第二章 第3课时 平方根(2)
合集下载
北师大版初中数学八年级上册第二章2.2《平方根》教案

具体举例说明:
1.教学重点举例
-定义举例:通过具体的数值,如9、16等,让学生理解平方根的概念,掌握求平方根的方法。
-运算举例:通过计算√9+√16、√9×√16等,让学生熟练掌握平方根的运算规则。
-性质举例:通过分析正数、非负数的平方根特点,如√9=3,-√9=-3,让学生掌握平方根的性质。
-估算举例:以√10为例,教授学生使用近似计算方法估算平方根,如先找到最接近的完全平方数9,再计算√10与√9之间的差距。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是一个数乘以自身得到另一个数的运算,它是解决几何、物理等问题的有力工具。
2.案例分析:接下来,我们来看一个具体的案例。比如,求解一个边长为10cm的正方形的面积,通过平方根的概念可以轻松得到面积为100cm²。
3.重点难点解析:在讲授过程中,我会特别强调平方根的定义和运算这两个重点。对于难点部分,比如平方根的性质和估算,我会通过举例和比较来帮助大家理解。
4.估算平方根:学会使用近似计算方法估算一个数的平方根。
5.应用平方根解决实际问题:运用平方根知识解决生活中的问题,如面积、体积等计算。
二、核心素养目标
1.培养学生的逻辑推理能力,通过平方根的定义和性质的学习,使学生掌握数学推理的基本方法,提高分析问题和解决问题的能力。
2.培养学生的数学运算能力,让学生熟练掌握平方根的运算规则,提高数学计算的速度和准确性。
-实际问题举例:将实际问题,如计算正方形面积,转化为求平方根的问题,教授学生如何建模和求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的平方根的情况?”(如:计算正方形边长)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方根的奥秘。
1.教学重点举例
-定义举例:通过具体的数值,如9、16等,让学生理解平方根的概念,掌握求平方根的方法。
-运算举例:通过计算√9+√16、√9×√16等,让学生熟练掌握平方根的运算规则。
-性质举例:通过分析正数、非负数的平方根特点,如√9=3,-√9=-3,让学生掌握平方根的性质。
-估算举例:以√10为例,教授学生使用近似计算方法估算平方根,如先找到最接近的完全平方数9,再计算√10与√9之间的差距。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平方根的基本概念。平方根是一个数乘以自身得到另一个数的运算,它是解决几何、物理等问题的有力工具。
2.案例分析:接下来,我们来看一个具体的案例。比如,求解一个边长为10cm的正方形的面积,通过平方根的概念可以轻松得到面积为100cm²。
3.重点难点解析:在讲授过程中,我会特别强调平方根的定义和运算这两个重点。对于难点部分,比如平方根的性质和估算,我会通过举例和比较来帮助大家理解。
4.估算平方根:学会使用近似计算方法估算一个数的平方根。
5.应用平方根解决实际问题:运用平方根知识解决生活中的问题,如面积、体积等计算。
二、核心素养目标
1.培养学生的逻辑推理能力,通过平方根的定义和性质的学习,使学生掌握数学推理的基本方法,提高分析问题和解决问题的能力。
2.培养学生的数学运算能力,让学生熟练掌握平方根的运算规则,提高数学计算的速度和准确性。
-实际问题举例:将实际问题,如计算正方形面积,转化为求平方根的问题,教授学生如何建模和求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平方根》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要求解一个数的平方根的情况?”(如:计算正方形边长)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方根的奥秘。
《平方根》PPT教学课文课件

2. 性质:(1)正数的算术平方根是一个正数; (2)0 的算术平方根是0; (3)负数没有算术平方根; (4)被开方数越大,对应的算术平方根也越大.
感悟新知
例 1 求下列各数的算术平方根. (1)64; (2)2 1 ; (3)0.36; (4)72; (5) (-5)2; 4 (6)0; (7) 81 ; (8)7; (9)-16. 解题秘方:先根据平方运算找出这个正数,然后根 据算术平方根的定义求出算术平方根.
感悟新知
解:(1) 1 9 表示1 9 的平方根.
