自动控制原理第七章第一节离散系统的基本概念
自动控制原理第7章线性离散控制系统

状态方程
状态方程是描述线性离散控制系统动态行为的数学模型,其形 式为 X(k+1) = A*X(k) + B*U(k),其中X(k)表示在时刻k的系统 状态向量,U(k)表示在时刻k的控制输入向量,A和B是系统矩 阵。
自动控制原理第7章 线性离散控制系统
目录
CONTENTS
• 引言 • 线性离散控制系统的数学模型 • 线性离散控制系统的稳定性分析 • 线性离散控制系统的性能分析 • 线性离散控制系统的设计方法 • 线性离散控制系统的应用案例
01
引言
线性离散控制系统的定义与特点
定义
线性离散控制系统是指系统的动态行为由差分方程或离散状态方程描述的一类控制系统。
适性。
常见的智能家居控制系统包括智 能照明、智能安防、智能环境监
测等。
案例三:工业自动化控制系统设计
工业自动化控制系统是线性离散 控制系统的另一个重要应用领域, 主要用于实现生产过程的自动化
和智能化。
工业自动化控制系统通常采用分 布式控制结构,通过各种传感器、 执行器和主控制器实现对生产设
备的监测和控制。
离散控制系统的稳定性判据
劳斯-赫尔维茨稳定性判据
通过计算离散控制系统的传递函数的极点和零点,判断系统的稳定性。如果所有极点都位于复平面的左半部分,则系 统稳定;否则系统不稳定。
奈奎斯特稳定性判据
通过分析离散控制系统的频率响应,判断系统的稳定性。如果频率响应的相位曲线在-π~π范围内,则系统稳定;否则系 统不稳定。
系统实现
将设计好的控制器应用于实际系统中,并进 行实验验证。
离散控制系统设计的常用方法
自动控制原理第七章采样控制系统

第三节 信号复现与零阶保持器
一. 信号保持 把离散信号转换为连续信号,称为信号保持,该装置称
保持器。 保持器:用离散时刻信号复现连续时刻信号。
二. 零阶保持器
1. 作用:把采样信号e*(t) 每一个采样瞬时值e(kT)一直保持到下一个采 样瞬间e[(k+1)T], 从而使采样信号 e*(t)变成 阶梯信号eh(t)。
一阶保持器比零阶保持器信号恢复更
0 T 2T 3T 4T 5T 6T t
精确, 但相位滞后增加, 对稳定性不利.
图7-11 一阶保持器输出特性
第四节 Z变换理论
同拉氏变换一样, 是一种数学变换. 离散信号e*(t)的 拉氏变换为:
E*(s) e(nT )enTs n0
各项均含有 esT 因子,为S的超越函数。为便于应用,对 离散系统的分析一般采用Z变换.
G 0 ( s ) 1 s [ 1 e s] T 1 s 1 e 1 s T 1 s 1 1 s 1 T 1 T sT
零阶保持器的频率特性
信号e(t)在t = nT 及t = (n+1)T 之间的数值可以用一个级数来描述
单位脉冲响应
G h(s)L [gh(t) ]S 1S 1e TS 1 Se TS
G 0(j
)1ejT2sin T/(2 )ejT2 j
幅频特性: G 0(j)Tsi( n/ / ( s)s)2 s si( n/ / ( s)s)
上式是 eTs 的有理函数. 但 eTs是含变量S的超越函数,不便进行分析和运算, 因此常用Z变换代替拉氏变换。
三. 采样定理
从理论上指明了从采样信号中不失真的复现原连续信号 所必需的理论上的最小采样周期T.
