【最新】《复变函数》总结
复变函数重要知识点总结

复变函数重要知识点总结复变函数是数学中一个非常重要的分支,它在数学、物理、工程等领域都有着广泛的应用。
下面将对复变函数的一些重要知识点进行总结。
一、复数的基本概念复数是由实数和虚数组成的数,通常表示为$z = x + yi$,其中$x$ 称为实部,$y$ 称为虚部,$i$ 是虚数单位,满足$i^2 =-1$。
复数的模长定义为$|z| =\sqrt{x^2 + y^2}$,表示复数在复平面上的距离。
复数的辐角定义为$\theta =\arctan\frac{y}{x}$,表示复数与实轴正方向的夹角。
二、复变函数的定义复变函数是定义在复数域上的函数,通常表示为$w = f(z)$,其中$z$ 是自变量,$w$ 是因变量。
复变函数的导数定义与实函数类似,但需要满足柯西黎曼方程:$\frac{\partial u}{\partial x} =\frac{\partial v}{\partial y}$,$\frac{\partial u}{\partial y} =\frac{\partial v}{\partial x}$,其中$f(z) = u(x,y) + iv(x,y)$。
三、解析函数如果一个复变函数在某点及其邻域内可导,就称该点为函数的解析点。
如果函数在一个区域内处处解析,就称该函数为解析函数。
解析函数具有很多良好的性质,如柯西定理、柯西积分公式等。
四、复变函数的积分复变函数的积分定义为沿着一条曲线对函数进行积分。
柯西定理指出,如果函数在一个单连通区域内解析,那么沿着该区域内任何一条闭合曲线的积分都为零。
柯西积分公式则给出了函数在某点的值与沿着该点周围闭合曲线的积分之间的关系。
五、级数复级数包括幂级数和 Laurent 级数。
幂级数是形如$\sum_{n=0}^{\infty} a_n (z z_0)^n$ 的级数。
收敛半径可以通过比值法或根值法求得。
Laurent 级数是在圆环域内展开的级数,包括正则部分和主要部分。
(完整版)复变函数知识点总结

(完整版)复变函数知识点总结复变函数知识点总结1. 复数与复变函数- 复数是实数和虚数的组合,可表示为a + bi的形式,其中a和b分别是实部和虚部。
- 复变函数是以复数为自变量和因变量的函数,例如f(z)。
2. 复变函数的运算规则- 复变函数的加法和减法:对应实部和虚部进行分别运算。
- 复变函数的乘法:使用分配律进行计算。
- 复变函数的除法:使用共轭形式并应用分配律和除法规则。
3. 复变函数的解析表示- 复变函数可以用级数形式表示,即幂级数或洛朗级数。
- 幂级数表示为f(z) = ∑(c_n * (z - z_0)^n),其中c_n是幂级数的系数,z_0是展开点。
- 洛朗级数表示为f(z) = ∑(c_n * (z - z_0)^n) + ∑(d_n * (z -z_0)^(-n))。
4. 复变函数的性质- 全纯性:如果一个函数在某个区域内都是解析的,则称其为全纯函数。
- 解析性:如果一个函数在某一点附近有解析表示,则称其为解析函数。
- 保角性:保持角度的变化,即函数对角度的保持。
- 映射性:函数之间的对应关系,实现从一个集合到另一个集合的映射。
5. 复变函数的应用- 物理学:用于描述电磁场、电路等问题。
- 工程学:用于信号处理、图像处理等领域。
- 统计学:用于数据分析、模型拟合等方面。
6. 复变函数的计算方法- 积分计算:使用路径积分或者柯西公式进行计算。
- 极限计算:使用洛朗级数展开或级数加和求解极限。
- 零点计算:使用代数方法或数值解法求解函数的零点。
以上是复变函数的知识点总结,希望对您有所帮助!。
复变函数积分(总结).