16
16
5 4
2
25 16
19 16
,
1 9 5. 16 4
(2) 0.81表示0.81 的算术平方根, 0.04 表示0.04 的算
术平方根.
∵ 0.92=0.81,0.22=0.04,∴ 0.81 =0.9, 0.04=0.2.
∴ 0.81 - 0.04 =0.9-0.2=0.7.
感悟新知
例2 已知a 的算术平方根是3,b 的算术平方根是4,求 a+b 的算术平方根. 解题秘方:根据算术平方根与被开方数的关系求出a, b 的值,然后求a+b 的算术平方根.
感悟新知
解:因为a 的算术平方根是3,所以a=32=9. 因为b 的算术平方根是4,所以b=42=16. 所以a+b=9+16=25. 因为52=25,所以25 的算术平方根是5, 即a+b 的算术平方根是5.
∴
99-7 3 2 <2.
∵32=1150,85=1160,∴32<85,
∴
99-7 8 2 <5.
感悟新知
例 5 已知 7.16 ≈ 2.676, 71.6 ≈ 8.462, (1) 0.0716 ≈_0_._2_6_7_6__ ,71600 ≈ __2_6_7_._6__ . (2) 0.00716 ≈ _0_._0_8_4_6_2_ , 7160 ≈ __8_4_._6_2__. (3)若 a ≈ 26.76,则整数a 的值是 ____7_1_6____. 解题秘方:利用计算器求出各个算术平方根,对照 被开方数和算术平方根寻找小数点移动的规律.
感悟新知
例 1 求下列各数的算术平方根. (1)64; (2)2 1 ; (3)0.36; (4)72; (5) (-5)2; 4 (6)0; (7) 81 ; (8)7; (9)-16. 解题秘方:先根据平方运算找出这个正数,然后根 据算术平方根的定义求出算术平方根.
感悟新知
解:(1) 1 9 表示1 9 的平方根.
16
16
5 4
2
25 16
19 16
,
1 9 5. 16 4
(2) 0.81表示0.81 的算术平方根, 0.04 表示0.04 的算
术平方根.
∵ 0.92=0.81,0.22=0.04,∴ 0.81 =0.9, 0.04=0.2.
∴ 0.81 - 0.04 =0.9-0.2=0.7.
感悟新知
例2 已知a 的算术平方根是3,b 的算术平方根是4,求 a+b 的算术平方根. 解题秘方:根据算术平方根与被开方数的关系求出a, b 的值,然后求a+b 的算术平方根.
感悟新知
解:因为a 的算术平方根是3,所以a=32=9. 因为b 的算术平方根是4,所以b=42=16. 所以a+b=9+16=25. 因为52=25,所以25 的算术平方根是5, 即a+b 的算术平方根是5.
∴
99-7 3 2 <2.
∵32=1150,85=1160,∴32<85,
∴
99-7 8 2 <5.
感悟新知
例 5 已知 7.16 ≈ 2.676, 71.6 ≈ 8.462, (1) 0.0716 ≈_0_._2_6_7_6__ ,71600 ≈ __2_6_7_._6__ . (2) 0.00716 ≈ _0_._0_8_4_6_2_ , 7160 ≈ __8_4_._6_2__. (3)若 a ≈ 26.76,则整数a 的值是 ____7_1_6____. 解题秘方:利用计算器求出各个算术平方根,对照 被开方数和算术平方根寻找小数点移动的规律.
《初中数学平方根》课件

非负性质
平方根始终是非负数,它们不会产生负值。
单调性及通项公式
我们将了解平方根的单调性质以及计算通项公式的方法。
平方根的加减乘除法则
1减法规则2来自掌握平方根的减法运算方法。
3
除法规则
4
学会如何对平方根进行除法运算。
加法规则
学习如何对平方根进行加法运算。
乘法规则
了解平方根的乘法运算规则。
平方根的应用
面积
探索平方根在计算不规则形状的面积方面的应用。
勾股定理
发现平方根在计算直角三角形边长方面的作用。
平方根的扩展
1
立方根
了解立方根的概念,并通过例题加深理解。
2
算术平方根
介绍算术平方根的定义和计算方法。
3
几何平方根
学习几何平方根的概念,并解析相关的示例。
总结与练习
知识总结
回顾学习的主要内容,并巩 固你对平方根的理解。
练习题解析
通过解析一些练习题,进一 步巩固你的学习成果。
课程反馈
请给我们提供关于课程的反 馈意见,以帮助我们改进。
谢谢观看!
