高考数学大题规范解答-(四)解三角形的答题模板
【高考宝典】高考数学解答题常考公式及答题模板

高考数学解答题常考公式及答题模板题型一:解三角形1、正弦定理:R CcB b A a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::=2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 4、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b Bc C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于 180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan = 奇:2π的奇数倍 偶:2π的偶数倍8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2ba ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤ ),(R b a ∈注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。
高中数学答题模板

一、选择填空题1.易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2.答题方法选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。
填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
二、解答题专题一、三角变换与三角函数的性质问题1.解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2.构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题1.解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题1.解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2.构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
2023年高考数学解题技巧及规范答题:三角函数大题

202 年高考数学解题技巧及规范答题三角函数大题【规律方法】1、正弦定理、余弦定理:正弦定理、余弦定理的作用是在已知三角形部分基本量的情况下求解其余基本量,基本思想是方程思想.正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.正弦定理、余弦定理解三角形问题是高考高频考点,其解题方法主要有: (1)化边为角:通过正弦定理和余弦定理,化边为角,如:,等,利用三角变换得出三角形内角之间的关系进行判断.此时要注意一些常见的三角等式所体现的内角关系,如:,或等.(2)化角为边:利用正弦定理、余弦定理化角为边,如,等,通过代数恒等变换,求出三条边之间的关系进行判断.注意:(1)注意无论是化边还是化角,在化简过程中出现公因式不要约掉,否则会有漏掉一种形状的可能.(2)在变形过程中要注意角A ,B ,C 的范围对三角函数值的影响.2、三角恒等变换综合应用的解题思路(1)将f (x )化为a sin x +b cos x 的形式;(2)构造;(3)和角公式逆用,得(其中φ为辅助角);(4)利用研究三角函数的性质;2sin a R A =2222cos a b c ab C +-=sin sin A B A B =⇔=sin 2sin 2A B A B =⇔=2A B π+=sin 2a A R =222cos 2b c a A bc+-=())f x x x =+())f x x ϕ=+())f x x ϕ=+3(5)反思回顾,查看关键点、易错点和答题规范.【核心素养】以三角形为载体,以正弦定理、余弦定理为工具,以三角恒等变换为手段考查解三角形问题是高考一类热点题型,考查的核心素养主要有“逻辑推理”、“数学运算”、“数据分析”.【典例】【2020年全国II 卷】中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求周长的最大值.【分析】(1)利用正弦定理角化边,配凑出的形式,进而求得;(2)利用余弦定理可得到,利用基本不等式可求得的最大值,进而得到结果.【详解】(1)由正弦定理可得:,,,. (2)由余弦定理得:,即.ABC ABC cos A A ()29AC AB AC AB +-⋅=AC AB +222BC AC AB AC AB --=⋅2221cos 22AC AB BC A AC AB +-∴==-⋅()0,A π∈ 23A π∴=222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=()29AC AB AC AB +-⋅=第二步,用定理、公式、性质:利用正弦定理、余弦定理、二倍角公式、辅助角公式等进行三角形中边角(当且仅当时取等号),,解得:(当且仅当时取等号),周长,周长的最大值为【解题方法与步骤】1、解三角形问题的技巧:(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到. ①应用正弦定理求角时容易出现增解或漏解的错误,要根据条件和三角形的限制条件合理取舍;②求角时易忽略角的范围而导致错误,因此需要根据大边对大角,大角对大边的规则,画图进行判断.(2)三角形解个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角规则进行判断.2、三角恒等变换要遵循的“三看”原则:一看“角”:通过看角之间的差别与联系,把角进行合理拆分,从而正确使用公式; 二看“函数名称”:看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;三看“结构特征”:分析结构特征,找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”等.3、解三角形与三角函数综合问题一般步骤:第一步,转化:正确分析题意,提炼相关等式,利用等式的边角关系合理将问题转化为三角函数的问题; 22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭AC AB =()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭AC AB +≤AC AB =ABC ∴ 3L AC AB BC =++≤+ABC ∴ 3+的的关系的互化;第三步,得结论:利用三角函数诱导公式、三角形内角和定理等知识求函数解析式、角、三角函数值,或讨论三角函数的基本性质等.【好题演练】1.(2021·河南中原高三模拟)在中,,,所对的角分别为,,,已知. (1)求;(2)若,为的中点;且,求的面积.【分析】(1)根据题意,由正弦定理得出,再由两角和的正弦公式化简得,由于,从而可求得,最后根据同角三角函数的平方关系,即可求出;(2)法1:在中由余弦定理得出,再分别在和中,由余弦定理得出和,再由,整理ABC a b c A B C 3cos 3a b A c +=sin B 3a =D AC BD =ABC sin 3sin cos3sin A B A C +=sin 3sin cos A A B =sin 0A >1cos 3B =sin B ABC 221936c b c+-=ABD △BCD △2cos ADB ∠=2cos CDB ∠=cos ADB cos DB 0∠+∠=C化简的出边,最后根据三角形的面积公式,即可求出结果. 法2:由平面向量的加法运算法则得出,两边平方并利用平面向量的数量积运算化简得,从而可求出边,最后根据三角形的面积公式,即可求出结果.【详解】(1)因为,由正弦定理得, 因为, 所以,因为,所以,所以,因为,所以(2)法1:在中,由余弦定理得,即, 在中,由余弦定理得, 在中,由余弦定理得因为,c 1sin2ABC S ac B =△12BD BA BC →→→⎛⎫=+ ⎪⎝⎭()213294c c =++c 1sin 2ABC S ac B =△3cos 3a b A c +=sin 3sin cos 3sin A B A C +=()sin sin sin cos cos sin C A B A B A B =+=+sin 3sin cos A A B =()0,A π∈sin 0A >1cos 3B =()0,B π∈sin B ===ABC 222cos 2a c b B ac +-=221936c b c+-=ABD △2cos ADB ∠=BCD △2cos CDB ∠=πADB CDB ∠+∠=220=即,所以, 整理得,解得:或(舍去), 所以. 法2:因为为的中点,所以,两边平方得,即,即,解得或(舍), 所以. 2.记中内角,,的对边分别为,,.已知. (1)求;(2)点,位于直线异侧,,.求的最大值.【分析】(1,利用正弦定理化边为角结合利用两角和的正弦公式展开整理可求得的值,即可得角; (2)结合(1化角为边可得,即,在中由余弦定理求,利用三角恒等式变换以及三角函数的性质可得最大值.2262b c =+()222296219366c c c b c c+-++-==2230c +c -=1c =3c =-11sin 3122ABC S ac B ==⨯⨯=△D AC 12BD BA BC →→→⎛⎫=+ ⎪⎝⎭222124B BD B BA C BC A →→→→→⎛⎫=+⋅+ ⎪⎝⎭()213294c c =++2230c +c -=1c =3c =-11sin 3122ABC S ac B ==⨯⨯=△ABC A B C a b c a =3cos sin B b A =+A A D BC BD BC ⊥1BD =AD cos sin B b A =+sin sin()C A B =+tan A A cos sin sin C A B B A =+cos sin B a B =+sin c B B =ABD △2AD(1)求 A ;【详解】(1,.. 因为,,所以,,,又因为, 可得:,所以; (2)由(1,, 即,由余弦定理得,所以当且仅当时,取得最大值,所以.3.在中,内角的对边分别为,且满足. 3cos sin B b A =+a =cos sin B b A =+cos sin sin C A B B A =+πA B C ++=,,(0,π)A B C ∈sin sin()sin cos cos sin C A B A B A B =+=+cos s cos sin s i in n A B A B A B B A +=+sin sin sin A B B A =sin 0B ≠sin A A =tan A =0πA <<π3A =cos sin sin C AB B A =+cos sin B a B =+cos sin c a B B B =+=+2222cos AD c BD c BD ABD =+-⋅∠()()()2sin 12sin sin B B B B B =+--222sin 3cos 212sin 2B B B B B =+++++42B =+π4B =2AD )241+=+AD 1+ABC 、、A B C ,,a b c 2sin cos b A B ()2sin c b B =-(2)若l 的取值范围.