大学物理力学基础训练

合集下载

大学物理力学题库及答案

大学物理力学题库及答案

第一篇 力学 第一章 运动的描述一、选择题:(注意:题目中可能有一个或几个正确答案)1.一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻应是(A )s 4=t(B )s 2=t(C )s 8=t(D )s 5=t[ B ]解:小球运动速度大小t tsv 24d d -==。

当小球运动到最高点时v =0,即 024=-t ,t =2(s )。

故选 B2.质点作半径为R 的变速圆周运动时的加速度大小应为(其中v 表示任意时刻质点的速率)(A )tvd d(B )21242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛R v t v(C )Rv t v 2d d +(D )Rv 2[ B ]解:质点作圆周运动时,切向加速度和法向加速度分别为 Rv a t v a n t 2,d d ==, 所以加速度大小为:122222d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=R v t v a a a nt 。

故选 B3.一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一段时间内的平均速度为v,平均速率为v ,它们之间关系正确的有(A )v v v v ==, (B )v v v v =≠ , (C )v v v v ≠≠ ,(D )v v v v ≠= ,[ D ]解:根据定义,瞬时速度为dt d r v=,瞬时速率为ts v d d =,由于s r d d = ,所以v v =。

平均速度t r v ∆∆=,平均速率ts v ∆∆=,而一般情况下s r ∆≠∆,所以v v ≠ 。

故选 D4.某物体的运动规律为t kv tv2d d -=,式中k 为大于零的常数。

当t =0时,初速为0v ,则速度v 与t 的函数关系应是(A )0221v kt v +=(B )0221v kt v +-= (C )02121v kt v +=(D )02121v kt v +-= [ C ]解:将t kv tv 2d d -=分离变量并积分可得:⎰⎰=-t v v t kt v v 02d d 0 02201211,2111v kt v kt v v +==-。

大学物理复习题(力学部分)(DOC)

大学物理复习题(力学部分)(DOC)

第一章一、填空题1、一质点做圆周运动,轨道半径为R=2m,速率为v = 5t2+ m/s,则任意时刻其切向加速度aτ=________,法向加速度a n=________.2、一质点做直线运动,速率为v =3t4+2m/s,则任意时刻其加速度a =________,位置矢量x =________.3、一个质点的运动方程为r = t3i+8t3j,则其速度矢量为v=_______________;加速度矢量a为________________.4、某质点的运动方程为r=A cosωt i+B sinωt j, 其中A,B,ω为常量.则质点的加速度矢量为a=_______________________________,轨迹方程为________________________________。

5、质量为m的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k,k为正的常数,该下落物体的极限速度是_________。

二、选择题1、下面对质点的描述正确的是 [ ]①质点是忽略其大小和形状,具有空间位置和整个物体质量的点;②质点可近视认为成微观粒子;③大物体可看作是由大量质点组成;④地球不能当作一个质点来处理,只能认为是有大量质点的组合;⑤在自然界中,可以找到实际的质点。

A.①②③;B.②④⑤;C.①③;D.①②③④。

2、某质点的运动方程为x = 3t-10t3+6 ,则该质点作[ ]A.匀加速直线运动,加速度沿x轴正方向;B.匀加速直线运动,加速度沿x轴负方向;C.变加速直线运动,加速度沿x轴正方向;D.变加速直线运动,加速度沿x轴负方向。

3、下面对运动的描述正确的是 [ ]A.物体走过的路程越长,它的位移也越大;B质点在时刻t和t+∆t的速度分别为 "v1和v2,则在时间∆t内的平均速度为(v1+v2)/2 ;C.若物体的加速度为恒量(即其大小和方向都不变),则它一定作匀变速直线运动;D.在质点的曲线运动中,加速度的方向和速度的方向总是不一致的。

大学物理练习题

大学物理练习题

大学物理练习题一、力学部分1. 一物体从静止开始沿水平面加速运动,经过5秒后速度达到10m/s。

求物体的加速度。

2. 质量为2kg的物体,在水平面上受到一个6N的力作用,若摩擦系数为0.2,求物体的加速度。

3. 一物体在斜面上匀速下滑,斜面倾角为30°,物体与斜面间的摩擦系数为0.3,求物体的质量。

4. 一物体在水平面上做匀速圆周运动,半径为2m,速度为4m/s,求物体的向心加速度。

5. 一物体在竖直平面内做匀速圆周运动,半径为1m,速度为5m/s,求物体在最高点的向心力。

二、热学部分1. 某理想气体在标准大气压下,温度从27℃升高到127℃,求气体体积的膨胀倍数。

2. 一理想气体在等压过程中,温度从300K升高到600K,求气体体积的变化倍数。

3. 已知某气体的摩尔体积为22.4L/mol,求在标准大气压下,1mol该气体的体积。

4. 一密闭容器内装有理想气体,温度为T,压强为P,现将容器体积缩小到原来的一半,求气体新的温度和压强。

5. 某理想气体在等温过程中,压强从2atm变为1atm,求气体体积的变化倍数。

三、电磁学部分1. 一长直导线通有电流10A,距离导线5cm处一点的磁场强度为0.01T,求该点的磁感应强度。

2. 一矩形线圈,长为10cm,宽为5cm,通有电流5A,求线圈中心处的磁感应强度。

3. 一半径为0.5m的圆形线圈,通有电流2A,求线圈中心处的磁感应强度。

4. 一长直导线通有电流20A,求距离导线2cm处的磁场强度。

5. 一闭合线圈在均匀磁场中转动,磁通量从最大值减小到零,求线圈中感应电动势的变化。

四、光学部分1. 一束光从空气射入水中,入射角为30°,求折射角。

2. 一束光从水中射入空气,折射角为45°,求入射角。

3. 一平面镜反射一束光,入射角为60°,求反射角。

4. 一凸透镜焦距为10cm,物距为20cm,求像距。

5. 一凹透镜焦距为15cm,物距为30cm,求像距。

《大学物理学》第二章 刚体力学基础 自学练习题

《大学物理学》第二章 刚体力学基础 自学练习题

第二章 刚体力学基础 自学练习题一、选择题4-1.有两个力作用在有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零; (3)当这两个力的合力为零时,它们对轴的合力矩也一定是零; (4)当这两个力对轴的合力矩为零时,它们的合力也一定是零; 对上述说法,下述判断正确的是:( )(A )只有(1)是正确的; (B )(1)、(2)正确,(3)、(4)错误; (C )(1)、(2)、(3)都正确,(4)错误; (D )(1)、(2)、(3)、(4)都正确。