意点的函数值也就完全确定;且其模 在f (边z)界处取得极值
3.解析函数可利用积分形式表示 f (z) 1 f ( )d
2i C z
4.解析函数的任意阶的导数都是存在的,且都是解析函数.
例1:
z3 cos 1
z 2dz
n
f (z)dz
C
=
k 1
Ck
f (z)dz
接下来,一般可按照情形(2)利用柯西积分公式进行计算
问题:若柯西积分公式不能利用的话, ????? 第五章,将给出一个计算积分简单实用的“万能公式”
3. 解析函数的性质
1. 在(多)连通域内解析的函数沿(多)连通域的边界积分值为0。
f (z)dz 0
分别围绕z1 , z2 构造小的闭曲线C1 , C2
根据复合闭路定理
c
(z
z 1)( z
1) 2
dz
c1
(z
z 1)(z
1) 2
dz
c2
(z
z 1)(z
1) 2
dz
i i 0
22
例4:
z zdz z zdz
z 3 z
z 3 3
1
1
z dz z dz
3 z 3
3 z 3
z
dz
c (z 1)( z 1)2
解: 被 积 函 数
z
在 积 分 曲 线 所 围 成 的 区域 内 只 有 一 个 奇 点
(z 1)(z 1)2
z 1
分母 z 1为零的点
z
(z
z 1)2
(z 1)(z 1)2
z 1
z dz c (z 1)(z 1)2
复变函数总结完整版

第一章复数1 i 2=-1 i = ∙, -1 欧拉公式z=x+iy实部Re Z 虚部Im Z2运算① z1≡z2^ Rez1=Rez2Imz1=Imz2②(z1±z2)=Re(z1±z2)+lm(z1±z2)= (Rez1±Rez2)+(lm z1+ Im Z2)乙Z2③=χ1 iy1 χ2 iy2X1X2iχ1y2iχ2y1- y1y2=X1X2 -y』2 i χ1y2 χ2y1④z1 _ z1z2 一χ1 i y1 χ2 -iy2 _ χ1χ2 y1y2 i y1χ2 -χ1y22 2 2 2Z2 Z2Z2 χ2 iy2 χ2 -iy2 χ2 y2 χ2 y2⑤z = X - iy 共轭复数z z =(x+iy I x — iy )=χ2+ y2共轭技巧运算律P1页3代数,几何表示^X iy Z与平面点χ,y-------- 对应,与向量--- 对应辐角当z≠0时,向量Z和X轴正向之间的夹角θ ,记作θ =Arg z= V0■ 2k二k= ± 1 ± 2± 3…把位于-∏v二0≤∏的厲叫做Arg Z辐角主值记作^0= argz04如何寻找arg Zπ例:z=1-i4πz=i2πz=1+i4z=-1 π5 极坐标: X = r CoSr , y = r sin 二Z=Xiy = r COSr isin利用欧拉公式e i 71 =COS71 i Sin71例2 f Z = C 时有(C )=0可得到z=re°Z z2=r1e i J r2e i72=r1r2e iτe i72= r1r2e i 71'y^ 6高次幂及n次方n n in 「nZ Z Z Z ............ z=re r COS 1 Sin nv凡是满足方程国=Z的ω值称为Z的n次方根,记作CO =^Z☆当丄二f Z o时,连续例1 证明f Z =Z在每一点都连续证:f(Z f(Z o )= Z - Z o = Z - Z o τ 0ZT Z o 所以f z = Z在每一点都连续3导数f Z o Jm fZ一f zoz-⅛z°Z-Z o,2n第二章解析函数1极限2函数极限①复变函数对于任一Z- D都有W FP与其对应川=f Z注:与实际情况相比,定义域,值域变化例f z = zZ—Z o 称f Z当Z-:Z o时以A为极限df(z lZ=Zo1例2 f Z = C 时有(C )=0根据C-R 条件可得2x =0,2y = 所以该函数在Z =O 处可导4解析若f z 在Z 00= X = 0,^0的一个邻域内都可导,此时称用C-R 条件必须明确u,v 四则运算 f 一 g =「- g rkf =kf f g = f g f gf Z 在Z 0处解析。
复变函数知识点