【分析】(1)由正弦定理得,化简得, 利用的范围可得答案;(2)由正弦定理得,利用的范围和三角函数的性质可得答案.【详解】(1)由正弦定理得, 因为,所以, 所以,即,解得,因为,所以.(2)由正弦定理得, 所以,所以,因为,所以, a =()2sin sin cos 2sin sin sin B A B CB B =-1cos2A =A 4sin ,4sin bB cC ==()4sin sin l B C =++B ()2sin sin cos 2sin sin sin BA B C B B=-0B π<<sin 0B ≠2sincos 2sin sin A BC B =-2sin cos 2sin cos 2sin cos sin A B A B B A B =+-1cos 2A =0A π<<3A π=4sin sin sin a b cAB C===4sin ,4sin b B c C ==()24sin sin sin sin 3l B C B B π⎡⎤⎛⎫=+++-+ ⎪⎢⎥⎝⎭⎣⎦314sin cos 22B B B B ⎛⎫⎫=+++ ⎪⎪ ⎪⎪⎝⎭⎭6B π⎛⎫=++ ⎪⎝⎭20,3B π⎛⎫∈ ⎪⎝⎭5,666B πππ⎛⎫+∈ ⎪⎝⎭所以, 所以.4.(2021·天津高考)在,角所对的边分别为,已知. (I )求a 的值;(II )求的值;(III )求的值.【分析】(I )由正弦定理可得(II )由余弦定理即可计算;(III )利用二倍角公式求出的正弦值和余弦值,再由两角差的正弦公式即可求出.【详解】(I )因为,由正弦定理可得,;(II )由余弦定理可得; (III ),, ,, 所以. 1sin ,162B π⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦(l ∈ABC ,,A B C ,,a bc sin:sin :sin 2A B C =b =cos C sin 26C π⎛⎫- ⎪⎝⎭::2a b c =2C sin :sin :sin 2A B C =::2:1:ab c=b =2a c ∴==2223cos 24a b c C ab +-===3cos 4C =sin C ∴==3sin 22sin cos 24C C C ∴===291cos 22cos 121168C C =-=⨯-=sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1182=⨯=5.(2021·南京市中华中学)在中,分别为内角的对边,且满足. (1)求的大小;(2)从①,②,③这三个条件中任选两个,补充在下面的问题中,并解决问题.问题:已知___________,___________,若存在,求的面积,若不存在,请说明理由.注:如果选择多个条件解答,按第一个解答计分.【分析】(1)由正弦定理进行边角互化,再结合辅助角公式化简运算,可求出角的范围.(2)若选择条件①②,由余弦定理可计算的值,面积公式计算面积;若选择条件②③,正弦定理计算边,两角和的正弦计算,可求面积;若选择条件①③,由大边对大角可知三角形不存在. 【详解】(1)因为,由正弦定理可得因为即因为所以因为即ABC ,,a b c ,,A B C b a =B 2a c =2b =4A π=ABC ABC ABC a c 、a sin C b a =sin sin B A =sin 0A ≠cos 1B B -=1sin()62B π-=0B π<<5666B πππ-<-<66B ππ-==3B π第 11 页 共 11 页(2)若选择条件①②,由余弦定理可得,解得, 故所以若选择条件②③由正弦定理可得,可得所以若选择条件①③这样的三角形不存在,理由如下: 在三角形中,, 所以, 所以,所以又因为所以与矛盾,所以这样的三角形不存在.2222cos b a c ac B=+-222442c c c +-=c =a =11sin sin 223ABC S ac B π=== sin sin a b A B =sin sin b A a B ==11sin 2sin 2234ABC S ab C ππ⎛⎫==⨯+= ⎪⎝⎭ ABC 43A B ππ==,53412C ππππ=--=A C <a c <2a c=a c >a c <。
五类解三角形题型--新高考数学大题秒杀技巧(解析版)

五类解三角形题型解三角形问题一般分为五类:类型1:三角形面积最值问题;类型2:三角形周长定值及最值;类型3:三角形涉及中线长问题;类型4:三角形涉及角平分线问题;类型5:三角形涉及长度最值问题。
类型1:面积最值问题技巧:正规方法:面积公式+基本不等式①S=12ab sin Ca2+b2−c2=2ab cos C⇒a2+b2=2ab cos C+c2≥2ab⇒ab≤c221−cos C②S=12ac sin Ba2+c2−b2=2ac cos B⇒a2+c2=2ac cos B+b2≥2ac⇒ac≤b221−cos B③S=12bc sin Ab2+c2−a2=2bc cos A⇒b2+c2=2bc cos A+a2≥2bc⇒bc≤a221−cos A秒杀方法:在ΔABC中,已知B=θ,AC=x则:SΔABC max=AB+BC2max8⋅sin B其中AB+BCmax=2R⋅m2+n2+2mn cosθm,n分别是BA、BC的系数2R=x sinθ面积最值问题专项练习1△ABC的内角A,B,C的对边分别为a,b,c,c=2a cos C-b,c2+a2=b2+3ac,b=2.(1)求A;(2)若M,N在线段BC上且和B,C都不重合,∠MAN=π3,求△AMN面积的取值范围.【答案】(1)2π3(2)33,3 2【详解】(1)由c=2a cos C-b得2a cos C=c+2b,由正弦定理得2sin A cos C=sin C+2sin B=sin C+2sin A+C=sin C+2sin A cos C+2cos A sin C,所以2cos A sin C+sin C=0,又因为C∈0,π,所以sin C≠0,所以cos A=-12,又A∈0,π,所以A=2π3,(2)由c2+a2=b2+3ac,得c2+a2-b2=3ac,由余弦定理知cos B=c2+a2-b22ac =32,又因为B∈0,π,所以B =π6,所以C =π-A -B =π6,所以b =c =2,如图,设∠BAM =α,则∠CAN =π3-α,∠BMA =5π6-α,∠CNA =π2+α,在△ABM 中,由正弦定理可知AM =c sin B sin ∠BMA =2sin π6sin 5π6-α =1sin π6+α ,在△ANC 中,由正弦定理可知AN =b sin C sin ∠CNA =2sin π6sin π2+α =1cos α,故S △AMN =12AM ⋅AN ⋅sin ∠MAN =12⋅1sin α+π6 ⋅1cos α⋅sin π3=34sin α+π6cos α=323sin α+cos α cos α=323sin αcos α+2cos 2α=33sin2α+cos2α+1=32sin 2α+π6 +1,因为α∈0,π3 ,所以π6<2α+π6<5π6,所以12<sin 2α+π6 ≤1,所以2<2sin 2α+π6 +1≤3,所以33≤32sin 2α+π6 +1<32,即S △AMN ∈33,32.2已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若3c sin B =a -b cos C .(1)求B ;(2)若DC =AD ,BD =2,求△ABC 的面积的最大值.【答案】(1)π6(2)8-43【详解】(1)由题意,在△ABC 中,3c sin B =a -b cos C ,∵a sin A=b sin B =csin C ,A +B +C =π∴3sin C sin B =sin A -sin B cos C ,即3sin C sin B =sin B +C -sin B cos C ,∴3sin B -cos B sin C =0,∵sin C ≠0,0<B <π∴3sin B -cos B =0,可得tan B =33,解得:B =π6.(2)由题意及(1)得在△ABC 中,B =π6,DC =AD ,BD =2,∴D 为边AC 的中点,4BD2=4×22=16∴2BD =BA +BC ,∴4BD 2=BA +BC 2=BA 2+2BA ⋅BC +BC 2,即4BD 2=BA 2+2BA BC cos B +BC 2=16,设BA =c ,BC =a ,则a 2+c 2+2ac cos π6=a 2+c 2+3ac =16≥2+3 ac ,所以ac ≤162+3=32-163,当且仅当a =c 时,等号成立.∴S △ABC =12ac sin B =14ac ≤8-43,当且仅当a =c 时,等号成立,∴△ABC 的面积的最大值为8-4 3.3在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =2b -c sin B +c 2sin C -sin B .(1)求A ;(2)点D 在边BC 上,且BD =3DC ,AD =4,求△ABC 面积的最大值.【答案】(1)A =π3(2)6439【详解】(1)∵2a sin A =2b -c sin B +c 2sin C -sin B ,∴2a 2=2b -c b +2c -b c ,即a 2=b 2+c 2-bc ,∴cos A =b 2+c 2-a 22bc =12,∵A ∈0,π ∴A =π3.(2)根据题意可得AD =AB +BD =AB +34BC =14AB +34AC,所以平方可得16=116c 2+916b 2+38bc cos π3.又256=c 2+9b 2+3bc ≥9bc ,所以bc ≤2569,当且仅当b =1639,c =1633时,等号成立,所以S =12bc sin π3≤12×2569×32=6439,即△ABC 面积的最大值为6439.4△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知c =2a cos C -b ,c 2+a 2=b 2+3ac ,b =2.(1)求A ;(2)若M 是直线BC 外一点,∠BMC =π3,求△BMC 面积的最大值.【答案】(1)2π3(2)33【详解】(1)由c =2a cos C -b 得2a cos C =c +2b ,由正弦定理得2sin A cos C=sin C+2sin B,因为sin B=sin(π-A-C)=sin(A+C)=sin A cos C+cos A sin C,所以2cos A sin C+sin C=0.