【提示:(1)如门的重力不能使门转动,平行于轴的力不能提供力矩;(2)垂直于轴的力提供力矩,当两个力提供的力矩大小相等,方向相反时,合力矩就为零】4-2.关于力矩有以下几种说法:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。

对上述说法,下述判断正确的是:( )(A )只有(2)是正确的; (B )(1)、(2)是正确的; (C )(2)、(3)是正确的; (D )(1)、(2)、(3)都是正确的。

【提示:(1)刚体中相邻质元间的一对内力属于作用力和反作用力,作用点相同,则对同一轴的力矩和为零,因而不影响刚体的角加速度和角动量;(2)见上提示;(3)刚体的转动惯量与刚体的质量和大小形状有关,因而在相同力矩的作用下,它们的运动状态可能不同】3.一个力(35)F i j N =+作用于某点上,其作用点的矢径为m j i r )34(-=,则该力对坐标原点的力矩为 ( )(A )3kN m -⋅; (B )29kN m ⋅; (C )29kN m -⋅; (D )3kN m ⋅。

【提示:(43)(35)4302092935i j kM r F i j i j k k k =⨯=-⨯+=-=+=】4-3.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴 转动,如图所示。

大学物理---力学部分练习题及答案解析

大学物理---力学部分练习题及答案解析

大学物理---力学部分练习题及答案解析一、选择题1、某质点作直线运动的运动学方程为x =3t -5t 3+ 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向.(B) 匀加速直线运动,加速度沿x 轴负方向.(C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ D ]2、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t = 4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D)2 m . (E) 5 m.[ B ]3、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ B ]4、一质点在x 轴上运动,其坐标与时间的变化关系为x =4t-2t 2,式中x 、t 分别以m 、s为单位,则4秒末质点的速度和加速度为 ( B )(A )12m/s 、4m/s 2; (B )-12 m/s 、-4 m/s 2 ;(C )20 m/s 、4 m/s 2 ; (D )-20 m/s 、-4 m/s 2;5. 下列哪一种说法是正确的 ( C )(A )运动物体加速度越大,速度越快(B )作直线运动的物体,加速度越来越小,速度也越来越小(C )切向加速度为正值时,质点运动加快(D )法向加速度越大,质点运动的法向速度变化越快6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为(A) t r d d (B) tr d d(C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ D ] 1 4.5432.52-112t v (m/s)7.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F逐渐增大时,物体所受的静摩擦力f ( B )(A) 恒为零.(B) 不为零,但保持不变.(C) 随F 成正比地增大.(D) 开始随F 增大,达到某一最大值后,就保持不变11、某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是 (A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ C ] 12、质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为(A) 9 N·s . (B) -9 N·s .(C)10 N·s . (D) -10 N·s . [ A ]13、在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ C ]14、质量为m 的小球,沿水平方向以速率v 与固定的竖直壁作弹性碰撞,设指向壁内的方向为正方向,则由于此碰撞,小球的动量增量为(A) mv . (B) 0.(C) 2mv . (D) –2mv . [ D ]15、对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?(A) 合外力为0.(B) 合外力不作功.(C) 外力和非保守内力都不作功.(D) 外力和保守内力都不作功. [ C ]16、下列叙述中正确的是(A)物体的动量不变,动能也不变.(B)物体的动能不变,动量也不变.(C)物体的动量变化,动能也一定变化.(D)物体的动能变化,动量却不一定变化.[ A ]17.考虑下列四个实例.你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)物体作圆锥摆运动.(B)抛出的铁饼作斜抛运动(不计空气阻力).(C)物体在拉力作用下沿光滑斜面匀速上升.(D)物体在光滑斜面上自由滑下.[ C ]18.一子弹以水平速度v0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加.[ B ]19、一光滑的圆弧形槽M置于光滑水平面上,一滑块m自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的?(A) 由m和M组成的系统动量守恒.(B) 由m和M组成的系统机械能守恒.(C) 由m、M和地球组成的系统机械能守恒.(D) M对m的正压力恒不作功.[ C ]20.关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B)取决于刚体的质量和质量的空间分布,与轴的位置无关.(C)取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ C ]21.刚体角动量守恒的充分而必要的条件是(A) 刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.(C) 刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变. [ B ]22. 对一个作简谐振动的物体,下面哪种说法是正确的?(A) 物体处在运动正方向的端点时,速度和加速度都达到最大值;(B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零;(C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;(D) 物体处在负方向的端点时,速度最大,加速度为零。

大学物理力学练习题及答案

大学物理力学练习题及答案

大学物理力学练习题及答案一、选择题(每题2分,共20分)1. 一个物体质量为2kg,受到的力是3N,该物体的加速度大小为多少?A. 0.3 m/s^2B. 1.5 m/s^2C. 6 m/s^2D. 1 N/kg答案:B2. 假设一个物体在重力作用下自由下落,那么它的重力势能和动能之间的关系是?A. 重力势能和动能相等B. 重力势能大于动能C. 重力势能小于动能D. 重力势能减少,动能增加答案:A3. 力的合成是指两个或多个力合并后的结果。

