偏微分方程第一章答案(Harold著葛显良译)
(整理)偏微分方程word电子讲义.

偏微分方程偏微分方程是一个非常广泛的课题,它包含分析的许多方面内容。
就我们现在的知识水平来说,我们只了解很少一点东西。
从十八世纪初开始,人们就开始结合物理、力学问题来研究偏微分方程,最早研究的几个方程是弦振动方程、热传导方程及调和方程,这部分理论已经被彻底地研究了,而且近乎完备,把它们称为偏微分方程的古典理论。
十八世纪后期在连续介质力学中研究流体的运动规律,在考虑流体的粘性时,描述运动规律的方程称为Navier-Stokes方程组,而在不计流体的粘性时,称为Euler方程组。
在此时期,描述弹性体运动规律的方程称为Saint Venant方程组。
到了十九、二十世纪,人们发现了描述电磁场运动规律的Maxwell方程组,描述微观粒子运动规律的Schrodinger方程及Dirac方程组,广义相对论中确定引力场的基本方程Einstein方程以及基本粒子规范场理论的基本方程Yang-Mills方程,在微分几何中研究极小曲面的极小曲面方程等等。
随着科学理论变得复杂,所提出的偏微分方程就愈多而且更加变化多端,可能出现的偏微分方程和方程组类型之多是出于想象的。
我们的目的是介绍现代偏微分方程理论中用到的一些技巧和方法。
众所周知,一本偏微分方程的书只能包括已有的基本材料的一小部分,因此我们必须作出选择,如何选择不是立足于逻辑基础上的,这种选择的主观性是相当明显的。
偏微分方程的内容是研究偏微分方程解的各种性质。
通常考虑以下问题1.对单个方程或方程组,应配以怎样的初值条件与边值条件使之具有解,这是解的存在性问题。
在研究解的存在性时,要明确解赖以存在的函数类。
2.解的唯一性或究竟有几个解,要明确使解为唯一的函数类。
3.解的正则性或光滑性。
是否为古典解、强解还是弱解?解具有几阶可微性?4.解的连续依赖性,必须明确是什么空间、什么范数实现的。
通常考虑的是解关于初、边值或关于方程系数,或在方程为线性时关于自由项的连续依赖性。
5.定解区域与影响区域。
第一章偏微分方程概论

1.1.2 一些典型的常微分方程
一、可分离变量的方程
具有如下形式:
dy f ( x) g ( y )可转化为 dx
1 dy f ( x) g ( y ) dx
两边对x积分(如果可能的话)
得 即
1 dy dx g ( y ) dx
高维情形,把(x,y,z)记
x = (x1, x2, x3), x= (x1, x2, x3 ) 利用傅立叶变换(Fourier)
ˆ (x ) f
其中
f ( x1 , x2 , x3 )eix x dx1dx2dx3
x x = x 1 x1 + x 2 x2 + x 3 x3
2 2 2 u u u 2 u a 2 2 2 2 t y z x 2
1.2.3 初边值问题
对于最典型的求解问题是初始值问题——柯西问题 即:求波动方程的解 u ,使其满足初始条件
u (0, x, y , z ) u0 ( x, y , z ) u (0, x, y , z ) u1 ( x, y , z ) t
三、线性变系数方程
具有如下形式(一阶)
dy p( x) y q( x) dx
相应的齐次方程
dy p( x) y 0 dx
显然是个可分离的方程
dy p( x)dx y
(y 0)
积分得通解
yh(x) = C· exp[-P(x)]
其中:
P ( x ) p ( x ) dx
2 2 2
其中 a>0,a2 = k∕Q ,k是传热系数,Q是热容量。
(完整word版)偏微分方程数值解习题解答案