又因为C∈(0,π),所以sin C≠0,所以cos A=-1 2 .因为A∈(0,π),所以A=2π3.(2)由c2+a2=b2+3ac得c2+a2-b2=3ac,故cos B=c2+a2-b22ac=32.因为B∈(0,π),所以B=π6,所以C=π-A-B=π6,可得b=c=2.根据正弦定理asin A=bsin B可得,a=b sin Asin B=2×3212=2 3.设BM=m,CM=n,在△BMC中,∠BMC=π3,由余弦定理可得a2=m2+n2-2mn cos π3=m2+n2-mn=12.所以12=m2+n2-mn≥2mn-mn=mn,当且仅当m=n=23时取等号,所以mn≤12.所以S△MBC=12mn sinπ3=34mn≤34×12=33.故△BMC面积的最大值为33.5在△ABC中,角A,B,C对边分别为a,b,c,(sin A+sin B)(a-b)=c(sin C-sin B),D为BC边上一点,AD平分∠BAC,AD=2.(1)求角A;(2)求△ABC面积的最小值.【答案】(1)A=π3;(2)433【详解】(1)由(sin A+sin B)(a-b)=c(sin C-sin B),可得(a+b)(a-b)=c(c-b),整理得b2+c2-a2=bc,则cos A=b2+c2-a22bc=bc2bc=12,又0<A<π,则A=π3 .(2)过点D 作DE ⊥AC 于E ,作DF ⊥AB 于F ,又∠DAC =∠DAB =π6,AD =2,则DF =DE =1,则S △ABC =12bc sin A =12b +c ⋅1,则3bc =2b +c ,又b +c ≥2bc (当且仅当b =c 时等号成立),则3bc ≥4bc ,则bc ≥163,则S △ABC =12bc sin A ≥433(当且仅当b =c 时等号成立),则△ABC 面积的最小值为433.6在①m =2a -c ,b ,n =cos C ,cos B ,m ⎳n ;②b sin A =a cos B -π6 ;③a +b a -b =a -c c 三个条件中任选一个,补充在下面的问题中,并解决该问题.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足.注:如果选择多个条件分别解答,按第一个解答计分.(1)求角B ;(2)若b =2,求△ABC 面积的最大值.【答案】(1)π3(2)3【详解】(1)解:选①:因为m =2a -c ,b ,n=cos C ,cos B 由m ⎳n ,可得(2a -c )cos B -b cos C =0,由正弦定理得:(2sin A -sin C )cos B -sin B cos C=2sin A cos B -sin C cos B +sin B cos C =2sin A cos B -sin (B +C )=0,因为B +C =π-A ,可得sin B +C =sin A ,所以2sin A cos B -sin A =0,又因为A ∈(0,π),可得sin A >0,所以cos B =12,因为B ∈(0,π),所以B =π3.选②:因为b sin A =a cos B -π6,由正弦定理得sin B sin A =sin A ⋅32cos B +12sin B,又因为A ∈(0,π),可得sin A >0,则sin B =32cos B +12sin B ,即12sin B =32cos B ,可得tan B =3,因为B ∈(0,π),所以B =π3.选③:因为a +b a -b =a -c c ,可得a 2+c 2-b 2=ac ,由余弦定理得cos B =a 2+c 2-b 22ac =ac 2ac =12,又因为B ∈(0,π),所以B =π3.(2)解:因为B =π3,且b =2,由余弦定理知b 2=a 2+c 2-2ac cos B ,即4=a 2+c 2-2ac cos π3,可得a 2+c 2-ac =4,又由a 2+c 2-ac ≥2ac -ac =ac ,当且仅当a =c 时,等号成立,所以ac ≤4,所以△ABC 的面积S △ABC =12ac sin B ≤12×4×sin π3=3,即△ABC 的面积的最大值为 3.类型2:三角形周长定值及最值类型一:已知一角与两边乘积模型第一步:求两边乘积第二步:利用余弦定理求出两边之和类型二:已知一角与三角等量模型第一步:求三角各自的大小第二步:利用正弦定理求出三边的长度最值步骤如下:第一步:先表示出周长l =a +b +c第二步:利用正弦定理a =2R sin A ,b =2R sin B ,c =2R sin C 将边化为角第三步:多角化一角+辅助角公式,转化为三角函数求最值周长定值及最值问题专项练习7在锐角三角形△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,CD 为CA 在CB方向上的投影向量,且满足2c sin B =5CD.(1)求cos C 的值;(2)若b =3,a =3c cos B ,求△ABC 的周长.【答案】(1)23(2)2+23【详解】(1)由CD 为CA 在CB 方向上的投影向量,则CD=b cos C ,即2c sin B =5b cos C ,根据正弦定理,2sin C sin B =5sin B cos C ,在锐角△ABC 中,B ∈0,π2,则sin B >0,即2sin C =5cos C ,由C ∈0,π2 ,则cos 2C +sin 2C =1,整理可得cos 2C +54cos 2C =1,解得cos C =23.(2)由a =3c cos B ,根据正弦定理,可得sin A =3sin C cos B ,在△ABC 中,A +B +C =π,则sin B +C =3sin C cos B ,sin B cos C +cos B sin C =3sin C cos B ,sin B cos C =2sin C cos B ,由(1)可知cos C =23,sin C =1-cos 2C =53,则sin B =5cos B ,由sin 2B +cos 2B =1,则5cos 2B +cos 2B =1,解得cos B =66,sin B =306,根据正弦定理,可得b sin B =c sin C,则c =sin C sin B b =2,a =62c =3,故△ABC 的周长C △ABC =a +b +c =23+ 2.8如图,在梯形ABCD 中,AB ⎳CD ,∠D =60°.(1)若AC =3,求△ACD 周长的最大值;(2)若CD =2AB ,∠BCD =75°,求tan ∠DAC 的值.【答案】(1)9(2)3+3.【详解】(1)在△ACD 中,AC 2=AD 2+DC 2-2AD ⋅DC cos D =AD 2+DC 2-AD ⋅DC =(AD +DC )2-3AD ⋅DC ≥(AD +DC )2-3AD +DC22=(AD +CD )24,即9≥(AD +CD )24,解得:AD +DC ≤6,当且仅当AD =DC =3时取等号.故△ACD 周长的最大值是9.(2)设∠DAC =α,则∠DCA =120°-α,∠BCA =α-45°.在△ACD 中,CD sin α=AC sin60°,在△ACB 中,AB sin α-45° =AC sin105°,两式相除得,2sin α-45° sin α=sin105°sin60°,因为sin105°=sin 45°+60° =sin45°cos60°+cos45°sin60°=6+24,∴(6-2)sin α=26cos α,故tan ∠DAC =tan α=266-2=3+3.9已知△ABC 的面积为S ,角A ,B ,C 所对的边为a ,b ,c .点O 为△ABC 的内心,b =23且S =34(a 2+c 2-b 2).(1)求B 的大小;(2)求△AOC 的周长的取值范围.【答案】(1)B=π3(2)43,4+23【详解】(1)因为S=34(a2+c2-b2)=12ac sin B,所以34×2ac cos B=12ac sin B,即3cos B=sin B,可得tan B=3,因为B∈(0,π),所以B=π3.(2)设△AOC周长为l,∠OAC=α,如图所示,由(1)知B=π3,所以0<∠BAC<2π3,可得0<α<π3,因为点O为ΔABC的内心,OA,OC分别是∠A,∠C的平分线,且B=π3,所以∠AOC=2π3,在△AOC中,由正弦定理可得OAsinπ3-α=OCsinα=23sin2π3,所以l=OA+OC+AC=4sinα+4sinπ3-α+23=4sinα+432cosα-12sinα+23=2sinα+23cosα+23=4sinα+π3+23,因为α∈0,π3,所以α+π3∈π3,2π3,可得sinα+π3∈32,1,可得△AOC周长l=4sinα+π3+23∈43,4+23.10在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,已知sin A-sin B3a-c=sin Ca+b.(1)求角B的值;(2)若a=2,求△ABC的周长的取值范围.【答案】(1)π6(2)3+3,2+23【详解】(1)sin A-sin B3a-c=sin Ca+b,由正弦定理得:a-b3a-c=ca+b,即a2+c2-b2=3ac,由余弦定理得:cos B=a2+c2-b22ac=3ac2ac=32,因为B∈0,π,所以B=π6;(2)锐角△ABC中,a=2,B=π6,由正弦定理得:2sin A =bsinπ6=csin C,故b=1sin A,c=2sin Csin A=2sin A+π6sin A=3sin A+cos Asin A,则b+c=3sin A+cos A+1sin A=3+1+1cos Atan A=3+1+1+tan2Atan A=3+1tan A +1tan2A+1,因为锐角△ABC中,B=π6,则A∈0,π2,C=π-π6-A∈0,π2,解得:A∈π3,π2 ,故tan A∈3,+∞,1tan A ∈0,33,则1tan2A+1∈1,233,3+1tan A+1tan2A+1∈1+3,23,故b+c∈1+3,23,a+b+c∈3+3,2+23所以三角形周长的取值范围是3+3,2+23.11在△ABC中,角A,B,C的对边分别是a,b,c,a-ca+c+b b-a=0.(1)求C;(2)若c=3,△ABC的面积是32,求△ABC的周长.【答案】(1)π3.(2)3+3.【详解】(1)由题意在△ABC中,a-ca+c+b b-a=0,即a2+b2-c2=ab,故cos C=a2+b2-c22ab=12,由于C∈(0,π),所以C=π3 .(2)由题意△ABC的面积是32,C=π3,即S△ABC=12ab sin C=34ab=32,∴ab=2,由c=3,c2=a2+b2-2ab cos C得3=a2+b2-ab=(a+b)2-6,∴a+b=3,故△ABC的周长为a+b+c=3+ 3.类型3:三角形涉及中线长问题①中线长定理:(两次余弦定理推导可得)+(一次大三角形一次中线所在三角形+同余弦值)如:在ΔABC与ΔABD同用cos B求ADAB2+AC22=AD2+CD2②中线长常用方法cos∠ADB+cos∠ADC=0③已知AB+AC,求AD的范围∵AB+AC为定值,故满足椭圆的第一定义∴半短轴≤AD<半长轴三角形涉及中线长问题专项练习12在△ABC中,角A,B,C的对边分别为a,b,c,且b=7,c=5.