如果两个力大小相等并且方向相反,则它们的合力为A. 0B. 1C. 2D. 无法确定答案:A4. 在一个力的作用下,一个物体做匀速直线运动。

可以推断出物体的状态是A. 静止状态B. 匀速运动状态C. 加速运动状态D. 不能判断答案:B5. 牛顿运动定律中,质量的作用是用来描述物体对力的抵抗程度,质量越大,则物体对力的抵抗越小。

A. 对B. 错答案:B6. 一个物体以20 m/s的速度做匀速圆周运动,周长为40π m,物体的摩擦力大小为F,那么物体受到的拉力大小为多少?A. 0B. FC. 2FD. 4F答案:C7. 一个质量为1 kg的物体向左受到3 N的力,向右受到2 N的力,则该物体的加速度大小为多少?A. 1 m/s^2B. 2 m/s^2C. 3 m/s^2D. 5 m/s^2答案:A8. 弹力是一种常见的力,它的特点是随着物体变形而产生,并且与物体的形状无关。

A. 对B. 错答案:A9. 一个物体受到两个力,力的合力为2 N,其中一个力的大小为1 N,则另一个力的大小为多少?A. 1 NB. 0 NC. -1 ND. 无法确定答案:A10. 在竖直抛体运动过程中,物体的速度在上升过程中逐渐减小,直到达到峰值后开始增大。