我们希望这个《初中数学平方根》PPT课件能够帮助你更好地理解和应用平方根的概念。
《初中数学平方根》PPT 课件
# 初中数学平方根PPT课件
数学的平方根是一个非常有趣的概念。在这个课件中,我们将详细介绍平方 根的定义、性质、应用和扩展,以及一些实用的例子和练习题。
什么是平方根?
基本概念介绍
平方根用于求某个数的算术平方根。
求法及计算
我们将学习如何计算一个数的平方根。
平方根的性质
平方根始终是非负数,它们不会产生负值。
单调性及通项公式
我们将了解平方根的单调性质以及计算通项公式的方法。
平方根的加减乘除法则
1减法规则2来自掌握平方根的减法运算方法。
3
除法规则
4
学会如何对平方根进行除法运算。
加法规则
学习如何对平方根进行加法运算。
乘法规则
了解平方根的乘法运算规则。
平方根的应用
面积
探索平方根在计算不规则形状的面积方面的应用。
勾股定理
发现平方根在计算直角三角形边长方面的作用。
平方根的扩展
1
立方根
了解立方根的概念,并通过例题加深理解。
2
算术平方根
介绍算术平方根的定义和计算方法。
3
几何平方根
学习几何平方根的概念,并解析相关的示例。
总结与练习
知识总结
回顾学习的主要内容,并巩 固你对平方根的理解。
练习题解析
通过解析一些练习题,进一 步巩固你的学习成果。
课程反馈
请给我们提供关于课程的反 馈意见,以帮助我们改进。
谢谢观看!
我们希望这个《初中数学平方根》PPT课件能够帮助你更好地理解和应用平方根的概念。
《初中数学平方根》PPT 课件
# 初中数学平方根PPT课件
数学的平方根是一个非常有趣的概念。在这个课件中,我们将详细介绍平方 根的定义、性质、应用和扩展,以及一些实用的例子和练习题。
什么是平方根?
基本概念介绍
平方根用于求某个数的算术平方根。
求法及计算
我们将学习如何计算一个数的平方根。
平方根的性质
《平方根》课件完整版5人教版

现在请同学们完成下列习题, 什么数的平方等于1呢?
对 一,般是地1,和如-1果。一4个又数是
哪 的平些方数等的于平a方,呢那?么这就
是 个2数和就-2做。a的平方根,
或二次方根。
如果x²=a,那么x叫做a的平方 根。例如在刚才的题目中,3和 -3 的 平 方 都 是 9 , 就 可 以 说 ±3 是 9 的 平 方 根 , 这 里 的 ±3 就 表 示+3和-3两个数。
一般地,如果一个数的平方等于a,那么这个数就做a的平方根,或二次方根。
任何一个不为0的数的平方都不等于0,所以0的平方根就是0,0只有一个平方根。
占地面积为² 块地垫的边长,这块地垫的边长其实 要用总的面积²除以30块地垫,得出每块地垫的占地面积为m²,接下里求这块地垫的边长,这块地垫的边长其实就是求一个数的平方,是,通过计算可以得出的平方是,所以这块地
如果x²=a,那么x叫做a的平方根。
这根是是因0为,负负数数没没有有平平方根方。根。 任何一个不为0的数的平方都不等于0,所以0的平方根就是0,0只有一个平方根。
根可以记做± ,它等于±3。 因为(),所以的平方根是,
a
正数和负数的平方都是正数,0的平方是0,也就是说,在我们现在所认识的数当中,任何一个数的平方都不会为负数,所以,负数没有平方根。
正数a的平方根用 a 表示,负的平
方根符正用号数- a有a只表两有示当个。a平因≥0此方时正根有数意,a的义它平,
一般地,如果一个数的平方等于a,那么这个数就做a的平方根,或二次方根。
方根a<就0可时以无用意符义号±, 来表示,读 a 求一个数的平方根的运算,叫做开平方,与之前所学运算不同的是,对一个正数进行开平方运算,有两个结果,我们还知道
2.3 平方根(第2课时)

b 1 4
练
=0,则
a b
的平方根
• 6、 64 36 的平方根是 ,算术平方 根是 。 • 7、已知△ABC的三边分别是a、b、c, • 且 a 1 b² -4b+4=0,求c的取值范围。
提
高
• 8、已知y= x 2 + 2 x +3,求xy的算 术平方根。 • 9、在△ABC中,∠C=90°. • (1)如果AC=5,BC=12,求AB; • (2)如果AC=2,BC=1,求AB; • (3)如果AB=25,BC=24,求AC; • (4)如果AC=5,AB=12,求BC;
交
流
1.16的算术平方根的平方根是什么? 5的算术平方根是什么? 2、0的算术平方根是什么? 0的算术平方根有几个? 3、-2、-5、-6有算术平方根吗?为什么?