(1)若sin B=78,求cos C的值;(2)若BC边上的中线长为21,求a的值.【答案】(1)39 8(2)8(1)由正弦定理bsin B =csin C,∴sin C=c sin Bb=5×787=58又b>c,若C为钝角,则B也为钝角,与三角形内角和矛盾,故C∈0,π2∴cos C>0,即cos C=1-sin2C=1-58 2=1-2564=3964=398 (2)取BC边上的中点D,则AD=21,设BD=x在△ABD中,利用余弦定理知:cos∠ADB=AD2+BD2-AB22AD⋅BD =21+x2-52221x=-4+x2221x在△ACD 中,利用余弦定理知:cos ∠ADC =AD 2+CD 2-AC 22AD ⋅CD =21+x 2-72221x =-28+x 2221x又∠ADB +∠ADC =π,则cos ∠ADB +cos ∠ADC =0即-4+x 2221x +-28+x 2221x =0,即2x 2-32=0,解得x =4又a =2x =8故a 的值为8.13在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =2,b =5,c =1.(1)求sin A ,sin B ,sin C 中的最大值;(2)求AC 边上的中线长.【答案】(1)最大值为sin B =22(2)12【详解】(1)∵5>2>1,故有b >a >c ⇒sin B >sin A >sin C ,由余弦定理可得cos B =(2)2+12-(5)22×2×1=-22,又B ∈(0,π),∴B =3π4,故sin B =22.(2)设AC 边上的中线为BD ,则BD =12(BA +BC ),∴(2BD )2=(BA +BC )2=c 2+a 2+2ca cos B =12+(2)2+2×1×2×cos 3π4=1,∴|BD |=12,即AC 边上的中线长为12.14在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足3b sin A =a cos B +a .(1)求角B 的值;(2)若c =8,△ABC 的面积为203,求BC 边上中线AD 的长.【答案】(1)π3(2)7【详解】(1)解:由正弦定理得3sin B sin A =sin A cos B +sin A ,A ∈0,π ,sin A ≠0∴3sin B =cos B +1,则sin B -π6 =12,B ∈0,π ,∴B =π3;(2)∵S =12ac sin B =203,c =8,∴a =10,由余弦定理AD2=c2+a22-2×12ac cos B=64+25-40=49,得AD2=49,∴AD=7,15如图,在△ABC中,内角A、B、C的对边分别为a、b、c.已知b=3,c=6,sin2C=sin B,且AD 为BC边上的中线,AE为∠BAC的角平分线.(1)求cos C及线段BC的长;(2)求△ADE的面积.【答案】(1)cos C=14,BC=6(2)3158【详解】(1)∵sin2C=sin B,∴2sin C cos C=sin B,∴2c cos C=b,∴cos C=1 4由余弦定理得cos C=a2+9-366a=14⇒a=6(负值舍去),即BC=6.(2)∵cos C=14>0,C∈0,π2,∴sin C=154,∴S△ABC=12CA⋅CB⋅sin C=9154,∵AE平分∠BAC,sin∠BAE=sin∠CAE,由正弦定理得:BEsin∠BAE =ABsin∠AEB,CEsin∠CAE=ACsin∠AEC,其中sin∠AEB=sin∠AEC,∴AB AC =BECE=2⇒S△AEC=13S△ABC,∵AD为BC边的中线,∴S△ADC=12S△ABC,∴S△ADE=S△ADC-S△AEC=16S△ABC=3158.16在△ABC中,∠A=2π3,AC=23,点D在AB上,CD=32.(1)若CD为中线,求△ABC的面积;(2)若CD平分∠ACB,求BC的长.【答案】(1)9-33(2)6(1)解:由余弦定理得CD2=AC2+AD2-2⋅AC⋅AD⋅cos A,∴322=232+AD2-2×23×AD×-12,解得AD=-3±3(负值舍).所以,AB=2AD=6-23,故S△ABC=12AB⋅AC⋅sin A=12×6-23×23×32=9-33.(2)解:由正弦定理得CDsin A=ACsin∠ADC,即3232=23sin∠ADC,解得sin∠ADC=22.又∠A=2π3,则∠ADC∈0,π3,∴∠ADC=π4,∴∠ACD=π-2π3-π4=π12.又CD平分∠ACB,则∠ACB=2∠ACD=π6 .所以,∠B=π-2π3-π6=π6,则∠B=∠ACB,故AB=AC=2 3.由余弦定理得BC2=AB2+AC2-2AB⋅AC⋅cos A=232+232-2×23×23×-1 2=36.因此,BC=6.17在①3b=a sin C+3cos C;②a sin C=c sin B+C2;③a cos C+12c=b,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求角A;(2)若b=1,c=3,求BC边上的中线AD的长.注:若选择多个条件分别进行解答,则按第一个解答进行计分.【答案】(1)任选一个,答案均为π3(2)132.(2)在△ABD和△ACD中分别应用余弦定理后相加可得AD.【详解】(1)选①3b=a sin C+3cos C,由正弦定理得3sin B=sin A(sin C+3cos C),3sin(A+C)=sin A sin c+3sin A cos C,3(sin A cos C+cos A sin C)=sin A sin C+3sin A cos C,3cos A sin C=sin A sin C,三角形中sin C≠0,所以tan A=3,又A∈(0,π),所以A=π3;选②a sin C=c sin B+C 2由正弦定理得sin A sin C=sin C sin B+C2=sin C cos A2,三角形中sin C≠0,所以2sin A2cos A2=cos A2,又三角形中cosA2≠0,所以sin A2=12,A∈(0,π),所以A2=π6,即A=π3;选③a cos C+12c=b,由余弦定理得a2+b2-c22b+12c=b,整理得b2+c2-a2=bc,所以cos A=b2+c2-a22bc=12,而A∈(0,π),A=π3;(2)由(1)a2=b2+c2-2bc cos A=1+9-2×1×3cosπ3=7,a=7,由余弦定理得:b2=AD2+CD2-2AD⋅CD cos∠CDAc2=AD2+BD2-2AD⋅BD cos∠BDA,又BD=CD,cos∠CDA=-cos∠BDA,所以b2+c2=2AD2+BD2+CD2=2AD2+12a2,所以AD2=121+9-12×7=134,AD=132.类型4:三角形涉及角平分线问题张角定理如图,在ΔABC中,D为BC边上一点,连接AD,设AD=l,∠BAD=α,∠CAD=β则一定有sinα+βl=sinαb+sinβc三角形涉及角平分线问题专项练习18设a,b,c分别是△ABC的内角A,B,C的对边,sin B-sin Cb=a-csin A+sin C.(1)求角A的大小;(2)从下面两个问题中任选一个作答,两个都作答则按第一个记分.①设角A的角平分线交BC边于点D,且AD=1,求△ABC面积的最小值.②设点D为BC边上的中点,且AD=1,求△ABC面积的最大值.【答案】(1)A=π3;(2)①33;②3 3.【详解】(1)∵asin A=bsin B=csin C且sin B-sin Cb=a-csin A+sin C,∴b-cb=a-ca+c,即b2+c2-a2=bc,∴cos A=b2+c2-a22bc =bc2bc=12,又A∈0,π,∴A=π3;(2)选①∵AD 平分∠BAC ,∴∠BAD =∠CAD =12∠BAC =π6,∵S △ABD +S △ACD =S △ABC ,∴12AB ⋅AD ⋅sin ∠BAD +12AC ⋅AD ⋅sin ∠CAD =12b ⋅c ⋅sin A ,即c sin π6+b sin π6=bc sin π3,∴c +b =3bc由基本不等式可得:3bc =b +c ≥2bc ,∴bc ≥43,当且仅当b =c =233时取“=”,∴S △ABC =12bc sin A =34bc ≥33,即△ABC 的面积的最小值为33;②因为AD 是BC 边上的中线,在△ADB 中由余弦定理得cos ∠ADB =a 2 2+12-c 22×a 2×1,在△ADC 中由余弦定理得cos ∠ADC =a 2 2+12-b 22×a 2×1,∵cos ∠ADB +cos ∠ADC =0,∴a 22+2=b 2+c 2,在△ABC 中,A =π3,由余弦定理得a 2=b 2+c 2-bc ,∴4-bc =b 2+c 2∴4-bc =b 2+c 2≥2bc ,解得bc ≤43,当且仅当b =c =233时取“=”,所以S △ABC =12bc sin A =34bc ≤33,即△ABC 的面积的最大值为33.19在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c sin B +33b cos A +B =33b .(1)求角C 的大小;(2)若c =3,角A 与角B 的内角平分线相交于点D ,求△ABD 面积的取值范围.【答案】(1)π3(2)3-34,34【详解】(1)解:∵c sin B +33b cos A +B =33b ,由正弦定理可得:sin C sin B +33sin B cos A +B =33sin B ,∴sin C sin B -33sin B cos C =33sin B ,∵sin B ≠0,∴sin C -33cos C =33,∴sin C -π6 =12,∵C 为锐角,∴C -π6∈-π6,π3 ,∴C -π6=π6,∴C =π3;(2)解:由题意可知∠ADB =2π3,设∠DAB =α,∴∠ABD =π3-α,∵0<2α<π2,又∵B =π-π3-2α0,π2 ,∴α∈π12,π4,在△ABD 中,由正弦定理可得:AB sin ∠ADB =AD sin ∠ABD ,即:3sin 2π3=AD sin π3-α ,∴AD =2sin π3-α ,∴S △ABD =12AB ⋅AD ⋅sin α=12×3×2sin π3-α sin α=32sin αcos α-32sin 2α=32sin 2α+π6 -34,∵α∈π12,π4 ,∴2α+π6∈π3,2π3,∴sin 2α+π6 ∈32,1 ,∴32sin 2α+π6 -34∈3-34,34,∴三角形面积的取值范围为3-34,34.20已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c 满足b cos C +c cos B sin B +3b cos A =0.