A. 对B. 错答案:B二、计算题(每题10分,共40分)1. 一个物体以5 m/s的初速度被一个10 N的力加速,物体质量为2 kg,求物体在2秒后的速度。

力学基础训练

力学基础训练

力学基础训练题1.如图所示,放手后纸片不能保持静止,这样的操作是为了探究物体在平衡状态下所受的两个力()A.大小是否相等B.方向是否相反C.是否作用在同一物体上D.是否作用在同一直线上2.如图所示,甲、乙两物体沿竖直向上方向做匀速直线运动,不计空气阻力.则()A.甲的速度一定大于乙的速度B.甲的重力一定大于乙的重力C.甲的速度一定等于乙的速度D.甲的重力一定等于乙的重力3.如图所示,木箱重600N,小明用F=200N的力沿水平方向推木箱,木箱做匀速直线运动.当推力增大到240N时,此时的摩擦力为()A.600N B.200NC.240N D.大于200N小于240N4.小轩很喜欢爸爸新买的数码照相机,在旅途中拍下了火车内桌面上塑料杯瞬间的不同状态,如下图的甲乙丙,则下列关于火车运动状态的判断可能正确的是()A.甲图中火车在匀速运动,乙图中火车突然向左加速,丙图中火车突然向左减速B.甲图中火车在匀速运动,乙图中火车突然向右加速,丙图中火车突然向左加速C.甲图中火车在减速运动,乙图中火车突然向左减速,丙图中火车突然向右加速D.甲图中火车在加速运动,乙图中火车突然向左加速,丙图中火车突然向右减速5.如图所示,木块重为6N,细绳与定滑轮的摩擦和小盘的质量不计.当小盘内放有重为1N的砝码时,木块未被拉动;当小盘内放重为1.2N的砝码时,木块刚好做匀速运动;当小盘内放重为1.5N的砝码时,木块做加速运动,此时木块受到的摩擦力大小为()A.6N B.1.5N C.1.2N D.1N6.A、B两物体叠放在水平桌面上,在如图所示的三种情况下:甲图中两物体均处于静止状态;乙图中水平恒力F作用在B物体上,使A、B一起以2m/s的速度做匀速直线运动;丙图中水平恒力F作用在B物体上,使A、B一起以6m/s的速度做匀速直线运动.比较上述三种情况下物体A在水平方向的受力情况,以下说法正确的是()A.三种情况下,A在水平方向都不受力B.三种情况下,A在水平方向都受力且受力相同C.甲中A在水平方向不受力,乙、丙中A在水平方向都受力但受力不同D.甲中A在水平方向不受力,乙、丙中A在水平方向都受力但受力相同7.下列关于力学现象的解释中正确的是()A.人用力推车,车未动,是因为推力小于摩擦阻力B.苹果在空中下落得越来越快,是因为力可以改变物体的运动状态C.汽车刹车后,速度会逐渐减小,最后会停下来,是因为汽车具有惯性D.书本静止在课桌上,是因为书本的重力与书本对桌面的压力平衡8在竖直升降电梯的顶棚上悬挂一个物体,电梯静止时物体自由下落至电梯地板所需时间为t1;电梯在匀速下降过程中,物体从顶棚上脱落,到达电梯地板所需的时间为t2,则()A.t1=t2 B.t1<t2 C.t1>t2 D.无法判断9.如图,木块竖立在小车上,随小车一起以相同的速度向右作匀速直线运动.下列分析正确的是()A.木块没有受到小车的摩擦力B.木块运动速度越大,惯性也越大C.木块对小车的压力与小车对木块的支持力是一对平衡力D.当小车受到阻力突然停止运动时,如果木块与小车接触面光滑,木块将向右倾倒10.小军用绳子拴着一金属小球,使小球做圆周运动,如果小球受到的力突然全部消失,则小球将()A.做匀速直线运动B.立即停止运动C.继续做圆周运动D.减速运动直到停止11.若小球在运动过程中只受到力F的作用,且运动过程中力F始终保持不变,则小球的运动轨迹(用虚线表示)不可能的是()12.用手握住酒瓶,使其瓶口朝上竖直静止在手中,则下列说法正确的是()A.酒瓶能静止在手中,是由于手对酒瓶的握力等于酒瓶的重力B.酒瓶能静止在手中,是由于手对酒瓶的握力大于酒瓶的重力C.手握酒瓶的力增大,瓶子所受的摩擦力不变D.手握酒瓶的力增大,瓶子所受的摩擦力也增大13如图所示,用两食指同时压铅笔两端,左手指受到的压力为F1,压强为P1,右手指受到的压力为F2,压强为P2,下列说法正确的是()A.F1<F2 B.Fl>F2 C.P1<P2 D.P1>P214.如图是推出的铅球在空中运动过程中速度v随着时间t变化的图象,正确的是()15.打篮球是大家喜爱的体育运动.向空中斜抛出去的篮球运动轨迹如图所示,不考虑空气阻力的影响,下列说法中正确的是()A.篮球在上升过程中受到平衡力作用B.篮球落向地面是由于篮球具有惯性C.篮球能继续运动,是因为受到力的作用D.篮球受到重力作用,运动状态发生改变75.如图所示,放在水平面上的物体所受重力为200N,系着它的一根竖直轻绳绕过光滑滑轮,绳另一端施加的拉力F为180N.则该物体此时受到的合力为,地面对物体的支持力为106.下图显示的是同一木块先后两次在同一水平面上运动时,在相等时间内连续拍摄的“频闪”照片.由图可知,两次实验中,木块的速度,木块所受拉力的大小(均选填“相等”或“不相等”)141.通过探究发现摩擦力的大小与物体间接触面的大小无关.如图甲所示,两个完全相同的木块A和B叠放在水平桌面上,在16N的水平拉力F1作用下,A、B一起向右做匀速直线运动.若将甲A、B紧靠着放在水平桌面上,用水平力F2推A使它们一起也向右做匀速直线运动,如图乙所示,则F2是N;若要让图乙中的A、B在水平桌面上一起向左做匀速直线运动,在不撤除F2的情况下,应该在B的右端施加一大小为N的水平向左的推力.205.木块与小车向右做匀速直线运动,遇到一障碍物时,小车停下,木块从车上的a点滑至b点(如图甲),是因为木块具有;木块能停在b点,说明木块在滑动过程中受到向(填“左”或“右”)的摩擦力作用.为测量摩擦力的大小,小明在障碍物上固定了弹簧测力计拉住木块,用手拉着小车向左运动(如图乙).则木块受到的摩擦力方向向(填“左”或“右”),大小是N.216.如图所示,物体重5N,当F=10N时,物体能沿竖直墙壁匀速下滑,这时物体受到的摩擦力是N;当F=20N时,物体在墙上静止不动,此时物体受到的摩擦力是N.227.如图甲所示,重量为4N的正方形铁块,被水平吸引力吸附在足够大的竖直磁性平板上处于静止状态,这时铁块受到的摩擦力大小为N;若对铁块施加一个竖直向上的拉力F拉=9N的作用,铁块将沿着该平板匀速向上运动,如图乙所示,此时铁块受到的摩擦力大小为N.245.如图所示,跳伞运动员在从飞机上跳下、降落伞没有打开之前,下落会越来越快,此时运动员受到的阻力重力;当降落伞打开后,运动员匀速下落时,受到的阻力重力.(选填“大于”、“小于”或“等于”)312.如图所示的装置处于静止状态,细绳和弹簧测力计的质量忽略不计,不考虑细绳与滑轮之间的摩擦.两端挂的重物各为10N,则弹簧测力计的示数为N,小车受到的合力为N.320.将A、B两个磁环先后套在光滑的木支架上,并使两磁环相对面的极性相同,此时可以看到上方的磁环A“悬浮”在空中,如图所示,设两磁环受到的重力相等且都为G,则磁环A受到磁环B的排斥力大小为,磁环B对木支架的压力F与重力G的关系是.54.用如图所示的实验装置研究“运动和力的关系”.(1)让小车从斜面上滑下后沿水平面运动是为了使小车在竖直方向受到的力和力相平衡,其作用效果相互抵消,相当于小车只受水平方向上的摩擦力的作用;(2)每次让小车从同一个斜面的同一高度位置由静止开始滑下,是为了使小车滑到斜面底端时具有相同的;(3)比较图中小车在不同表面滑行的最大距离,可以得出:在初速度相同的条件下,水平面越光滑,小车受到的摩擦力越,速度减小的越;(4)在此实验的基础上进行合理的推理,可以得出:运动物体不受外力时它将.65.物体只在重力作用下由静止开始下落的运动,叫做自由落体运动,这种运动只在没有空气的空间才能发生,在有空气的空间,如果空气阻力相对物体的重力比较小,可以忽略,物体的下落也可以近似地看作自由落体运动.为了探究自由落体运动时间与哪些因素有关,同学小王有如下猜想:猜想一:物体下落的时间与物体的材料有关;猜想二:物体下落的时间与物体下落的高度有关;猜想三:物体下落的时间与物体的质量有关.为验证猜想的正确性,几位同学用三个金属球做了一系列实验,实验数据记录如下:(1)为了验证猜想一,应比较实验序号和,结论是:;(2)小敏同学也对这个问题进行了研究,她让质量相等的铁球和纸团同时从三楼由静止开始下落,她发现两者下落时间(填“相等”或“不相等”),原因是:.(3)根据表中的数据,宇航员在月球上将小铁片和羽毛在同一地点、同一高度同时释放,它们将()A、同时落地B、铁片先落地,羽毛后落地C、羽毛先落地,铁片后落地.88.如图所示,木块A与平板小车一起在水平桌面上向左匀速运动,当小车受外力作用突然减速时,木块随即在小车的平板上滑行.请在图中用带箭头的线段标出木块滑行的方向,并画出木块滑行过程中的受力示意图.6.在研究摩擦力时,小明同学用一块各侧面光滑程度完全相同的木块,在同一水平桌面上进行了三次实验.如图所示,当用弹簧测力计水平拉木块做匀速直线运动时,弹簧测力计三次示数F1、F2、F3的大小关系为31.如图所示,三个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:图①中弹簧的左端固定在墙上,此时弹簧的伸长量为Xl;并处于静止状态.图②中弹簧的左端受大小也为F的拉力作用,此时弹簧的伸长量为X2并处于静止状态.图③中弹簧的左端挂一小物块,物块在粗糙的桌面上做匀速直线运动,此时弹簧的伸长量为X3.则Xl、X2、X3的大小关系。