例
• • • •
题
例1:求下列各数的算术平方根: (1)625; (2)0.81; (3)6; (4)(-2)² (5) 256 (6) ( 0 . 25 ) 2
初中数学八年级上册 (苏科版)
2.3平方根
导
入
正数a有2个平方根,其 中正数a的正的平方根,也叫 做a的算术平方根。 例如,4的平方根是±2, 2叫做4的算术平方根。
举
例
• 4的平方根是±2,2叫做4的算术 平方根,记作 4 =2, • 2的平方根是“± 2 ”, 2 叫做 2的算术平方根, • 0只有一个平方根,0的平方根也叫 做0的算术平方根,即 0 =0
h
d
应
用
• 例2:“欲穷千里目,更上一层楼”。说的是登 的高看得远。若观测点的高度为h,观测者视线 能达到的最远距离为d≈2 hR ,其中R是地球半 径(通常取6400km),小丽站在海边一块岩石 上,眼睛离地面的高度为20M,她观测到远处一 艘船刚露出海平面,此时该小船离小丽有多远?
练
=0,则
a b
的平方根
• 6、 64 36 的平方根是 ,算术平方 根是 。 • 7、已知△ABC的三边分别是a、b、c, • 且 a 1 b² -4b+4=0,求c的取值范围。
提
高
• 8、已知y= x 2 + 2 x +3,求xy的算 术平方根。 • 9、在△ABC中,∠C=90°. • (1)如果AC=5,BC=12,求AB; • (2)如果AC=2,BC=1,求AB; • (3)如果AB=25,BC=24,求AC; • (4)如果AC=5,AB=12,求BC;
交
流
1.16的算术平方根的平方根是什么? 5的算术平方根是什么? 2、0的算术平方根是什么? 0的算术平方根有几个? 3、-2、-5、-6有算术平方根吗?为什么?
例
• • • •
题
例1:求下列各数的算术平方根: (1)625; (2)0.81; (3)6; (4)(-2)² (5) 256 (6) ( 0 . 25 ) 2
初中数学八年级上册 (苏科版)
2.3平方根
导
入
正数a有2个平方根,其 中正数a的正的平方根,也叫 做a的算术平方根。 例如,4的平方根是±2, 2叫做4的算术平方根。
举
例
• 4的平方根是±2,2叫做4的算术 平方根,记作 4 =2, • 2的平方根是“± 2 ”, 2 叫做 2的算术平方根, • 0只有一个平方根,0的平方根也叫 做0的算术平方根,即 0 =0
h
d
应
用
• 例2:“欲穷千里目,更上一层楼”。说的是登 的高看得远。若观测点的高度为h,观测者视线 能达到的最远距离为d≈2 hR ,其中R是地球半 径(通常取6400km),小丽站在海边一块岩石 上,眼睛离地面的高度为20M,她观测到远处一 艘船刚露出海平面,此时该小船离小丽有多远?