(1)求A ;(2)若c =2,a =23,角B 的角平分线交边AC 于点D ,求BD 的长.【答案】(1)2π3;(2)6.【详解】(1)由正弦定理化边为角可得:sin B cos C +sin C cos B sin B +3sin B cos A =0,即sin B +C sin B +3sin B cos A =0所以sin A sin B +3sin B cos A =0,因为sin B ≠0,所以sin A +3cos A =0即tan A =- 3.因为0<A <π,所以A =2π3.(2)在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A ,代入数据可得:12=b 2+4-2b ×2×-12 即12=b 2+4+2b .解得:b =2或b =-4(舍).所以b =c =2,所以B =C =π6,在△ABD 中,由BD 是∠ABC 的角平分线,得∠ABD =π12,则∠ADB =π-2π3-π12=π4,在△ABD 中,由正弦定理得:AB sin ∠ADB =BD sin ∠BAD 即2sin π4=BD sin 2π3,可得:BD =2×sin 2π3sin π4=2×3222= 6.21已知△ABC 的内角A ,B ,C 的对应边分别为a ,b ,c ,且有3cos A c cos B +b cos C +a sin A =0.(1)求A ;(2)设AD 是△ABC 的内角平分线,边b ,c 的长度是方程x 2-6x +4=0的两根,求线段AD 的长度.【答案】(1)A =2π3;(2)AD =23.【详解】(1)由正弦定理得:3cos A sin C cos B +sin B cos C +sin 2A =0,即3cos A sin B +C +sin 2A =0,又sin B +C =sin π-A =sin A ,∴-3sin A cos A =sin 2A ,又A ∈0,π ,∴sin A ≠0,∴sin A =-3cos A ,∴tan A =-3,又A ∈0,π ,∴A =2π3;(2)∵b ,c 为方程x 2-6x +4=0的两根,∴b +c =6,bc =4,由(1)知:A =2π3,∴∠BAD =∠CAD =π3,∵S △ABC =S △ABD +S △ADC ,∴12bc sin 2π3=c 2⋅AD sin π3+b 2⋅AD sin π3=b +c 2⋅AD sin π3,即332AD =3,解得:AD =23.22在①b sin B +c sin C =233b sin C +a sin A ;②cos 2C +sin B sin C =sin 2B +cos 2A ;③2b =2a cos C +c 这三个条件中任选一个,补充在下面的问题中并作答.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 外接圆的半径为1,且.(1)求角A ;(2)若AC =2,AD 是△ABC 的内角平分线,求AD 的长度.注:如果选择多个条件分别解答,按第一个解答计分.【答案】(1)A =π3;(2)AD =2.【详解】(1)选择①:b sin B +c sin C =233b sin C +asin A ,由正弦定理得:b 2+c 2=233b sin C +a a ,即b 2+c 2-a 2=233ab sin C ,由余弦定理得:2bc cos A =233ab sin C ,所以sin C cos A =33sin A sin C .因为C ∈0,π ,所以sin C >0,所以tan A >3因为A ∈0,π ,所以A =π3.选择②:cos 2C +sin B sin C =sin 2B +cos 2A 得:1-sin 2C +sin B sin C =sin 2B +1-sin 2A ,即sin 2B +sin 2C -sin 2A =sin B sin C ,由正弦定理得:b 2+c 2-a 2=bc .由余弦定理得:cos A =b 2+c 2-a 22bc=12,因为A ∈0,π ,所以A =π3.选择③:由2b =2a cos C +c ,结合正弦定理得:2sin B =2sin A cos C +sin C .因为A +B +C =π,所以sin B =sin A +C ,即2sin A +C =2sin A cos C +sin C ,所以2cos A sin C =sin C .因为C ∈0,π ,所以sin C >0,所以cos A =12因为A ∈0,π ,所以A =π3.(2)在△ABC 中,由正弦定理得:AC sin B=2R =2,所以sin B =22,所以B =π4(因为A =π3,由内角和定理,B 不可能为3π4).在△ABD 中,由正、余弦定理建立方程组得:AD sin B =BD sin A 2cos B =BD 2+AB 2-AD 22×AB ×BD AB sin C =2R ,即AD 22=BD 1222=BD 2+AB 2-AD 22×AB ×BD AB 6+24=2 ,解得:AD =2BD =1AB =6+22,即AD = 2.类型5:三角形涉及长度最值问题秒杀:解三角形中最值或范围问题,通常涉及与边长常用处理思路:①余弦定理结合基本不等式构造不等关系求出答案;②采用正弦定理边化角,利用三角函数的范围求出最值或范围,如果三角形为锐角三角形,或其他的限制,通常采用这种方法;③巧妙利用三角换元,实现边化角,进而转化为正弦或余弦函数求出最值三角形涉及长度最值问题专项练习23设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为34c 2-a 2-b 2 .(1)求C ;(2)延长BC 至D ,使BD =3BC ,若b =2,求AD AB 的最小值.【答案】(1)2π3(2)3-1.【详解】(1)解:由余弦定理可得c 2-a 2-b 2=-2ab cos C ,因为△ABC 的面积为34c 2-a 2-b 2 ,可得S △ABC =34c 2-a 2-b 2 =-32ab cos C ,又因为S △ABC =12ab sin C ,所以12ab sin C =-32ab cos C ,即tan C =-3,因为0<C <π,所以C =2π3.(2)解:如图所示,因为BD =3BC ,设BC =t ,则CD =2t ,由余弦定理可得AD 2AB 2=4t 2+4-2×2×2t cos π3t 2+4-2×2t cos 2π3=4-12t +1 +3t +1≥4-23当且仅当t =3-1时,等号成立,所以AD AB的最小值为3-1.24在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a 2-b 2=ac cos B -12bc (1)求A ;(2)若a =6,2BD =DC ,求线段AD 长的最大值.【答案】(1)π3(2)23+2【详解】(1)因为a 2-b 2=ac cos B -12bc ,所以根据余弦定理,可得a 2-b 2=ac ⋅a 2+c 2-b 22ac -12bc ,所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈0,π ,所以A =π3.(2)解法一:因为2BD =DC ,所以2AD -AB =AC -AD ,所以AD =23AB +13AC,所以AD 2=194AB 2+AC 2+4AB ⋅AC=19b 2+4c 2+2bc .因为b 2+c 2-a 2=bc ,a =6,所以b 2+c 2-bc =36,则AD 2=4×136b 2+4c 2+2bc =4×b 2+4c 2+2bcb 2+c 2-bc=4×b c 2+4+2×b cb c 2+1-b c.令t =b c ,t >0,则AD 2=4×t 2+4+2t t 2+1-t =4×t 2-t +1 +3t +3t 2-t +1=4+12t +1t 2-t +1.令u =t +1,则u >1,所以AD 2=4+12u u 2-3u +3=4+12u +3u -3≤4+1223-3=16+83,当且仅当u =3u ,即u =3时取等号.所以,AD ≤16+83=23+2,所以,线段AD 长的最大值为23+2.解法二:设△ABC 外接圆的半径为R ,根据正弦定理,可得2R =632,所以R =2 3.当AD 过圆心O 时,AD 的长取得最大值.作OE ⊥BC ,则E 为BC 的中点,因为∠BAC =π3,所以∠BOE =12×2∠BAC =π3,所以OE =OB cos π3= 3.因为BE =3,BD =13BC =2,所以DE =1,所以OD =OE 2+ED 2=2,所以AD =23+2,所以,线段AD 长的最大值为23+2.25锐角△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,已知sin C =2cos A sin B +π3 .(1)求A ;(2)若b +c =6,求BC 边上的高AD 长的最大值.【答案】(1)A =π3(2)332【详解】(1)因为C =π-(A +B ),所以sin C =sin (A +B )=sin A cos B +cos A sin B ,又sin C =2cos A sin B +π3 =2cos A 12sin B +32cos B=cos A sin B +3cos A cos B ,所以sin A cos B =3cos A cos B ,所以cos B (sin A -3cos A )=0,所以cos B =0或sin A -3cos A =0,若cos B =0,则B =π2,与△ABC 为锐角三角形矛盾,舍去,从而sin A -3cos A =0,则tan A =3,又0<A <π2,所以A =π3;(2)由(1)知cos A =12=b 2+c 2-a 22bc =(b +c )2-2bc -a 22bc =36-2bc -a 22bc ,化简得a2=36-3bc,因为S△ABC=12a⋅AD=12bc sin A,所以AD=3bc2a,所以AD2=3(bc)24a2=3(bc)24(36-3bc),又b+c≥2bc,所以bc≤9,当且仅当b=c=3时取等号,所以AD2=3(bc)24(36-3bc)=3436(bc)2-3bc≤343692-39=274,所以AD≤332,故AD长的最大值为332.26在△ABC中,角A,B,C的对边分别是a,b,c,a sin B+C=b-csin B+c sin C.(1)求A;(2)若D在BC上,a=2,且AD⊥BC,求AD的最大值.【答案】(1)π3(2)3【详解】(1)由a sin B+C=b-csin B+c sin C,得a sin A=b-csin B+c sin C,由正弦定理,得a2=b-cb+c2=b2+c2-bc.由余弦定理,得cos A=b2+c2-a22bc=bc2bc=12.又A∈0,π,所以A=π3 .(2)因为a2=b2+c2-2bc cos A=b2+c2-bc≥2bc-bc=bc,所以bc≤4,当且仅当b=c=2时取等号,又12bc sin A=12AD⋅a,a=2,所以AD=12bc sin A1=34bc≤3,故AD的最大值为 3.27记△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为312b2.(1)若A=π6,求sin B sin C;(2)求a2+c2ac的最大值.【答案】(1)3(2)4【详解】(1)由于S△ABC=12bc sin A=14bc=312b2,所以b=3c,由正弦定理可得sin Bsin C=bc=3.(2)由于S△ABC=12ac sin B=312b2,所以b2=23ac sin B;由余弦定理可得a2+c2=2ac cos B+b2,所以c2+a2ac=23sin B+2cos Bacac=23sin B+2cos B=4sin B+π6,则当B=π3时,c2+a2ac取得最大值4.。