L试讨论逼近对蘇程詈+若。
的差分沁1)2)q1 二:行口匚1)解:设点为(X ? ,/曲)屮则町=讥心厶)=班勺厶+J + °(工心)(Y )+0(F ).ot所以截断误差为:3E=丄 ------ + ---- 「 T h 啰_喟+竺护一 o (F )T= 0(T + 力”2)解:设点为:(X y ,/林1 ) 3则町=讥勺,_)=以E ,_+1)+ (Y ) +o (巧卩 ot “;:;=班心+1 厶+i )=叽厶+i )+滋( h )+ * 臥工心)(为 2)+o ox (X)d心;=班心亠心)=班心,/+1)+敕:;D (一力)+ 3 役;D(血 2)+0(亥2)«截断误差为:2舟A 1 ” E= ------------ + ------------ — (―+ _) T h dt dx叭:=班%厶+i )+敗?心)(_勿+0 @2)〜dx-(史+空八dt dx 呼1_吋】+竺丛Q —O (X )-(叱 3 +dtdx 22・试用积分插值法推导知铁。
逼近的差分裕式班勺厶叙)一班勺,乩i)+ ——-——£)dtTq2 “-” *\ | (— 4- —)dxdt = | (un t 4- un x)ds = 0* dt & \得-U] /J+U2 r+x^ A-u4 r = 0+JE (j-l? n)F (j,n)G (j^n+l)H (j-l,n+l)^% ~ 的=旳=竹“4 = W/-lMf MTh=h T-T-ll"h + LL r H + ll:4h —LL:N =Op第二章第三章第四章第五章第六章P781.如果①'(0)二0,则称工。
是』(0)的驻点(或稳定:点)-设矩阵A对称(不必正定),求证忑是』(工)的驻点.的充要条件是1心是方程加二&的解B 42・ 试用积分插值法推导知铁。
逼近的差分裕式证: 充分性:①⑻二J 缶)+ 乂(加° -b t ^+—(Ax r x)①'(Ji) = (Ax c - A, x) + A{Ax r x) aEff))S 宀沪若①0)二Q,即(山° 一氛对=0 心怎宀A X Q -h = ()目卩 Ax-b^则帀是方程Ax^b 的解卩 必要性*若心是芳程A^ = b^\解则 Ax a —h - 0 (J 4X 0 — Z?,x) = 0+^◎ (0)=(吐命-b t x) - 0+J所以町是』0)的驻点dpg%3:证明非齐次两点边值间题心現(&)二 e it (E)二 Qu与T 7面的变分间题等价:求血EH 】,认@) = G 使 J(w t ) = min J(y)其中心SiuHU (2)-d』(#) =壬仗站)-(7» —芒⑹戲(D) +而久込叭如(2.13)(提示;先把边值条件齐衩化)+d dxO 字)+梓二/ ax13页证明:令 = w(x) + v(x)其中 w(x) = Q + (x-a)0 w(a) = a yv @) = “v(a) = 0 v(^>) = 0®所以2S = 瞥+qu = j DX DX Pd r /w 血、《, 乂 、 f"丁〔P(T + :F)]+Q(W + V )" ax dx ax* 丫 d z dv. 产 / d dw 、 豪 令 = - — O —) +(?v = /-(- —^> — +^w) = y;^ ax ax dx ax 所以(1)的等价的形式2厶” =一?0 字)= 卩ax axu(a) = a u\b) = 0a其中久=/-(-£■去字+0W )"ax ax 则由定理22知,讥是辺值间题(2)的解的充要条件是 且满定变分方程"ogf)-C/i 小 0 Vve^Pr (Zv> 一 /j )tdx + p @»: (b)f @) ① W = J(u) = J(u.+^)^— a (u^ + 兔,以.+ 无)一(/,功・ +加)[以・(E )+加@)] 2 □2=J(认)+ N[a@・,f)-(/,£)-+乙agd-Qfm 沁卜• Q dx dx 「(加•一/)加x +卩@加:(砂@)-卩@)戊@) Ja(3) => (4)所以可证得• 3必要性:若如 是边值间题(1)的解。
第一章--偏微分方程定解问题