复变函数知识点
以下是 7 条复变函数知识点:
1. 复数到底是啥玩意儿呀?就好比孙悟空有七十二变,复数就是实数加上虚数这个奇特的组合。
比如说,3+4i 就是一个复数,例子就是在研究交流电信号的时候就会用到复数呀。
2. 复变函数的极限可重要啦!这就好像跑步比赛中朝着终点冲刺的那个瞬间。
例如计算当 z 趋近于某个值时函数值的趋向,这在很多工程问题中可关键了呢!
3. 连续性呀,那可是复变函数的一大特点哦!好比一条顺畅的道路没有任何颠簸。
想想看,一个复变函数在某个区域内连续,多干脆利落呀,比如研究弹性力学中的问题时就能体现出来。
4. 导数呢,就好像汽车的速度表,能告诉我们函数变化的快慢。
例如函数 f(z)=z^2 的导数就是 2z 呀,这在分析信号变化率的时候很有用呢!
5. 积分也是超级有趣的呢!就像是积累财富一样,一点一点地攒起来。
比如说计算沿着一条曲线对复变函数的积分,在电磁学里可常见啦。
6. 解析函数,哇哦,这可是相当厉害的角色呢!好比一个武林高手,有着非凡的能力。
像指数函数就是解析函数呀,在解决电路问题时经常能看到它的身影。
7. 柯西定理,嘿,这可是复变函数里的宝贝呀!就像一把万能钥匙。
比如利用它可以很巧妙地计算一些复杂的积分呢。
我觉得呀,复变函数虽然有点抽象,但真的超级有意思,里面充满了各种奇妙的东西等你去发现呢!。
复变函数-总结

所 以 vx,y1y22xy-1x2c. 于是
2
2
27
fzx2-y2xy i 1 2y22 xy-1 2x2 c
由f00( x y 0 0) c0 从而
fz x 2- y 2 x y i 1 2 y 2 2 x y - 1 2 x 2 1 - 2 i z 2
即为所求解析函数。
等价定义:
设 f (z) = u(x,y) + iv(x,y) , A = u0+iv0 , z0 = x0+iy0 ,
那么
lim f (z)
zz0
运算性质:
limu(x, Axyxyl im xxyy0000 v(x,
y) y)
u0 v0
.
( 1 ) li (f m ( z ) g ( z ) ) lifm ( z ) lig ( m z )
例题1 一调和函数 ux,yx2-y2xy,
求一解析函数 fzuiv使 f00.
解:〔法一〕 ux2xy,uy-2yx
由 C-R 方程 v y u x 2 x y v 2 x y d y
由 v x - u y 2x2 yy 12c y2x c 2 xy - x v x c2xyc-12xx2,c,
9
对复平面内任一
x3
点z, 用直线将z
除了复数的平面表 示方法外, 还可以
与N相连, 与球面
N(0,0,2r) 用球面上的点来表
相交于P点, 那么
示复数.
球面上除N点外
x3
的所有点和复平
面上的所有点有
P(x1,x2,x3)
一一对应的关系,
而N点本身可代
表无穷远点, 记 作 .这样的球面
复变函数总结

若函数 f (z) u( x, y) iv( x, y) 在点 z x yi 处 可导,则其导数公式:
定理2 函数 f (z) u( x, y) iv( x, y) 在其定义 域 D内解析的充要条件是: u( x, y)与 v( x, y) 在 D内可微, 并且满足柯西-黎曼方程.
又
w1 z
1 x iy
x iy x2 y2
1 ( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
26
(2) x 2. 解 因为 z x iy 2 iy
1 (1 2
3i ),
z2
sin
3
i
cos
, 3
求
z1
z2
和
z1 z2
.
解
因为
z1
cos
3
i sin
3
,
z2
cos
6
i
sin
6
,
所以
z1
z2
cos
3
6
i sin
3
6
i,
z1 z2
cos
3
6
i
sin
3
6
3 1i. 22
19
例 计算 3 1 i 的值.
解 因为 n 1 所以 1 2 n1 1 n 0. 1
8
例
设
z1
5 5i,
z2
3 4i,
求 z1 z2
与
z1 z2
复变函数知识点总结