2020年高考数学答题模板

高考数学解答题常考公式及答题模板(文理通用)题型一:解三角形1、正弦定理:R CcB b A a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::=2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 4、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b Bc C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于 180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan = 8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2ba ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤ ),(R b a ∈注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。
高考数学解答题答题模板

典例1 (12分)已知m =(cos ωx ,3cos(ωx +π)),n =(sin ωx ,cos ωx ),其中ω>0,f (x )=m·n ,且f (x )相邻两条对称轴之间的距离为π2.(1)若f (α2)=-34,α∈(0,π2),求cos α的值;(2)将函数y =f (x )的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,然后向左平移π6个单位长度,得到函数y =g (x )的图象,求函数y =g (x )的单调递增区间. 审题路线图 (1)f (x )=m·n ――――→数量积运算辅助角公式得f (x )――→对称性周期性求出ω()2f α−−−−和差公式cos α (2)y =f (x )―――→图象变换y =g (x )―――→整体思想g (x )的递增区间评分细则 1.化简f (x )的过程中,诱导公式和二倍角公式的使用各给1分;如果只有最后结果没有过程,则给1分;最后结果正确,但缺少上面的某一步过程,不扣分;2.计算cos α时,算对cos(α-π3)给1分;由cos(α-π3)计算sin(α-π3)时没有考虑范围扣1分;3.第(2)问直接写出x 的不等式没有过程扣1分;最后结果不用区间表示不给分;区间表示式中不标出k ∈Z 不扣分;没有2k π的不给分.跟踪演练1 已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,求实数k 的取值范围. 解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin(2ωx +π6), 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin(4x +π6).(2)将f (x )的图象向右平移π8个单位长度后,得到y =sin(4x -π3)的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin(2x -π3)的图象,所以g (x )=sin(2x -π3),因为0≤x ≤π2,所以-π3≤2x -π3≤2π3,所以g (x )∈[-32,1]. 又g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数y =g (x )与y =-k 在区间[0,π2]上有且只有一个交点,由正弦函数的图象可知-32≤-k <32或-k =1, 解得-32<k ≤32或k =-1,所以实数k 的取值范围是(-32,32]∪{-1}.典例2 (12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2.(1)求b 的值; (2)求△ABC 的面积.审题路线图 (1)利用同角公式、诱导公式→求得sin A 、sin B →利用正弦定理求b (2)方法一余弦定理求边c →S =12ac sin B方法二用和角正弦公式求sin C →S =12ab sin C评分细则 1.第(1)问:没求sin A 而直接求出sin B 的值,不扣分;写出正弦定理,但b 计算错误,得1分.2.第(2)问:写出余弦定理,但c 计算错误,得1分;求出c 的两个值,但没舍去,扣2分;面积公式正确,但计算错误,只给1分;若求出sin C ,利用S =12ab sin C 计算,同样得分.跟踪演练2 已知a ,b ,c 分别为△ABC 三个内角的对边,且3cos C +sin C =3a b, (1)求B 的大小;(2)若a +c =57,b =7,求AB →·BC →的值. 解 (1)∵3cos C +sin C =3ab, 由正弦定理可得:3cos C +sin C =3sin Asin B, ∴3cos C sin B +sin B sin C =3sin A , 3cos C sin B +sin B sin C =3sin(B +C )3cos C sin B +sin B sin C =3sin B cos C +3cos B sin C , sin B sin C =3sin C cos B , ∵sin C ≠0,∴sin B =3cos B , ∴tan B =3,又0<B <π,∴B =π3.(2)由余弦定理可得:2ac cos B =a 2+c 2-b 2=(a +c )2-2ac -b 2, 整理得:3ac =(a +c )2-b 2, 即:3ac =175-49. ∴ac =42,∴AB →·BC →=-BA →·BC →=-|BA →||BC →|·cos B =-ac ·cos B =-21.典例3 (12分)下表是一个由n 2个正数组成的数表,用a ij 表示第i 行第j 个数(i ,j ∈N *),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a 11=1,a 31+a 61=9,a 35=48.a 11 a 12 a 13 … a 1n a 21 a 22 a 23 … a 2n a 31 a 32 a 33 … a 3n … … … … … a n 1 a n 2 a n 3 … a nn(1)求a n 1和a 4n ;(2)设b n =a 4n(a 4n -2)(a 4n -1)+(-1)n ·a n 1(n ∈N *),求数列{b n }的前n 项和S n .审题路线图 数表中项的规律―→确定a n 1和a 4n ――→化简b n 分析b n 的特征―――――→选定求和方法分组法及裂项法、公式法求和评分细则 (1)求出d 给1分,求a n 1时写出公式结果错误给1分;求q 时没写q >0扣1分; (2)b n 写出正确结果给1分,正确进行裂项再给1分; (3)缺少对b n 的变形直接计算S n ,只要结论正确不扣分; (4)当n 为奇数时,求S n 中间过程缺一步不扣分.跟踪演练3 已知数列{a n }是各项均不为0的等差数列,公差为d ,S n 为其前n 项和,且满足a 2n =S 2n -1,n ∈N *.数列{b n }满足b n =1a n ·a n +1,n ∈N *,T n 为数列{b n }的前n 项和. (1)求数列{a n }的通项公式;(2)若对任意的n ∈N *,不等式λT n <n +8·(-1)n 恒成立,求实数λ的取值范围. 解 (1)a 21=S 1=a 1,∵a 1≠0,∴a 1=1. ∵a 22=S 3=a 1+a 2+a 3,∴(1+d )2=3+3d ,解得d =-1或2.当d =-1时,a 2=0不满足条件,舍去,∴d =2. ∴数列{a n }的通项公式为a n =2n -1. (2)∵b n =1a n a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1), ∴T n =12(1-13+13-15+…+12n -1-12n +1)=n 2n +1. ①当n 为偶数时,要使不等式λT n <n +8·(-1)n 恒成立,只需不等式λ<(n +8)(2n +1)n =2n +8n +17恒成立即可.∵2n +8n≥8,等号在n =2时取得,∴λ<25.②当n 为奇数时,要使不等式λT n <n +8·(-1)n 恒成立,只需不等式λ<(n -8)(2n +1)n =2n -8n -15恒成立即可.∵2n -8n 是随n 的增大而增大,∴n =1时,2n -8n 取得最小值-6,∴λ<-21.综上①②可得λ的取值范围是(-∞,-21).典例4 (12分)如图,四棱锥P —ABCD 的底面为正方形,侧面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AH ⊥平面DEF .审题路线图 (1)条件中各线段的中点――――→设法利用中位线定理取PD 中点M ―――――→考虑平行关系长度关系 平行四边形AEFM ―→AM ∥EF ――――→线面平行的判定定理EF ∥平面P AD (2)平面P AD ⊥平面ABCD P A ⊥AD ―――→面面垂直的性质P A ⊥平面ABCD ―→P A ⊥DE ――――――――→正方形ABCD 中E 、H 为AB 、BC 中点DE ⊥AH ――――→线面垂直的判定定理DE ⊥平面P AH ――――→面面垂直的判定定理平面P AH ⊥平面DEF评分细则 1.第(1)问证出AE綊FM给2分;通过AM∥EF证线面平行时,缺1个条件扣1分;利用面面平行证明EF∥平面P AD同样给分;2.第(2)问证明P A⊥底面ABCD时缺少条件扣1分;证明DE⊥AH时只要指明E,H分别为正方形边AB,BC中点得DE⊥AH不扣分;证明DE⊥平面P AH只要写出DE⊥AH,DE⊥P A,缺少条件不扣分.跟踪演练4(2015·北京)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.(1)证明 因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB ,又因为VB ⊄平面MOC ,OM ⊂平面MOC , 所以VB ∥平面MOC .