大学物理力学基础训练及答案

大学物理力学基础训练及答案

⼤学物理⼒学基础训练及答案⼒学基础训练⼀选择题1·某质点作直线运动的运动学⽅程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正⽅向. (B) 匀加速直线运动,加速度沿x 轴负⽅向. (C) 变加速直线运动,加速度沿x 轴正⽅向.(D) 变加速直线运动,加速度沿x 轴负⽅向.[]2. ⼀质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则⼀秒钟后质点的速度 (A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定.[]3. 如图所⽰,湖中有⼀⼩船,有⼈⽤绳绕过岸上⼀定⾼度处的定滑轮拉湖中的船向岸边运动.设该⼈以匀速率0v 收绳,绳不伸长、湖⽔静⽌,则⼩船的运动是(A) 匀加速运动. (B) 匀减速运动. (C) 变加速运动. (D) 变减速运动.(D) 匀速直线运动.[]4. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为⼤于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt ,(C) 02121v v +=kt , (D) 02121v v +-=kt []5.在相对地⾯静⽌的坐标系内,A 、B ⼆船都以2 m/s 速率匀速⾏驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静⽌坐标系⽅向相同的坐标系(x 、y⽅向单位⽮⽤i 、j 表⽰),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为 (A) 2i +2j . (B) -2i +2j.(C) -2i -2j . (D) 2i -2j.[]6. ⼀质点作匀速率圆周运动时,.(A) 它的动量不变,对圆⼼的⾓动量也不变. (B) 它的动量不变,对圆⼼的⾓动量不断改变. (C) 它的动量不断改变,对圆⼼的⾓动量不变. (D) 它的动量不断改变,对圆⼼的⾓动量也不断改变.[]7.均匀细棒OA 可绕通过其⼀端O ⽽与棒垂直的⽔平固定光滑轴转动,如图所⽰.今使棒从⽔平位置由静⽌开始⾃由下落,在棒摆动到竖直位置的过程中,下述说法哪⼀种是正确的? (A) ⾓速度从⼩到⼤,⾓加速度从⼤到⼩.(B) ⾓速度从⼩到⼤,⾓加速度从⼩到⼤. (C) ⾓速度从⼤到⼩,⾓加速度从⼤到⼩.(D) ⾓速度从⼤到⼩,⾓加速度从⼩到⼤.[]8. 花样滑冰运动员绕通过⾃⾝的竖直轴转动,开始时两臂伸开,转动惯量为J 0,⾓速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的⾓速度变为(A) 31ω0. (B) ()3/1 ω0.(C) 3 ω0. (D) 3 ω0.[]9. 如图所⽰,⼀静⽌的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在⽔平⾯内转动,转动惯量为231ML .⼀质量为m 、速率为v 的⼦弹在⽔平⾯内沿与棒垂直的⽅向射出并穿出棒的⾃由端,设穿过棒后⼦弹的速率为v 21,则此时棒的⾓速度应为(A) ML m v . (B) ML m 23v.(C) ML m 35v . (D) ML m 47v.[].俯视图10. 如图所⽰,⼀⽔平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个⼩球.初始时,两⼩球相对杆中⼼O 对称放置,与O 的距离d =5 cm ,⼆者之间⽤细线拉紧.现在让细杆绕通过中⼼O 的竖直固定轴作匀⾓速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空⽓的摩擦,当两球都滑⾄杆端时,杆的⾓速度为 (A) 2ω 0. (B)ω 0.(C) 21 ω 0. (D)041ω.[]⼆填空题11 ⼀质点沿x ⽅向运动,其加速度随时间变化关系为 a = 3+2 t (SI) ,如果初始时质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度v = .12. 质点p 在⼀直线上运动,其坐标x 与时间t 有如下关系: x =-A sin ω t (SI) (A 为常数)(1) 任意时刻t,质点的加速度a =____________;(2) 质点速度为零的时刻t =______________.13. ⼀质点从静⽌出发沿半径R =1 m 的圆周运动,其⾓加速度随时间t 的变化规律是β =12t 2-6t (SI),则质点的⾓速ω =______________________________;切向加速度 a t =________________________.14. 如图所⽰,x 轴沿⽔平⽅向,y 轴竖直向下,在t =0时刻将质量为m 的质点由a 处静⽌释放,让它⾃由下落,则在任意时刻t ,质点所受的对原点O 的⼒矩M=________________;在任意时刻t ,质点对原点O的⾓动量L=__________________.15.质点P 的质量为2 kg ,位置⽮量为 r,速度为v ,它受到⼒F的作⽤.这三个⽮量均在Oxy ⾯内,某时刻它们的⽅向如图所⽰,且r =3.0 m ,v =4.0 m/s ,F=2 N ,则此刻该质点对原点O 的⾓动量L=____________________;作⽤在质点上的⼒对原点的⼒矩M=________________. 16. 某质点在⼒F =(4+5x )i(SI)的作⽤下沿x 轴作直线运动,在从x =0移17.动到x =10 m 的过程中,⼒F所做的功为__________.17. 利⽤⽪带传动,⽤电动机拖动⼀个真空泵.电动机上装⼀半径为 0.1m 的轮⼦,真空泵上装⼀半径为0.29m 的轮⼦,如图所⽰.如果电动机的转速为1450 rev/min ,则真空泵上的轮⼦的边缘上⼀点的线速度为__________________,真空泵的转速为____________________.18.⼀长为l ,质量可以忽略的直杆,可绕通过其⼀端的⽔平光滑轴在竖直平⾯内作定轴转动,在杆的另⼀端固定着⼀质量为m 的⼩球,如图所⽰.现将杆由⽔平位置⽆初转速地释放.则杆刚被释放时的⾓加速度β0=____________,杆与⽔平⽅向夹⾓为60°时的⾓加速度β=________________.m19.⼀长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的⼩球,杆可绕通过其中⼼O 且与杆垂直的⽔平光滑固定轴在铅直平⾯内转动.开始杆与⽔平⽅向成某⼀⾓度θ,处于静⽌状态,如图所⽰.