的是 ( )A .1的立方根是1±;B .24±=;(C )、81的平方根是3±; (D )、0没有平方根;(2)下列各式正确的是( )A 、981±=B 、14.314.3-=-ππC 、3927-=-D 、235=- (3)2)3(-的算术平方根是 。

北师大版八年级数学上册2.7二次根式计算专题( 含答案解析)

北师大版八年级数学上册2.7二次根式计算专题( 含答案解析)

北师大版八年级数学上册2.7二次根式计算专题1.计算:(1))3127(12+- (2)()()6618332÷-+- 【答案】(1)334- (2)2【解析】试题分析:(1==(2312=-= 考点:实数运算点评:本题难度较低,主要考查学生对平方根实数运算知识点的掌握。

要求学生牢固掌握解题技巧。

2.(÷【答案】1【解析】试题分析:(-=(32⨯⨯1= 考点:二次根式的化简和计算点评:本题考查二次根式的化简和计算,关键是二次根式的化简,掌握二次根式的除法法则,本题难度不大3.计算(每小题4分,共8分)(1(2)【答案】【解析】试题分析:原式=-+2)原式+考点:实数的运算点评:实数运算常用的公式:(1)2(0)a a =≥(2,a =(30,0)a b =≥≥(40,0)a b=≥≥.4.计算:(1) (2)(3+ (4)14【答案】(1),(2),(3)194-13,(4【解析】本题考查二次根式的加减法.根据二次根式的加减法法则进行计算解:(1)原式= 2)原式=-(3)原式= 24+= 4(4)原式3-25.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--. 【答案】22. 【解析】试题分析:根据二次根式的运算法则计算即可.-==. 考点:二次根式的计算.7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0.【解析】试题分析: 根据二次根式运算法则计算即可.==⎝.考点:二次根式计算.9.计算:()0+1π错误!未找到引用源。

.【答案】1-【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=-考点:二次根式的化简.10.计算:435.03138+-+【答案】323223+.【解析】试题分析:先化成最简二次根式,再进行运算.试题解析:原式=2322322+-+=323223+.考点:二次根式的化简.11.计算:(1)(2)()02014120143π----【答案】(1)1(2)3-【解析】试题分析:(1)根据二次根式的运算法则计算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,绝对值4个考点分别进行计算,试题解析:(1(2)()20141201431133π---=--+=-考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.计算:212)31()23)(23(0+---+【答案】2.【解析】试题分析:本题主要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法.(1==+试题解析:解:原式=2123+--=2考点:二次根式的混合运算.130(2013)|+-+-.【答案】1.【解析】试题分析:0(2013)|+-+-1=+1=. 考点:二次根式化简.14.计算:⎛÷ ⎝2+ 【答案】5【解析】试题分析:解:原式13⎛=÷ ⎝153== 考点:实数运算点评:本题难度较低,主要考查学生对实数运算知识点的额掌握,为中考常考题型,要求学生牢固掌握。

北师大版数学八年级上册 2.7 二次根式

北师大版数学八年级上册 2.7   二次根式

问题 你还记得单项式乘单项式法则吗?
提示:可
试回顾如何计算 3a2·2a3 = 6a5 . 类比上面
例3 计算:
的计算哦!
(1)2 5 3 7;
(2)4
27

1 2
3 .
解:(1)2 5 3 7 23 5 7 =6 35.
(2)4
27
1 2
3
4
1 2
27 3 29 18.
二次根式
定义
带有二次根号 被开方数为非负数
在有意义条 件下求字母 的取值范围
抓住被开方数必须为非 负数,从而建立不等式 求出其解集.
二次根式的 双重非负性
最简二次根式
二次根式 a中,a≥0 且 a ≥0
北师大版数学八年级上册
第二章 实数
2.7 二次根式
第2课时 二次根式的运算
1. 满足什么条件的根式是最简二次根式?试化简下列二次 根式: 8 ,18 ,80 ,0.5 ,1 ,20 .
前者 x 为全体实数,后者 x 为非负数.
问题2 二次根式 a 的被开方数 a 的取值范围是什么? 它本身的取值范围又是什么?
当 a>0 时, a 表示 a 的算术平方根,因此 a >0; 当 a = 0时, a 表示 0 的算术平方根,因此 a = 0. 这就是说,当 a≥0 时, a ≥0.
归纳总结
一定是二次根式的有 A. 3 个 B. 4 个
C. 5 个
( B) D. 6 个
2.(1)若式子
x
2
1
在实数范围内有意义,则
x
的取值
范围是__x_≥__1__;
(2)若式子 1 x 在实数范围内有意义,则 x 的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档