(2)证明 因为AC =BC ,O 为AB 的中点, 所以OC ⊥AB .又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC , 所以OC ⊥平面VAB . 又OC ⊂平面MOC , 所以平面MOC ⊥平面VAB .(3)解 在等腰直角三角形ACB 中,AC =BC =2, 所以AB =2,OC =1,所以等边三角形VAB 的面积S △VAB = 3. 又因为OC ⊥平面VAB .所以三棱锥C -VAB 的体积等于13·OC ·S △VAB =33,又因为三棱锥V -ABC 的体积与三棱锥C -VAB 的体积相等, 所以三棱锥V -ABC 的体积为33.典例5 (12分)如图,AB 是圆O 的直径,C 是圆O 上异于A ,B 的一个动点,DC 垂直于圆O 所在的平面,DC ∥EB ,DC =EB =1,AB =4.(1)求证:DE⊥平面ACD;(2)若AC=BC,求平面AED与平面ABE所成的锐二面角的余弦值.审题路线图(1)(2)CA、CB、CD两两垂直―→建立空间直角坐标系―→写各点坐标―→求平面AED与平面ABE的法向量―→将所求二面角转化为两个向量的夹角评分细则 1.第(1)问中证明DC ⊥BC 和AC ⊥BC 各给1分;证明DE ∥BC 给1分;证明BC ⊥平面ACD 时缺少AC ∩DC =C ,AC ,DC ⊂平面ACD ,不扣分.2.第(2)问中建系给1分;两个法向量求出1个给2分;没有最后结论扣1分;法向量取其他形式同样给分.跟踪演练5 如图,在几何体ABCDQP 中,AD ⊥平面ABPQ ,AB ⊥AQ ,AB ∥CD ∥PQ ,CD =AD =AQ =PQ =12AB ,(1)证明:平面APD ⊥平面BDP ; (2)求二面角A —BP —C 的正弦值.方法一 (1)证明 设AQ =QP =1,则AB =2, 易求AP =BP =2, 由勾股定理可得BP ⊥AP ,而AD ⊥平面ABPQ ,所以BP ⊥DA , 又AP ∩AD =A ,故BP ⊥平面APD .而BP ⊂平面BDP ,所以平面APD ⊥平面BDP .(2)解 设M 、N 分别为AB 、PB 的中点,连接CM ,MN ,CN .易得CM ⊥平面APB ,MN ⊥PB , 故∠CNM 为二面角A —BP —C 的平面角. 结合(1)计算可得,CM ⊥MN ,CM =1, MN =22,CN =62, 于是在Rt △CMN 中,sin ∠CNM =63. 所以二面角A —BP —C 的正弦值为63. 方法二 (1)证明 如图所示,建立空间直角坐标系,点A 为坐标原点,设AB =2,依题意得A (0,0,0),B (0,2,0),C (0,1,1),D (0,0,1), Q (1,0,0), P (1,1,0),BP →=(1,-1,0),AP →=(1,1,0),AD →=(0,0,1),那么BP →·AP →=0,BP →·AD →=0,因此,BP ⊥AP ,BP ⊥AD .又AP ∩AD =A ,故BP ⊥平面APD , 而BP ⊂平面BDP , 所以平面APD ⊥平面BDP .(2)解 设平面CPB 的一个法向量为n =(x ,y ,z ), 而BC →=(0,-1,1),则BP →·n =0,BC →·n =0, 那么x -y =0,-y +z =0,令x =1可得n =(1,1,1). 又由题设,平面ABP 的一个法向量为m =(0,0,1). 所以,cos 〈m ,n 〉=m·n|m||n |=33, 可得sin 〈m ,n 〉=63. 所以二面角A —BP —C 的正弦值为63.典例6 (12分)2015年12月10日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法.目前,国内青蒿人工种植发展迅速.调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x ,y ,z ,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x +y +z 的值评定人工种植的青蒿的长势等级:若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级.为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果:(1)在这10块青蒿人工种植地中任取两地,求这两地的空气湿度的指标z 相同的概率; (2)从长势等级是一级的人工种植地中任取一块,其综合指标为m ,从长势等级不是一级的人工种植地中任取一块,其综合指标为n ,记随机变量X =m -n ,求X 的分布列及其均值. 审题路线图 (1)对事件进行分解―→求出从10块地中任取两块的方法总数―→求出空气湿度指标相同的方法总数―→利用古典概型求概率(2)确定随机变量X的所有取值―→计算X取各个值的概率―→写分布列―→求均值评分细则 1.第(1)问中,列出空气湿度相同的情况给2分;计算概率只要式子正确给2分;2.第(2)问中,列出长势等级的给2分,只要结果正确无过程不扣分;计算概率时每个式子给1分;分布列正确写出给1分.跟踪训练6(2016·课标全国乙)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的均值为决策依据,在n=19与n=20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P((3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040(元). 当n =20时,E (Y )=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080(元). 可知当n =19时所需费用的均值小于n =20时所需费用的均值,故应选n =19.典例7 (12分)(2015·山东)平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . (ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值.审题路线图 (1)椭圆C上点满足条件―→求出a 222e a b c =+已知离心率 基本量法求得椭圆C 方程(2)①P 在C 上,Q 在E 上――→P 、Q 共线设坐标代入方程―→求出|OQ ||QP |. ②直线y =kx +m 和椭圆E 方程联立――→通法研究判别式Δ并判断根与系数的关系―→ 用m ,k 表示S △OAB ―→求S △OAB 最值―――――――→利用①得S △ABQ和S △OAB关系得S △ABQ 最大值评分细则 1.第(1)问中,求a 2-c 2=b 2关系式直接得b =1,扣1分;2.第(2)问中,求|OQ ||OP |时,给出P ,Q 坐标关系给1分;无“Δ>0”和“Δ≥0”者,每处扣1分;联立方程消元得出关于x 的一元二次方程给1分;根与系数的关系写出后再给1分;求最值时,不指明最值取得的条件扣1分.跟踪演练7 已知中心在原点O ,焦点在x 轴上,离心率为32的椭圆过点(2,22).(1)求椭圆的方程;(2)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,满足直线OP ,PQ ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.解 (1)由题意可设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则c a =32(其中c 2=a 2-b 2,c >0),且2a 2+12b 2=1,故a =2,b =1. 所以椭圆的方程为x 24+y 2=1.(2)由题意可知,直线l 的斜率存在且不为0.故可设直线l :y =kx +m (m ≠0),设P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4, 消去y ,得(1+4k 2)x 2+8kmx +4(m 2-1)=0, 则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,且x 1+x 2=-8km1+4k 2,x 1x 2=4(m 2-1)1+4k 2,故y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2, 因为直线OP ,PQ ,OQ 的斜率依次成等比数列, 所以y 1x 1·y 2x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=k 2,即m 2-4k 24(m 2-1)=k 2. 又m ≠0,所以k 2=14,即k =±12.由于直线OP ,OQ 的斜率存在,且Δ>0, 得0<m 2<2,且m 2≠1,设d 为点O 到直线l 的距离,则d =|2m |5,|PQ |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=5(2-m 2), 所以S =12|PQ |d =m 2(2-m 2)<m 2+2-m 22=1(m 2≠1),故△OPQ 面积的取值范围为(0,1).典例8 (12分)已知定点C (-1,0)及椭圆x 2+3y 2=5,过点C 的动直线与椭圆相交于A ,B 两点.(1)若线段AB 中点的横坐标是-12,求直线AB 的方程;(2)在x 轴上是否存在点M ,使MA →·MB →为常数?若存在,求出点M 的坐标;若不存在,请说明理由.审题路线图 (1)设AB 的方程y =k (x +1)→待定系数法求k →写出方程(2)设M 存在即为(m ,0)→求MA →·MB →→在MA →·MB →为常数的条件下求m →下结论评分细则 (1)不考虑直线AB 斜率不存在的情况扣1分; (2)不验证Δ>0,扣1分;(3)直线AB 方程写成斜截式形式同样给分; (4)没有假设存在点M 不扣分;(5)MA →·MB →没有化简至最后结果扣1分,没有最后结论扣1分.跟踪演练8 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线7x -5y +12=0相切. (1)求椭圆C 的方程;(2)设A (-4,0),过点R (3,0)作与x 轴不重合的直线l 交椭圆C 于P ,Q 两点,连接AP ,AQ 分别交直线x =163于M ,N 两点,若直线MR ,NR 的斜率分别为k 1,k 2,试问:k 1k 2是否为定值?若是,求出该定值,若不是,请说明理由.解 (1)由题意得⎩⎨⎧c a =12,127+5=b ,a 2=b 2+c 2,∴⎩⎪⎨⎪⎧a =4,b =23,c =2,故椭圆C 的方程为x 216+y 212=1.(2)设直线PQ 的方程为x =my +3, P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧x 216+y 212=1,x =my +3,∴(3m 2+4)y 2+18my -21=0. ∴y 1+y 2=-18m 3m 2+4,y 1y 2=-213m 2+4,由A ,P ,M 三点共线可知y M 163+4=y 1x 1+4,∴y M =28y 13(x 1+4).