释放后,杆绕O 轴转动.则当杆转到⽔平位置时,该系统所受到的合外⼒矩的⼤⼩M =_____________________,此时该系统⾓加速度的⼤⼩β=______________________.20. ⼀飞轮以⾓速度ω0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另⼀静⽌飞轮突然和上述转动的飞轮啮合,绕同⼀转轴转动,该飞轮对轴的转动惯量为前者的⼆倍.啮合后整个系统的⾓速度ω=__________________.三计算题21. ⼀质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.22. ⼀⼈从10 m 深的井中提⽔.起始时桶中装有10 kg 的⽔,桶的质量为1 kg ,由于⽔桶漏⽔,每升⾼1 m 要漏去0.2 kg 的⽔.求⽔桶匀速地从井中提到井⼝,⼈所作的功.23. 如图所⽰,⼀个质量为m 的物体与绕在定滑轮上的绳⼦相联,绳⼦质量可以忽略,它与定滑轮之间⽆滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静⽌开始下落的过程中,下落速度与时间的关系.24.⼀长为1 m 的均匀直棒可绕过其⼀端且与棒垂直的⽔平光滑固定轴转动.抬起另⼀端使棒向上与⽔平⾯成60°,然后⽆初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放⼿时棒的⾓加速度; (2) 棒转到⽔平位置时的⾓加速度.25. ⼀质量m = 6.00 kg 、长l = 1.00 m 的匀质棒,放在⽔平桌⾯上,可绕通过其中⼼的竖直固定轴转动,对轴的转动惯量J = ml 2 / 12.t = 0时棒的⾓速度ω0 = 10.0 rad ·s -1.由于受到恒定的阻⼒矩的作⽤,t = 20 s 时,棒停⽌运动.求: (1) 棒的⾓加速度的⼤⼩; (2) 棒所受阻⼒矩的⼤⼩; (3) 从t = 0到t = 10 s 时间内棒转过的⾓度.26.如图所⽰,A 和B 两飞轮的轴杆在同⼀中⼼线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静⽌.C为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速⽽A 轮减速,直到两轮的转速相等为⽌.设轴光滑,求:(1) 两轮啮合后的转速n ; (2) 两轮各⾃所受的冲量矩.27. 质量为M =0.03 kg ,长为l =0.2 m 的均匀细棒,在⼀⽔平⾯内绕通过棒中⼼并与棒垂直的光滑固定轴⾃由转动.细棒上套有两个可沿棒滑动的⼩物体,每个质量都为m =0.02 kg .开始时,两⼩物体分别被固定在棒中⼼的两侧且距棒中⼼各为r =0.05 m ,此系统以n 1=15 rev/ min 的转速转动.若将⼩物体松开,设它们在滑动过程中受到的阻⼒正⽐于它们相对棒的速度,(已知棒对中⼼轴的转动惯量为Ml 2 / 12)求:(1) 当两⼩物体到达棒端时,系统的⾓速度是多少? (2) 当两⼩物体飞离棒端,棒的⾓速度是多少?四理论推导与证明题28. ⼀艘正在沿直线⾏驶的电艇,在发动机关闭后,其加速度⽅向与速度⽅向相反,⼤⼩与速度平⽅成正⽐,即2/d d v v K t -=,式中K 为常量.试证明电艇在关闭发动机后⼜⾏驶x 距离时的速度为 )e x p (0Kx -=v v 其中0v 是发动机关闭时的速度.⼒学基础训练答案⼀选择题1. (D)2. (D)3. (C)4. (C)5. (B)6. (C)7. (A)8. (D)9. (B) 10. (D) ⼆.填空题11. 23 m/s 12. t A ωωsin 2-()ωπ+1221n (n = 0,1,… ) 13. 4t 3-3t 2 (rad/s) 12t 2-6t (m/s 2) 14. mgb kmgbt k15. k 12 kg· m 2 · s-1k3 N · m16. 290 J17. v ≈15.2 m /sn 2=500 rev /min 18. g / lg / (2l ) 19. mgl 212g / (3l ) 20. 031ω三计算题21. 解: =a d v /d t 4=t , d v 4=t d t=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t tx tx x d 2d 02=x 2= t 3 /3+x 0 (SI)22. 解:选竖直向上为坐标y 轴的正⽅向,井中⽔⾯处为原点.由题意知,⼈匀速提⽔,所以⼈所⽤的拉⼒F 等于⽔桶的重量即: F =P =gy mg ky P 2.00-=-=107.8-1.96y (SI) ⼈的拉⼒所作的功为:W=??=Hy F W 0d d =?-10d )96.18.107(y y =980 J23. 解:根据⽜顿运动定律和转动定律列⽅程对物体: mg -T =ma ①对滑轮: TR = J β②运动学关系: a =R β③将①、②、③式联⽴得a =mg / (m +21M )∵ v 0=0,∴ v =at =mgt / (m +21M ) 24. 解:设棒的质量为m ,当棒与⽔平⾯成60°⾓并开始下落时,根据转动定律M = J β其中 4/30sin 21mgl mgl M ==于是 2r a d /s 35.743 ===l g J M β当棒转动到⽔平位置时, M =21mgl那么 2r a d /s 7.1423 ===lg J M β 25. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ·s -2 (2) M r =ml 2β / 12=-0.25 N ·m(3) θ10=ω 0t +21β t 2=75 rad 26. 解:(1) 选择A 、B 两轮为系统,啮合过程中只有内⼒矩作⽤,故系统⾓动量守恒J A ωA +J B ωB = (J A +J B )ω,⼜ωB =0得ω≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速≈n 200 rev/min (2) A 轮受的冲量矩t M A d = J A (ω-ωA ) = -4.19×10 2N ·m ·s 负号表⽰与A ω⽅向相反. B 轮受的冲量矩t MBd = J B (ω - 0) = 4.19×102 N ·m ·s⽅向与A ω相同.27. 解:选棒、⼩物体为系统,系统开始时⾓速度为ω1 = 2πn 1=1.57 rad/s .(1) 设⼩物体滑到棒两端时系统的⾓速度为ω2.由于系统不受外⼒矩作⽤,所以⾓动量守恒.a故 2221222112212ωω+= +ml Ml mr Ml 2212222121122Ml mr Ml ml ωω??