第一章 偏微分方程定解问题引言:在研究、探索自然科学和工程技术中,经常遇到各种微分方程。
如牛顿定律22d x dtm g = ------(1) 波动方程 222222222(,,,)f t x y z u u u u a t x y z ⎛⎫ ⎪ ⎪⎝⎭+∂∂∂∂=++∂∂∂∂------(2)热传导方程 2222222(,,,)f t x y z u u u u a t x y z ⎛⎫ ⎪ ⎪⎝⎭+∂∂∂∂=++∂∂∂∂ ------(3) 静电场位方程 2222222(,,)f x y z u u u a x y z ⎛⎫⎪=- ⎪⎝⎭∂∂∂++∂∂∂ ------(4) 激波方程 0u uu t x∂∂+=∂∂ ------(5) 等等。
其中(1)为一维常微分方程;(2)----(4)为三维偏微分方程;(5)为一维偏微分方程。
这些数学中的微分方程均来自物理问题,有着各自的物理背景,从数量关系上反映着相应的物理规律,称为数学物理方程,简称数理方程。
数学物理方程是数学与物理学的交叉分支学科。
从物理上讲它是理论物理的基本工具;在数学上属于应用数学的(偏)微分方程分支。
本课程主要研究和讨论三类数理方程(2),(3),(4)的建立(导出)以及几种常用的典型的求解方法。
为了下面研究和讨论的方便,先引入有关微分方程的几个基本概念(术语)。
1. 常,偏微分方程只含一个自变量,关于该变量的未知函数,以及未知函数对该变量的导数的微分方程为常微分方程,如(1)。
含有多个自变量,关于这些变量的未知函数,以及未知函数对这些变量的偏导数的微分方程为偏微分方程,如(2)----(5)。
2. 阶上述(1)----(5)均可改写成如下形式220d x m g dt-= ------(1’) 22230u t a u f -∂∂∆-= -------(2’) 230u ta u f -∂∂∆-= ------(3’)230a u f ∆+= ------(4’)0u u t xu +∂∂∂∂= ------(5’)其中 2223222x y z∂∂∂∆=++∂∂∂,x=x(t),u=u(t,x,y,z)或u(x,y,z),f=f(t,x,y,z)或f(x,y,z)。
数学物理方程第一章部分答案

令 ,取极限得在点 的相对伸长为 。由虎克定律,张力 等于
其中 是在点 的杨氏模量。
设杆的横截面面积为 则作用在杆段 两端的力分别为
于是得运动方程
利用微分中值定理,消去 ,再令 得
若 常量,则得
=
即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由, (3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:边界条件是齐次ຫໍສະໝຸດ ,相应的固有函数为设将非次项 按 展开级数,得
其中
将 代入原定解问题,得 满足
方程的通解为
由 ,得:
由 ,得
所以
所求解为
6.用分离变量法求下面问题的解:
解:方程和边界条件都是齐次的。令
代入方程及边界条件,得
由此得边值问题
因此得固有值 ,相应的固有函数为
又 满足方程
将 代入,相应的 记作 ,得 满足
解:如图2,设弦长为 ,弦的线密度为 ,则 点处的张力 为
且 的方向总是沿着弦在 点处的切线方向。仍以 表示弦上各点在时刻 沿垂直于 轴方向的位移,取弦段 则弦段两端张力在 轴方向的投影分别为
其中 表示 方向与 轴的夹角
又
于是得运动方程
∣ ∣
利用微分中值定理,消去 ,再令 得
。
7. 验证 在锥 >0中都满足波动方程
=
=
+
=
+
所以
§3混合问题的分离变量法
1.用分离变量法求下列问题的解:
(1)
解:边界条件齐次的且是第一类的,令
得固有函数 ,且
,
于是
今由始值确定常数 及 ,由始值得
所以 当
经典偏微分方程课后习题答案