苏科版八年级上2.3《平方根》课件

04
平方根的应用
在几何学中的应用
勾股定理
在直角三角形中,直角边的平方和等 于斜边的平方,即$a^2 + b^2 = c^2$,其中$c$为斜边。这个定理在 几何学中有着广泛的应用,如确定直 角三角形的大小和形状等。
圆的面积计算
圆的面积公式为$S = pi r^2$,其中 $r$为圆的半径。这个公式利用了平方 根进行计算,可以帮助我们了解和解 决与圆有关的实际问题。
在日常生活中的应用
房屋面积计算
在购买房屋或计算房屋租金时,通常需要计算房屋的面积。通过测量房屋的长和宽,再利用平方根进行计算,可 以得到房屋的面积。
价格比较
在购物时,经常会遇到不同单位的价格比较。例如,某件商品的价格为每平方米100元,而另一件商品的价格为 每平方英尺10元。为了方便比较,需要将不同单位的价格转换为同一单位,这时就需要用到平方根的计算。
平方根的表示方法
通常用符号√表示平方根,例如, 9的平方根可以表示为√9。
平方根的性质
非负性
一个正数的平方根有两个值,一个正数和一个负数。例如, √9=3和-√9=-3。
无限不循环性
无理数的平方根是无限不循环小数,无法表示为分数或有限 小数。
平方根的表示方法
实数轴上的表示
在实数轴上,一个数的平方根可以表示为一个点到原点的距离等于该数的点。
平方根的乘法运算
总结词
理解平方根的乘法运算规则,掌握平方根的乘法运算方法。
详细描述
平方根的乘法运算是指将被开方数相乘,然后求出新的平 方根。例如,$sqrt{2} times sqrt{3}$表示将2和3相乘, 然后求出新的平方根。
注意事项
在进行平方根的乘法运算时,需要注意被开方数必须相同, 否则无法进行运算。
《平方根》PPT课件
例1 求下列各数的平方根:
(1) 49 (2) 0.64 (3) 3 (4)91
分析 问:解题思想方法是?
答:根据平方根的定义,把求平方根转化为求平方。即求出平方等于49的所有数。
说出下列各式的意义,并计算:
(1)114的平方根是-12与12;
(2)256的平方根是16;
a的算术平方根记为:
读作:
a叫做
“根号a”,
被开方数。
3.我们已经学习过哪些运算?它们中互为逆运算的是什么?
答:加法、减法、乘法、除法、乘方五种运算.
加法与减法互逆;乘法与除法互逆.
乘方有没有逆运算?
1.一个数的平方是9,这个数是什么数?2.一个数的平方是 ,这个数是多少?3.填空:①( )2 = 16 ②( )2 = ③ ( ) 2 = 0 ④( )2 = 0.49
∵ 02 = 0 ∴ 0叫做0的平方根
概念引入
思考一下a的平方根该如何表示呢?表示的意义?
二、平方根的表示方法、读法
根号
被开方数
又叫a的算术平方根
例如:
说一说
各表示什么意义?
表示7的正的平方根(算术平方根)
表示7的负的平方根
表示7的平方根
-
±
平方根的性质
议一议
(1)一个正数有几个平方根?它们是什么关系?(2)0有几个平方根?(3)一个负数呢?
1
4
9
+1
-1
+2
-2
+3
-3
1
4
9
+1
-1
+2
-2
+3
-3
开平方
平方
平方与开平方互逆运算.
(1) 49 (2) 0.64 (3) 3 (4)91
分析 问:解题思想方法是?
答:根据平方根的定义,把求平方根转化为求平方。即求出平方等于49的所有数。
说出下列各式的意义,并计算:
(1)114的平方根是-12与12;
(2)256的平方根是16;
a的算术平方根记为:
读作:
a叫做
“根号a”,
被开方数。
3.我们已经学习过哪些运算?它们中互为逆运算的是什么?
答:加法、减法、乘法、除法、乘方五种运算.
加法与减法互逆;乘法与除法互逆.
乘方有没有逆运算?
1.一个数的平方是9,这个数是什么数?2.一个数的平方是 ,这个数是多少?3.填空:①( )2 = 16 ②( )2 = ③ ( ) 2 = 0 ④( )2 = 0.49
∵ 02 = 0 ∴ 0叫做0的平方根
概念引入
思考一下a的平方根该如何表示呢?表示的意义?
二、平方根的表示方法、读法
根号
被开方数
又叫a的算术平方根
例如:
说一说
各表示什么意义?