复变函数知识点总结复变函数是数学中重要的概念,它在分析学、微分几何、数学物理等领域都有着广泛的应用。
本文将对复变函数的基本概念、性质和常见定理进行总结,希望能够帮助读者更好地理解和掌握复变函数的相关知识。
1. 复数与复变函数。
复数是由实部和虚部组成的数,通常表示为z=x+iy,其中x为实部,y为虚部,i为虚数单位,满足i^2=-1。
复数可以用平面上的点来表示,称为复平面,实部x对应横坐标,虚部y对应纵坐标。
复变函数是定义在复平面上的函数,通常表示为f(z),其中z为复数变量。
2. 复变函数的导数与解析函数。
与实变函数类似,复变函数也有导数的概念,称为复导数。
如果一个函数在某点处可导,并且在该点的邻域内处处可导,那么称该函数在该邻域内解析。
解析函数具有很多良好的性质,比如在其定义域内可以展开成幂级数。
3. 共轭与调和函数。
对于复数z=x+iy,其共轭复数定义为z的实部不变,虚部取相反数,记为z=x-iy。
对于复变函数f(z),如果它满足柯西-黎曼方程,即满足一阶偏导数存在且连续,并且满足偏导数的连续性条件,那么称f(z)为调和函数。
4. 柯西-黎曼方程与全纯函数。
柯西-黎曼方程是复变函数理论中的重要定理,它建立了解析函数与调和函数之间的联系。
柯西-黎曼方程指出,如果复变函数f(z)=u(x,y)+iv(x,y)在某点处可导,那么它满足柯西-黎曼方程,即u和v满足一阶偏导数的连续性条件。
满足柯西-黎曼方程的函数称为全纯函数,也称为解析函数。
5. 柯西积分定理与留数定理。
柯西积分定理是复变函数理论中的重要定理之一,它指出如果f(z)在闭合区域内解析,并且沿着闭合区域的边界进行积分,那么积分结果为0。
留数定理是计算闭合曲线积分的重要方法,它将积分结果与函数在奇点处的留数联系起来,从而简化了积分的计算。
6. 应用领域。
复变函数在物理学、工程学、经济学等领域都有着重要的应用,比如在电路分析中的传输线理论、振动理论中的阻尼比计算、流体力学中的势流与涡流等方面都需要用到复变函数的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新】《复变函数》总结
复变函数是指把一个复变量的变量表示为函数的过程,也是复变量和复函数之间的等
价关系,它有着重要的数学意义和重要的实际应用。
复变函数通常由实数域和虚数域组成,用公式来描述,它是一种在复平面上根据定义
域及值域定义复函数的方法。
它把定义域上的复变量转换成在值域上定义的复函数,从而
可以求解复变量的取值,具体来说,复变函数由两个函数f(z) = u (z) + iv (z) 组成,其中,u(z)是定义域上的一个实函数,v(z)是定义域上的一个虚函数。
可以知道,复变函
数既可以是实函数,也可以是虚函数,这要取决于其定义域以及值域中所包含的复变量的
表达式。
复变函数的求法有三种:一是复变量方法,二是参数方法,三是Laplace变换方法。
1. 复变量方法就是把复变量z表示为对应的复数f(z)=p (x, y)+qi(x, y),其中x, y表示实数部分和虚数部分,p(x, y)是实函数,q(x, y)是虚函数,并求出复变函数f(z)
的极值;
2. 参数方法则是把复变量z表示成参数形式z=a+bi,其中a, b均为实数,把f(z)
用a, b来表示,用参数求极值,求得f(z);
3. Laplace变换方法就是把复变函数f(z)用局部Laplace变换求解,利用计算机软
件计算出来。
复变函数在数学思维中具有广泛的应用,它不仅常用于线性系统,还应用在微分方程、概率论、信号处理、最优控制、网络控制等领域。
例如,在机器学习中,复变函数可以用
来描述模型的行为,对系统的性能进行优化和分析;在仿生学中,复变函数也可以用来模
拟动物思维;在信号处理中,复变函数可以用来求解幅度、相位、频率等特性;在最优控
制中,复变函数可以把控制问题转换成数学形式,来求解最优全局策略;在网络控制中,
复变函数可以把网络的复杂性转换为可求解的数学问题,用以搜索网络中的最佳状态。
总之,复变函数是一种独特的函数,在数学思考和实际应用中都具有重要的意义。
熟
练掌握复变函数的求法和应用方法,也是有助于我们进行更多数学思考的重要技能之一。