同理可得y N =28y 23(x 2+4),∴k 1k 2=y M 163-3×y N 163-3=9y M y N 49=16y 1y 2(x 1+4)(x 2+4)∵(x 1+4)(x 2+4)=(my 1+7)(my 2+7) =m 2y 1y 2+7m (y 1+y 2)+49∴k 1k 2=16y 1y 2m 2y 1y 2+7m (y 1+y 2)+49=-127,为定值.典例9 (12分)(2015·课标全国Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.审题路线图 求f ′(x )――→讨论f ′(x )的符号f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.(2)分类讨论,每种情况给2分,结论1分;(3)求出最大值给2分;(4)构造函数g(a)=ln a+a-1给2分;(5)通过分类讨论得出a的范围,给2分.跟踪演练9已知函数f(x)=(ax2+bx+c)e x在[0,1]上单调递减且满足f(0)=1,f(1)=0.(1)求a的取值范围;(2)设g(x)=f(x)-f′(x),求g(x)在[0,1]上的最大值和最小值.解(1)由f(0)=1,f(1)=0,得c=1,a+b=-1,则f(x)=[ax2-(a+1)x+1]e x,f′(x)=[ax2+(a-1)x-a]e x.依题意对任意x∈(0,1),有f′(x)<0.当a>0时,因为二次函数f(x)=ax2+(a-1)x-a的图象开口向上,而f′(0)=-a<0,所以有f′(1)=(a-1)e<0,即0<a<1;当a=1时,对任意x∈(0,1)有f′(x)=(x2-1)e x<0,f(x)符合条件;当a=0时,对于任意x∈(0,1),f′(x)=-x e x<0,f(x)符合条件;当a <0时,因f ′(0)=-a >0,f (x )不符合条件. 故a 的取值范围为0≤a ≤1. (2)因g (x )=(-2ax +1+a )e x , g ′(x )=(-2ax +1-a )e x .(ⅰ)当a =0时,g ′(x )=e x >0,g (x )在x =0处取得最小值g (0)=1,在x =1处取得最大值g (1)=e.(ⅱ)当a =1时,对于任意x ∈(0,1)有g ′(x )=-2x e x <0,g (x )在x =0处取得最大值g (0)=2, 在x =1取得最小值g (1)=0.(ⅲ)当0<a <1时,由g ′(x )=0得x =1-a2a>0.①若1-a 2a ≥1,即0<a ≤13时,g (x )在[0,1]上单调递增,g (x )在x =0处取得最小值g (0)=1+a ,在x =1处取得最大值g (1)=(1-a )e.②若1-a 2a <1,即13<a <1时,g (x )在x =1-a 2a 处取得最大值121()2e ,2aaa g a a--=在x =0或x =1处取得最小值,而g (0)=1+a ,g (1)=(1-a )e ,则当13<a ≤e -1e +1时,g (x )在x =0处取得最小值g (0)=1+a ;当e -1e +1<a <1时,g (x )在x =1处取得最小值g (1)=(1-a )e.典例10 (12分)(2015·课标全国Ⅱ)设函数f (x )=e mx +x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 审题路线图 (1)求导f ′(x )=m (e mx -1)+2x →讨论m 确定f ′(x )符号→证明结论(2)条件转化为(|f (x 1)-f (x 2)|)max ≤e -1――→结合(1)知f (x )min =f (0)⎩⎪⎨⎪⎧f (1)-f (0)≤e -1f (-1)-f (0)≤e -1→⎩⎪⎨⎪⎧e m -m ≤e -1e -m+m ≤e -1→构造函数g (t )=e t-t -e +1→研究g (t )单调性→寻求⎩⎪⎨⎪⎧g (m )≤0g (-m )≤0的条件→对m 讨论得适合条件的范围评分细则(1)求出导数给1分;(2)讨论时漏掉m=0扣1分;两种情况只讨论正确一种给2分;(3)确定f′(x)符号时只有结论无中间过程扣1分;(4)写出f(x)在x=0处取得最小值给1分;(5)无最后结论扣1分;(6)其他方法构造函数同样给分.跟踪演练10已知函数f(x)=ln x+1x.(1)求函数f(x)的单调区间和极值;(2)若对任意的x>1,恒有ln(x-1)+k+1≤kx成立,求k的取值范围;(3)证明:ln 222+ln 332+…+ln n n 2<2n 2-n -14(n +1) (n ∈N *,n ≥2).(1)解 f ′(x )=-ln xx2,由f ′(x )=0⇒x =1,列表如下:因此函数f (x )的增区间为(0,1),减区间为(1,+∞), 极大值f (1)=1,无极小值. (2)解 因为x >1,ln(x -1)+k +1≤kx ⇔ln (x -1)+1x -1≤k ⇔f (x -1)≤k ,所以f (x -1)max ≤k ,∴k ≥1,(3)证明 由(1)可得f (x )=ln x +1x ≤f (x )max =f (1)=1⇒ln x x ≤1-1x ,当且仅当x =1时取等号. 令x =n 2 (n ∈N *,n ≥2). 则ln n 2n 2<1-1n 2⇒ln n n 2<12(1-1n2)<12(1-1n (n +1))=12(1-1n +1n +1)(n ≥2), ln 222+ln 332+…+ln n n2 <12(1-12+13)+12(1-13+14)+…+12(1-1n +1n +1) =12(n -1+1n +1-12)=2n 2-n -14(n +1).。
4.解三角形的答题模板

sin
B sin
4
C
sin
C
sin
4
B
sin
A
……………… 2分
sin B
2 sin C 2
2 2
cos
C
sin
C
2 sin B 2
2 2
cos
B
2 2
整理得 sin BcosC cos Bsin C 1
即sin(B C) 1
……………… 5分
……………… 6分
易忽视角B-C的范围,直接 由 sin (B-C)=1,求的结论。
考虑到所求的结论只含有B,C,因此应消掉 sin
B
sin
4
C
sin C
sin
4
B
sin
A中
的角A
代入A =
4sin
B
sin
4
C
sin
C
sin
4
B
2 2
利用 两角和与差的三角函数公式
sin (B-C)=1 要求 角的值,还应确定角的取值范围 由 0<B,C< 3
4
解得 B C .
4
+B
=a
(1)求证:
B
C
2
;
(2)若a 2 ,求△ABC的面积。
【第审(题2规)范问】第3步:建联系,找解题突破口
△ABC的边角都具备
利用面积公式求结论 S 1 bc sin A= 2 sin 5 sin = 2 cos sin = 1 .
2
88
8 82
[教你快速规范审题流程汇总]
4
+C
-csin
4
+B
高考数学答题模板:解三角形问题

高考数学答题模板:解三角形问题
高考数学频道为大家提供高考数学答题模板:解三角形问题,一起来看看吧!更多高考资讯请关注我们网站的更新!
高考数学答题模板:解三角形问题
1、解题路线图
(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理、余弦定理及其在现实生活中的应用是高考的热点.主要考查利用正弦定理、余弦定理解决一些简单的三角形的度量问题以及测量、几何计算有关的实际问题.正、余弦定理的考查常与同角三角函数的关系、诱导公式、和差倍角公式甚至三角函数的图象和性质等交汇命题,多以解答题的形式出现,属解答题中的低档题.
“大题规范解答——得全分”系列之(四)
解三角形的答题模板
[典例] (2012江西高考·满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .
已知A =π4
,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a . (1)求证:B -C =π2
; (2)若a =2,求△ABC 的面积.
[教你快速规范审题]
1.审条件,挖解题信息 观察条件
―→A =π4,b sin ⎝⎛⎭⎫π4+C -c sin ⎝⎛⎭⎫π4+B =a ――――――――――→等式中既有边又有角,应统一 sin B sin ⎝⎛⎭⎫π4+C -sin C sin ⎝⎛⎭
⎫π4+B =sin A 2.审结论,明解题方向
观察所求结论
―→求证:B -C =π2――――――――――――――――→应求角B -C 的某一个三角函数值 sin (B -C )=1或cos (B -C )=0.
3.建联系,找解题突破口
4A −−−−→代入=
―――――――――――――→ sin (B -C )=1――――――――――――――→
由0<B ,C <3π4,解得B -C =π2
1.审条件,挖解题信息
观察条件
―→a =2,A =π4,B -C =π2―――――――→可求B ,C 的值 B =5π8,C =π8 2.审结论,明解题方向
观察所求结论―→求△ABC 的面积―――――→应具有两边及其夹角 由a sin A =b sin B =c sin C ,得b =2sin 5π8,c =2sin π8
3.建联系,找解题突破口
△ABC 的边角都具备――――――――――→利用面积公式求结论 S =12bc sin A =2sin 5π8sin π8
=2cos π8sin π8=12
[教你准确规范解题]
(1)证明:由b sin ⎝⎛⎭⎫π
4+C -c sin ⎝⎛⎭⎫π
4+B =a ,应用正弦定理,得
sin B sin ⎝⎛⎭⎫π
4+C -sin C sin ⎝⎛⎭⎫π
4+B =sin A ,(2分)
sin B ⎝⎛⎭⎫22sin C +2
2cos C -sin C ⎝⎛⎭⎫2
2sin B +2
2cos B =2
2,
整理得sin B cos C -cos B sin C =1,(5分)
即sin(B -C )=1,
由于0<B ,C <34π,从而B -C =π
2.(6分)
(2)B +C =π-A =3π
4,因此B =5π
8,C =π
8.(8分)
由a =2,A =π4,得b =a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π
8,(10分)
所以△ABC 的面积S =1
2bc sin A =2sin 5π8sin π
8=
2cos π8sin π8=1
2.(12分)
[常见失分探因]
易忽视角B -C 的范围,直接由sin (B -C )=1,求得结论.
—————————————[教你一个万
能
模板]————————————————
解三角形问题一般可用以下几步解答:
第一步
利用正弦定理或余弦定理实现边角互化(本题为边化角)
―→
第二步
三角变换、化简、消元,从而向已知角(或边)转化
―→
―→。