表示7的正的平方根(算术平方根)
表示7的负的平方根
表示7的平方根
-
±
平方根的性质
议一议
(1)一个正数有几个平方根?它们是什么关系?(2)0有几个平方根?(3)一个负数呢?
1
4
9
+1
-1
+2
-2
+3
-3
1
4
9
+1
-1
+2
-2
+3
-3
开平方
平方
平方与开平方互逆运算.
新课标人教版初中数学七年级上册《平方根课件》
平方根在数学问题中的应用
平方根的定义和性质
平方根在代数式中的应用
添加标题
添加标题
平方根的运算规则
添加标题
添加标题
平方根在几何图形中的应用
平方根在科学计算中的应用
平方根的定义和性质
平方根的运算规则
平方根在科学计算中的应用实 例
平方根在实际问题中的应用
课件特色
第六章
丰富的实例和案例分析
丰富的实例: 通过具体实例 帮助学生理解 平方根的概念
互动式学习:提供互动式练习和思考题,激发学生的学习兴趣和参与度
多样化的教学方法:采用多种教学方法,如讲解、演示、讨论等,提高 教学效果
互动式学习体验和评估机制
实时互动:学生可以通过课件进行实时互动,提 高学习效果 单击此处输入你的正文,请阐述观点
个性化学习:学生可以根据自己的学习进度和兴 趣选择适合自己的学习内容 单击此处输入你的正文,请阐述观点
案例分析:对 典型案例进行 深入剖析,提 Байду номын сангаас学生的解题
能力
互动环节:设 置互动环节, 激发学生的学 习兴趣和参与
度
图文并茂:采 用图文并茂的 方式,使课件 更加生动形象,
易于理解
生动形象的动画和图表展示
生动形象的动画展示:通过动画演示,帮助学生更好地理解数学概念和 公式
丰富的图表展示:采用图表、表格等形式,直观展示数学知识和数据
成绩评估:课件对学生的答题成绩进行评估,帮 助学生了解自己的学习成果
单击此处输入你的正文,请阐述观点
总结评估:课件对学生的整体学习情况进行 总结评估,帮助学生了解自己的学习状况 单击此处输入你的正文,请阐述观点
针对不同层次学生的教学设计和练习题
平方根课件
则x 1 0且z 3 0, y 2 0, x 1, y 2, z 3
x y z 1 2 3 0
x y z的算术平方根为0
14. 实数a在数轴上的位置如图所示,则化简 a 2 (a 1)2
的结果是 1 .
-1 0 1 a 2
a≤2 15、若 a 22 2 a,则a的取值范围为
自学检测2
例1 求下列各数的平方根:
(1)64 ; (2) 49 ; (3)0.0004; (4) (25)2; (5) 11.
121
7
答案:1、±8 2、±11
±25 5、± 11
3、±0.04 4、
2、求下列各式的值
(1)、 16
(2)、 169 256
(3)、 1 9 (4)、 0.04
16
复习引入
1.正数a的算术平方根如何表示?
2.如果一个数的平方等于9,那么这个数是多少?
3.填空:
x2 1
16
36 4
5
x
1
4
6
2.2 平方根
第2课时 平方根
学习目标
1.学会进行开平方运算. (重点)
2.会求一个数的平方根.(重点)
自学指点1
平方根的定义: 一般地,如果一个数x的平方等于a,即
x2=a,那么这个数x就叫做a的平方根(或二次 方根).
即:若 x2 a,则x叫做a的平方根。 记作:x a 即:a的平方根就是: a
平方根的表示方法、读法
根号
a
(a是非负数)
被开方 数
读作:正、负根号a
自学检测1
1. 144的平方根是什么? 12
2. 0的平方根是什么? 0
3.245
的平方根是什么?
x y z 1 2 3 0
x y z的算术平方根为0
14. 实数a在数轴上的位置如图所示,则化简 a 2 (a 1)2
的结果是 1 .
-1 0 1 a 2
a≤2 15、若 a 22 2 a,则a的取值范围为
自学检测2
例1 求下列各数的平方根:
(1)64 ; (2) 49 ; (3)0.0004; (4) (25)2; (5) 11.