+ =+=0.628 rad/s(2) ⼩物体离开棒端的瞬间,棒的⾓速度仍为ω2.因为⼩物体离开棒的瞬间内并未对棒有冲⼒矩作⽤.四理论推论与证明题28. 证:2d d d d d d d d v xv v t x x v t v K -==?= ∴ d v /v =-K d x-=x x K 0d d 10v v vv , Kx -=0ln v v∴ v =v 0e -Kx。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力学基础训练一选择题1·某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作(A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向.(D) 变加速直线运动,加速度沿x 轴负方向. [ ]2. 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定. [ ]3. 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是(A) 匀加速运动. (B) 匀减速运动. (C) 变加速运动. (D) 变减速运动.(D) 匀速直线运动. [ ]4. 某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是(A) 0221v v +=kt , (B) 0221v v +-=kt ,(C) 02121v v +=kt , (D) 02121v v +-=kt [ ]5.在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y方向单位矢用i 、j表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i +2j . (B) -2i+2j .(C) -2i -2j . (D) 2i-2j . [ ]6. 一质点作匀速率圆周运动时,.(A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变. (D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]7.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]8. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 31ω0. (B) ()3/1 ω0.(C) 3 ω0. (D) 3 ω0. [ ]9. 如图所示,一静止的均匀细棒,长为L 、质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML .一质量为m 、速率为v 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为(A) ML m v . (B) MLm 23v.(C) ML m 35v. (D) ML m 47v . [ ].v21v 俯视图10. 如图所示,一水平刚性轻杆,质量不计,杆长l =20 cm ,其上穿有两个小球.初始时,两小球相对杆中心O 对称放置,与O 的距离d =5 cm ,二者之间用细线拉紧.现在让细杆绕通过中心O 的竖直固定轴作匀角速的转动,转速为ω 0,再烧断细线让两球向杆的两端滑动.不考虑转轴的和空气的摩擦,当两球都滑至杆端时,杆的角速度为 (A) 2ω 0. (B)ω 0.(C) 21 ω 0. (D)041ω. [ ]二填空题11 一质点沿x 方向运动,其加速度随时间变化关系为 a = 3+2 t (SI) ,如果初始时质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度v = .12. 质点p 在一直线上运动,其坐标x 与时间t 有如下关系: x =-A sin ω t (SI) (A 为常数)(1) 任意时刻t,质点的加速度a =____________;(2) 质点速度为零的时刻t =______________.13. 一质点从静止出发沿半径R =1 m 的圆周运动,其角加速度随时间t 的变化规律是β =12t 2-6t (SI), 则质点的角速ω =______________________________;切向加速度 a t =________________________.14. 如图所示,x 轴沿水平方向,y 轴竖直向下,在t =0时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对原点O 的力矩M=________________;在任意时刻t ,质点对原点O的角动量L=__________________.15.质点P 的质量为2 kg ,位置矢量为 r,速度为v ,它受到力F的作用.这三个矢量均在Oxy 面内,某时刻它们的方向如图所示,且r =3.0 m ,v =4.0 m/s ,F=2 N ,则此刻该质点对原点O 的角动量L=____________________;作用在质点上的力对原点的力矩M=________________.16. 某质点在力F =(4+5x )i(SI)的作用下沿x 轴作直线运动,在从x =0移动到x =10 m 的过程中,力F所做的功为__________.17. 利用皮带传动,用电动机拖动一个真空泵.电动机上装一半径为 0.1m 的轮子,真空泵上装一半径为0.29m 的轮子,如图所示.如果电动机的转速为1450 rev/min ,则真空泵上的轮子的边缘上一点的线速度为__________________,真空泵的转速为____________________.18.一长为l ,质量可以忽略的直杆,可绕通过其一端的水平光滑轴在竖直平面内作定轴转动,在杆的另一端固定着一质量为m 的小球,如图所示.现将杆由水平位置无初转速地释放.则杆刚被释放时的角加速度β0=____________,杆与水平方向夹角为60°时的角加速度β =________________.m19.一长为l 、质量可以忽略的直杆,两端分别固定有质量为2m 和m 的小球,杆可绕通过其中心O 且与杆垂直的水平光滑固定轴在铅直平面内转动.开始杆与水平方向成某一角度θ,处于静止状态,如图所示.释放后,杆绕O 轴转动.则当杆转到水平位置时,该系统所受到的合外力矩的大小M =_____________________,此时该系统角加速度的大小β =______________________.20. 一飞轮以角速度ω0绕光滑固定轴旋转,飞轮对轴的转动惯量为J 1;另一静止飞轮突然和上述转动的飞轮啮合,绕同一转轴转动,该飞轮对轴的转动惯量为前者的二倍.