第四章 抛物型微分方程有限差分法1设已知初边值问题22, 01, 0<(,0)sin , 01(0,)(1,)0, 0 u ux t t x u x x x u t u t t T π⎧∂∂=<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩T ≤, 试用最简显格式求上述问题的数值解。
取h=0.1,r=0.1.0 1/10 2/10 … 1 T 2τ τt解: 1.矩形网格剖分区域. 取空间步长1, 时间2510h =0.00τ=以及0.01τ=的矩形网格剖分区域, 用节点)表示坐标点(,j k (,)(,)j k x t jh k τ=, 0,1,...1/; 0,1,...,/j h k T τ==, 如图所示.显然, 我们需要求解这(1/1)(/1)h T τ+×+个点对应的函数值. 事实上由已知初边界条件蓝标附近的点可直接得到, 所以只要确定微分方程的解在其它点上的取值即可. 沿用记号[]k(,)j j k u x t =。
u 2. 建立差分格式, 对于11,...1; 0,1,...,1Tj k hτ=−=−, 用向前差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式:1122k k k k k1jj j j u u u u u h ++−+=. 变形j τ−−有:1112(12) (k k k kj j j j u ru r u ru r h τ+−+=+−+=(4.1)用向后差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式最简隐格式:111122k k k k k j jj j j u u u u u h τ++++−−+=11+−1kj +,变形有:1111(12) k k k j j j ru r u ru u ++−−−++−= (4.2)(4.1)*0.5+(4.2)*0.5得CN 格式为:111112222k k k k k k k k j jj j j j j j u u u u u u u u h τ+++−+−−++−+=111++−1kj +x x变形有:111111(22)(22) k k k k k j j j j j ru r u ru ru r u ru ++−−+−−++−=+−+ (4.3)3 初边界点差分格式处理.对于初始条件u x (,0)sin , 01=π≤≤h 离散为(4.4)0sin 0,1,...1/j u jh j π==对于边界条件离散为(0,)(1,)0, 0 u t u t t T ==≤≤00 0,1,.../k k N u u k T τ===(4.5)总结: 联立方程(4.1)(4.4)(4.5)得到已知问题的最简显格式差分方程组:11100(12)1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N u ru r u ru T j k h u jh j h u u k T τπτ+−+⎧=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.2)( 4.4)( 4.5)得到已知问题的最简隐格式差分方程组:1111100(12) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N ru r u ru u T j k h u jh j h u u k T τπτ++−−+⎧−++−=⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.3)( 4.4)( 4.5)得到已知问题的CN 格式差分方程组:11111100(22)(22) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k k j j j j j jk k N ru r u ru ru r u ru T j k h u jh j h u u k T τπτ++−−+−⎧−++−=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩1k j + 4 求解并显示结果利用软件计算(Matlab)如上最简显格式差分方程组.h=1/10;tau=0.0025;T=0.5; r=tau/h^2;M=1/h+1;N=T/tau+1; u=zeros(M,N);for m=1:Mu(m,1)=sin((m-1)*h*pi); endu(1,1:N)=0;u(M,1:N)=0;for n=1:N-1for m=2:M-1u(m,n+1)=r*(u(m+1,n)+u(m-1,n))+(1-2*r)*u(m,n); end end u=u’ 这样我们就计算出不同时刻不同位置k t j x 对应的函数值(,)j k u x t 取tau=0.0025, 即r=0.25绘图, 取tau=0.01, r=1再绘图,如图()图4.2 习题1数值解图示(左r=0.25, 右r=1)2.试构造初边值问题 ()()()()(), 0.51, 0,,0, 0.51,0.5,0, 1,0.51,, 0u u x x x T t x x u x x x u ⎪∂u t t u t t T x ϕ⎧∂∂∂⎛⎞=<<<≤⎜⎟⎪∂∂∂⎝⎠⎪⎪=≤≤⎨⎪==−≤≤⎪∂⎩的显格式,并给出其按最大范数稳定的充分条件。
精编微分几何习题全解(梅向明高教版第四版)资料

第一章 曲线论§2 向量函数5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r= 0 。
分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e为单位向量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。
证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r具有固定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r=λ'λ(e ×e )=0 。
反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r×'r =2λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。
当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ≠0时,有e ×'e=0,而(e ×'e 2)=22'e e -(e·'e2)=2'e ,(因为e具有固定长, e ·'e = 0) ,所以 'e =0 ,即e为常向量。
所以,)(t r 具有固定方向。
6.向量函数)(t r平行于固定平面的充要条件是(r 'r ''r )=0 。
分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r的关系。
偏微分方程课件 云南财经大学

二阶拟线性偏微分方程 二阶拟线性偏微分方程 三阶拟线性偏微分方程
在拟线性偏微分方程中, 由最高阶偏导数所组成的那一部 分, 称为方程的主部; 若主部内的系数都是常数或是自变量的 已知函数, 这时方程被称为是半线性的。
如果给定一个函数 u (x) , 将它及它对自变量的各阶偏导
数代入方程(1.1.1), 能使(1.1.1)成为恒等式, 则称函数是偏微分方 程(1.1.1)的解。
我们知道, 一个常微分方程如果有解, 就必有无穷多个解, 其表现形式是依赖于一个或几个任意常数的通解. 于是自然会 想到偏微分方程的通解也会含有任意元素.
它被称为三维Laplace方程。
利用Laplace算子
2 x2
2 y2
2 z2
,三维Laplace方程写成
u 0
对于函数 u u(x1, x2, , xn ,t) 的n维Laplace方程,利用
Laplace算子
2 x12
2 x22
2 xn2
则偏微分方程的一般形式为
实自变量 未知函数
5
机动 目录 上页 下页 返回 结束
《偏微分方程》第一章 绪论 第6页
其中是F自变量x,未知函数u及u的有限多个偏导数的已知函数. 例如关系式
等都是偏微分方程.
6
机动 目录 上页 下页 返回 结束
《偏微分方程》第一章 绪论 第7页
1.1.2. 偏微分方程的解
m