自动控制原理离散系统知识点总结

自动控制原理离散系统知识点总结自动控制原理中的离散系统是指在时间域和数值范围上都是离散的系统。
在离散系统中,信号是以离散时间点的形式传递和处理的。
本文将对自动控制原理离散系统的知识点进行总结,包括离散系统的概念、离散信号与离散系统的数学表示、离散系统的稳定性分析与设计等。
一、离散系统的概念与特点离散系统是指系统输入、输出和状态在时间上都是以离散的方式存在的系统。
与连续系统相比,离散系统具有以下特点:1. 离散时间:离散系统的输入、输出和状态是在离散时间点上采样得到的,而不是连续的时间信号。
2. 离散数值:离散系统的输入、输出和状态都是以离散数值的形式存在的,而不是连续的模拟数值。
二、离散信号与离散系统的数学表示离散信号是指在离散时间点上采样得到的信号。
离散系统可以通过离散信号的输入与输出之间的关系进行描述。
常见的离散系统数学表示方法有差分方程和离散时间传递函数。
1. 差分方程表示:差分方程是通过离散时间点上的输入信号和输出信号之间的关系来描述离散系统的。
差分方程可以是线性的或非线性的,可以是时不变的或时变的。
2. 离散时间传递函数表示:离散时间传递函数描述了离散系统输入与输出之间的关系,类似于连续时间传递函数。
离散时间传递函数可以通过Z变换得到。
三、离散系统的稳定性分析与设计离散系统的稳定性是指系统的输出在有限时间内收敛到有限范围内,而不是无限增长或震荡。
离散系统的稳定性分析与设计是自动控制原理中的重要内容。
1. 稳定性分析:离散系统的稳定性可以通过判断系统的极点位置来进行分析。
若系统的所有极点都位于单位圆内,则系统是稳定的;若存在至少一个极点位于单位圆外,则系统是不稳定的。
2. 稳定性设计:若离散系统不稳定,可以通过调整系统的参数或设计控制器来实现稳定性。
常见的稳定性设计方法包括PID控制器调整、根轨迹设计等。
四、离散系统的性能指标与优化离散系统的性能指标与优化是指通过调整控制器参数或控制策略,使离散系统的性能得到优化。
自动控制原理第7章离散控制系统

Z变换
01
Z变换是分析离散时间信号和系统 的有力工具,它将离散时间信号 或系统转化为复平面上的函数或 传递函数。
02
Z变换的基本思想是通过将离散时 间信号或系统进行无限次加权和 ,将其转化为一个复数域上的函 数或传递函数。
离散状态方程
离散状态方程是描述离散控制系统动 态行为的数学模型,它的一般形式为 $mathbf{dot{x}}(k) = Amathbf{x}(k) + Bu(k)$,其中 $mathbf{x}(k)$表示在时刻$k$的系 统状态向量,$u(k)$表示在时刻$k$ 的输入向量,$A$和$B$是系统的系 数矩阵。
稳态误差主要来源于系统本身的结构 和参数,以及外部干扰和测量噪声。
离散控制系统的动态响应分析
动态响应定义
动态响应是指系统在输入信号作 用下,系统输出信号随时间变化 的特性。
动态响应的描述方
式
动态响应可以通过系统的传递函 数、频率特性、根轨迹图等方式 进行描述。
优化动态响应的方
法
通过调整系统参数、改变系统结 构、引入反馈控制等方法,可以 优化系统的动态响应。
离散控制系统的仿真工具与实例
仿真工具介绍
离散控制系统的仿真工具用于模拟和测试系统的性能和稳定性。常见的仿真工具包括MATLAB/Simulink、 LabVIEW等。这些工具提供了丰富的数学函数库和图形化界面,方便用户进行系统建模和仿真。
仿真实例分析
通过具体的仿真实例,可以深入了解离散控制系统的性能和特点。例如,可以设计一个温度控制系统,通过调整 系统参数和控制算法,观察系统在不同工况下的响应特性和稳定性。通过对比不同方案,可以评估各种参数和控 制策略对系统性能的影响,为实际应用提供参考和依据。
自动控制原理胡寿松笔记

自动控制原理胡寿松笔记自动控制原理是电气工程领域的重要课程,胡寿松教授的笔记是该领域学习的重要参考资料。
本文将按照章节顺序,对胡寿松教授的笔记进行梳理和总结,帮助读者更好地理解和掌握自动控制原理。
第一章自动控制的基本概念1. 自动控制的基本组成:控制器、传感器、执行器、被控对象。
2. 自动控制的目的:实现对系统的稳态和动态性能的优化。
3. 自动控制的基本术语:控制量、受控量、干扰、传递、转换等。
4. 自动控制系统的分类:开环控制系统和闭环控制系统。
第二章自动控制系统的数学模型1. 微分方程:描述系统动态特性的基本数学工具。
2. 传递函数:描述控制系统动态特性的重要数学模型。
3. 动态结构图:描述控制系统动态特性的图形工具。
4. 信号流图:描述控制系统内部信息传递方式的图形工具。
5. 梅逊公式:用于将微分方程转化为传递函数的公式。