啮合后整个系统的角速度ω=__________________.三 计算题21. 一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.22. 一人从10 m 深的井中提水.起始时桶中装有10 kg 的水,桶的质量为1 kg ,由于水桶漏水,每升高1 m 要漏去0.2 kg 的水.求水桶匀速地从井中提到井口,人所作的功.23. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.24.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度.25. 一质量m = 6.00 kg 、长l = 1.00 m 的匀质棒,放在水平桌面上,可绕通过其中心的竖直固定轴转动,对轴的转动惯量J = ml 2 / 12.t = 0时棒的角速度ω0 = 10.0 rad ·s -1.由于受到恒定的阻力矩的作用,t = 20 s 时,棒停止运动.求: (1) 棒的角加速度的大小; (2) 棒所受阻力矩的大小; (3) 从t = 0到t = 10 s 时间内棒转过的角度.26.如图所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为 J =10 kg ·m 2 和 J =20kg ·m 2.开始时,A 轮转速为600 rev/min ,B 轮静止.C为摩擦啮合器,其转动惯量可忽略不计.A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮得到加速而A 轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n ; (2) 两轮各自所受的冲量矩.27. 质量为M =0.03 kg ,长为l =0.2 m 的均匀细棒,在一水平面内绕通过棒中心并与棒垂直的光滑固定轴自由转动.细棒上套有两个可沿棒滑动的小物体,每个质量都为m =0.02 kg .开始时,两小物体分别被固定在棒中心的两侧且距棒中心各为r =0.05 m ,此系统以n 1=15 rev/ min 的转速转动.若将小物体松开,设它们在滑动过程中受到的阻力正比于它们相对棒的速度,(已知棒对中心轴的转动惯量为Ml 2 / 12)求:(1) 当两小物体到达棒端时,系统的角速度是多少? (2) 当两小物体飞离棒端,棒的角速度是多少?四 理论推导与证明题28. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度平方成正比,即2/d d v v K t -=, 式中K 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度为)ex p(0Kx -=v v 其中0v 是发动机关闭时的速度.力学基础训练答案一 选择题1. (D)2. (D)3. (C)4. (C)5. (B)6. (C)7. (A)8. (D)9. (B) 10. (D) 二.填空题11. 23 m/s 12. t A ωωsin 2-()ωπ+1221n (n = 0,1,… ) 13. 4t 3-3t 2 (rad/s) 12t 2-6t (m/s 2)14. mgb kmgbt k15. k 12 kg· m 2 · s-1k3 N · m16. 290 J17. v ≈15.2 m /sn 2=500 rev /min 18. g / lg / (2l ) 19. mgl 212g / (3l ) 20. 031ω三 计算题21. 解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI)22. 解:选竖直向上为坐标y 轴的正方向,井中水面处为原点.由题意知,人匀速提水,所以人所用的拉力F 等于水桶的重量 即: F =P =gy mg ky P 2.00-=-=107.8-1.96y (SI) 人的拉力所作的功为:W=⎰⎰=Hy F W 0d d =⎰-10d )96.18.107(y y =980 J23. 解:根据牛顿运动定律和转动定律列方程对物体: mg -T =ma ① 对滑轮: TR = J β ② 运动学关系: a =R β ③ 将①、②、③式联立得a =mg / (m +21M ) ∵ v 0=0,∴ v =at =mgt / (m +21M )24. 解:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转动定律M = J β其中 4/30sin 21mgl mgl M ==于是 2rad/s 35.743 ===l gJ M β当棒转动到水平位置时, M =21mgl那么 2rad/s 7.1423 ===lgJ M β25. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ·s -2 (2) M r =ml 2β / 12=-0.25 N ·m(3) θ10=ω 0t +21β t 2=75 rad 26. 解:(1) 选择A 、B 两轮为系统,啮合过程中只有内力矩作用,故系统角动量守恒J A ωA +J B ωB = (J A +J B )ω,又ωB =0得 ω ≈ J A ωA / (J A +J B ) = 20.9 rad / s 转速 ≈n 200 rev/min (2) A 轮受的冲量矩a⎰t MAd = J A (J A +J B ) = -4.19×10 2 N ·m ·s负号表示与A ω方向相反.B 轮受的冲量矩⎰t M B d = J B (ω - 0) = 4.19×102 N ·m ·s方向与A ω相同.27. 解:选棒、小物体为系统,系统开始时角速度为 ω1 = 2πn 1=1.57 rad/s .(1) 设小物体滑到棒两端时系统的角速度为ω2.由于系统不受外力矩作用, 所以角动量守恒.故 2221222112212ωω⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+ml Ml mr Ml 2212222112212ml Ml ml Ml +⎪⎪⎭⎫ ⎝⎛+=ωω=0.628 rad/s (2) 小物体离开棒端的瞬间,棒的角速度仍为ω2.因为小物体离开棒的瞬间 内并未对棒有冲力矩作用. 四 理论推论与证明题28. 证: 2d d d d d d d d v xvv t x x v t v K -==⋅=∴ d v /v =-K d x⎰⎰-=x x K 0d d 10v v vv , Kx -=0lnv v ∴ v =v 0e -Kx。

相关文档
最新文档