121
7
答案:1、±8 2、±11
±25 5、± 11
3、±0.04 4、
2、求下列各式的值
(1)、 16
(2)、 169 256
(3)、 1 9 (4)、 0.04
16
复习引入
1.正数a的算术平方根如何表示?
2.如果一个数的平方等于9,那么这个数是多少?
3.填空:
x2 1
16
36 4
5
x
1
4
6
2.2 平方根
第2课时 平方根
学习目标
1.学会进行开平方运算. (重点)
2.会求一个数的平方根.(重点)
自学指点1
平方根的定义: 一般地,如果一个数x的平方等于a,即
x2=a,那么这个数x就叫做a的平方根(或二次 方根).
即:若 x2 a,则x叫做a的平方根。 记作:x a 即:a的平方根就是: a
平方根的表示方法、读法
根号
a
(a是非负数)
被开方 数
读作:正、负根号a
自学检测1
1. 144的平方根是什么? 12
2. 0的平方根是什么? 0
3.245
的平方根是什么?
平方根课件
2.2 平方根
第二章 实数
第2课时 平方根
1 课堂讲授 平方根的定义
平方根的性质 求平方根(开平方)
a 2与 a2 的性质
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
想一想
(1)9的算术平方根是3,也就是说,3的平方是9. 还有其他的数,它的平方也是9吗?
(2)平方等于 4 的数有几个?平方等于0.64的 25
;
开平方
平方根是_平__方__运__算_____运算的结果;开平方
运算与____________C_互为逆运算. 2 (-2)2的平方根是( )
A.2
B.-2 2
2
C.±2
D.
知识点 4 ( a )2 与 a2 的性质
知4-导
1.想一想:
(1)( (2)(
64 )2等于多少? 7.2)2 等于多少?
导引:正确把握并准确运用平方根、算术平方根 的定义.
总结
知3-讲
•
必须弄清以下符号的意义:± a (a≥0)表示非负
• 数a的平方根; a (a≥0)表示非负数a的算术平方根;
• 把非负数a开平方,求它的平方根可用± a 表示.
知3-练
1 求一个数的____平__方__根____的运算叫做开平方
知2-练
1 下列说法正确的是( B ) A.任何数的平方根都有两个 B.一个正数的平方根的平方就是这个数 C.负数也有平方根 D.非负数的平方根都有两个
总结
知2-讲
本题考查平方根的性质:一个正数有 两个平方根,它们互为相反数;
知识点 3 求平方根(开平方)
知3-讲
1.开平方: 求一个数a的平方根的运算,叫做开平方, a叫做被开方数.
第二章 实数
第2课时 平方根
1 课堂讲授 平方根的定义
平方根的性质 求平方根(开平方)
a 2与 a2 的性质
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
想一想
(1)9的算术平方根是3,也就是说,3的平方是9. 还有其他的数,它的平方也是9吗?
(2)平方等于 4 的数有几个?平方等于0.64的 25
;
开平方
平方根是_平__方__运__算_____运算的结果;开平方
运算与____________C_互为逆运算. 2 (-2)2的平方根是( )
A.2
B.-2 2
2
C.±2
D.
知识点 4 ( a )2 与 a2 的性质
知4-导
1.想一想:
(1)( (2)(
64 )2等于多少? 7.2)2 等于多少?
导引:正确把握并准确运用平方根、算术平方根 的定义.
总结
知3-讲
•
必须弄清以下符号的意义:± a (a≥0)表示非负
• 数a的平方根; a (a≥0)表示非负数a的算术平方根;
• 把非负数a开平方,求它的平方根可用± a 表示.
知3-练
1 求一个数的____平__方__根____的运算叫做开平方
知2-练
1 下列说法正确的是( B ) A.任何数的平方根都有两个 B.一个正数的平方根的平方就是这个数 C.负数也有平方根 D.非负数的平方根都有两个
总结
知2-讲
本题考查平方根的性质:一个正数有 两个平方根,它们互为相反数;
知识点 3 求平方根(开平方)
知3-讲
1.开平方: 求一个数a的平方根的运算,叫做开平方, a叫做被开方数.