第三章线性定常系统的时域分析法1. 控制系统性能的评价指标:稳态误差、超调量、调节时间等。
2. 系统的稳定性分析:稳定性定义、代数稳定判据、李亚普诺夫直接法。
3. 系统性能的改善:放大缩小法、超前滞后补偿法、PID控制器等。
4. 一系列具体分析方法的介绍:单位阶跃响应、斜坡响应、李亚普诺夫直接法等。
第四章线性定常系统的根轨迹法1. 根轨迹的基本概念和性质:幅值-相位特性、零点-极点关系、渐近线等。
2. 绘制根轨迹的基本规则和步骤:参数方程、几何意义、注意事项等。
3. 根轨迹图的特征分析:闭环零点、极点与系统性能的关系等。
4. 基于根轨迹法的系统优化设计:稳定化控制器设计、增益调度等。
第五章线性系统的频域分析法1. 频率域的基本概念和性质:频率特性、频率响应、频域分析方法等。
2. 频率域分析方法的应用:稳定性分析、系统性能评估、频率特性设计等。
3. 对数频率特性曲线及其应用:增益边界和相位边界的意义、系统性能的评估等。
4. 基于频率域分析法的系统优化设计:频率相关控制器设计、频率调制等。
自动控制原理(离散控制系统 )共43页文档

一、离散/采样系统
线性连续系统 1、线性系统
线性离散系统
采样 / 脉冲控制系统 (信号为脉冲序列)
数字系统 / 计算机控制系统 (信号为数字序列)
2、离散系统的特点(P311)
采样系统中一处或多处的信号是脉冲序列或数字序列。因此, 离散系统中必须具备的两个特殊环节。
采样器(采样开关):连续信号 采样
图(c) 采样信号频谱 s < 2 h
由此可见,要想使连续信号不失真地从采样信号中恢复过来, 则必须满足条件:
s 2h
5、采样定理(Shannon定理)
Shannon定理:如果采样器的输入信号e(t)的频谱具有有限带宽,
并且有T 直 到22ωh h的频率分即量,则s 只≥要2 采 样h 周期T满足:
0
因为0 : tesd t t1
所以 E*S: L enT tnT enT LtnT
n0
n0
en TenTS
n0
故
E*SenTenTS
n0
4、采样信号的频谱分析
设连续信号的傅氏变换为,则采样信号的傅氏变换为:
E*(j)T 1n E [j(nS)]
由于连续信号 e ( t )的频谱 E( j)是单一的连续频谱,其最大角频率
二、信号恢复(保持) 1、信号的输出形式 直接输出数字信号; 输出连续信号(需要保持器将数字信号恢复成连续信号)。
2、保持器的类型 (1)、零阶保持器
a、工作原理
b、输出表达式: e h n T e nT n 0 ,1 ,2 ,
c、传递函数:
Gh
S
1eTS S
d、频率特性
(2)、一阶保持器
a、工作原理 b、输出表达式:
离散系统的基本概念
第二节 信号的采样与保持
3.采样周期的选择
1)信号复现原则: ωs ≥ 2ωh ωs ≈ 10ωc T≈ ts /40,或 T≈ tr /10
2)频域性能原则:
3)时域性能原则:
第二节 信号的采样与保持
二、 信号保持
根据拉氏变换的位移定理,有
L (t nT ) e nTs
所以,采样信号的拉氏变换为
E ( s ) e( nT )e nTs
n 0
第二节 信号的采样与保持
(2)、采样信号的频谱 理想单位脉冲序列T(t) 是一个周期函数,可以展开成 如下傅氏级数形式: 1 jn s t T (t ) e T n
0
r( t ) b(t)
t
0
e ( t ) Gh(s) H ( s)
_
e( t ) S
t eh( t )
0
Gp(s) c(t)
t
采样系统典型结构图
1、信号采样 在采样控制系统中,把连续信号转变为脉冲序列的过 程称为采样过程,简称采样。相当于A/D转换过程。 实现采样的装置称为采样器,或称采样开关。 2、信号复现 在采样控制系统中,把脉冲序列转变为连续信号的过 程称为信号复现过程。相当于D/A转换过程。 实现复现过程的装置称为保持器。 最简单的保持器是零阶保持器。
五、离散控制系统的研究方法
z变换与脉冲传递函数 状态空间分析法
第七章 线性离散系统的分析与校正
第二节 信号的采样与保持
一、采样过程与采样定理
二、信号的保持
第二节 信号的采样与保持
自动控制原理胡寿松第七章解析
1、线性定理 齐次性 Z [ae (t)] aE(z ) Z[e1 (t) e 2 (t)] E1 (z ) E 2 (z ) 叠加性 2、实数位移定理
Z[e(t- kT )] z -k E(z)
Z [e(t kT)] z k [E(z)- e(nT)z -n ]
n 0
k -1
z变换实际上是采样函数拉氏变换的变形,
因此又称为采样拉氏变换
z变换只适用于离散函数,或者说只能表征
连续函数在采样时刻的特性,而不能反映其 在采样时刻之间的特性。
24
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
25
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
二、Z变换的性质
0T
*
采样器可以用一个周期性闭合的采样开关S来表示。
理想采样开关S: T (t ) (t nT )
n 0
11
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
理想单位脉冲序列 采样过程可以看成是一个幅值调制过程。
12
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
1 jns t T ( t ) e T n -
1 jns t * 代入采样信号表达式:e ( t ) e( t ) T (t ) e( t )e T n
对采样信号表达式取拉氏变换: 1 E* (s) E(s jns ) T n 采样信号的付氏变换: 1 E* ( j ) E[j( ns )] T n
T (t)的付氏级数形式:
T (t)
n -
(t - nT) C e
石群自动控制原理(第7章)
➢ 采样/脉冲控制系统: 系统中的离散信号是脉冲序列形式的离散系统。
➢ 数字/计算机控制系统 系统中的离散信号是数字序列形式的离散系统。
1. 采样控制系统 采样系统是对来自传感器的连续信息在某些规定的
时间瞬时上取值,而无法获取瞬时之间的信息。
⑦若采样编码是瞬间完成,并用理想脉冲等效代替数 字信号,则数字信号可以看成脉冲信号, A/D转换器 可用每隔T秒瞬时闭合一次的理想采样开关S来表示。
⑵D/A转换器 ①将离散数字信号转换为连续模拟信号的装置。 ②D/A转换包括解码和复现两个过程。
离散数字--解码--离散模拟--复现(保持器)--连续模拟
连续信号
采样器 保持器
脉冲序列
采样系统:采样器和保持器是特殊环节。 ⑴信号采样和复现
①采样:连续信号转变为脉冲信号。 ②采样器,例如采样开关。 ③T是采样周期,fs=1/T是采样频率。 ④采样角频率:ωs=2π/T=2πfs,单位是rad/s ⑤采样持续时间τ<<T,τ<<max{连续部分的时间
常数},通常认为τ趋近于0。 ⑥矩形面积
⑤对于传输延迟,甚至大延迟控制系统,可以引入采样 的方式稳定。
4. 离散系统的研究方法 数学基础:Z变换。
7-2 信号的采样与保持
1. 采样过程 ①采样器,又称采样开关:把连续信号变换为脉冲序列。 ②采样过程:用一个周期性闭合的采样开关S表示。
通常可认为,采样开关的闭合时间τ非常小,是ms、
μs级的,远小于采样周期T和系统连续部分的最大时间 常数。
请分析:采样信号与数字信号的区别和联系?
✓区别 采样:在离散时刻,采集连续的幅值。 编码:即A/D过程,将采样值进行0、1编码。
离散 系统的基本概念
1.2 数字控制系统
典型数字控制系统如图所示,其中被控对象是在连续信号作用下工
作的,其控制信号 u1(t) 、输出信号 f (t)、反馈信号 c(t) 及参考输入信号 r(t) 等均为连续信号,而计算机的输入、输出信号则是采样的数字信号。
如果采用采样控制方式,可在偏差信号和执行电机之间加装一个开关,使其每 隔较长时间闭合一次,且闭合时间相对很短。当开关闭合时,系统根据偏差闭环控 制电机转动,以此来调节炉温,而当开关断开时,电机停止转动。由于闭环时间很 短,开环传递系数可以取较大值,使系统在保持动态性能的同时提高稳态控制精度。
由此可知,对连续对象进行采样控制时,必须将连续信号变为离散时间上 的脉冲序列信号。这种将连续信号变为脉冲序列信号的过程称为采样过程,简 称采样。
由于炉温调节是一个大惯性过程,控制对象的相位滞后非常明显,如果采用连 续控制方式,为保证系统具有足够的相位裕度,开环传递系数就要取很小值,这就 对系统的稳态精度控制造成很大困难。当加大开环增益来提高系统的控制精度时, 由于系统的灵敏度相应提高,而炉温的变化相对缓慢很多,这就容易造成过度调节, 产生振荡。
由于计算机处理的是二进制数据,其输入信号不能是连续信号,所以误差 信号e(t) 要经过模数转换器(A/D)变成计算机能接受的数字信号 e(kT ) 。计 算机根据由差分方程表述的预定算法得到数字形式的控制信号 u(kT ),并由数 模转换器(D/A)将数字信号转换成脉冲序列信号 u1(t) ,以此来断续控制被控 对象,也可经保持器连续控制被控对象。
自动控制原理
离散系统的基本概念
离散输入信号包括脉冲序列信号和数字序列信号,所对应的控制系统分别 称作采样控制系统和数字控制系统(也称计算机控制系统),它们均为离散系 统,可采用统一的离散系统分析方法进行研究。